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Abstract. In this paper, we determined the number of chains of subgroups in the subgroup 
lattice of certain finite alternating groups using the computational technique. It is also 
showed that a fuzzy subgroup is simply a chain of subgroups in the lattice of subgroups. 

Keywords: Subgroups, Alternating Group, Chains of Subgroups and Fuzzy Subgroups 

AMS Mathematics Subject Classification (2020): 20D05; 20D06; 20D30 

1. Introduction 
Throughout this paper, all groups are assumed to be finite. The lattice of subgroups of a 
given group G is the lattice (�(��, ≤� where L(G) is the set of all subgroups of G and the 
partial order ≤ is the set inclusion.  A chain of subgroups of G  is called rooted (more 
precisely G -rooted) if it contains G, otherwise, it is called un-rooted. The  study of chains  
of subgroups  in this paper describes the set of all chains of subgroups  of G that end in G. 
Tărnăuceanu and Bentea gave an explicit formula for the number of chains of subgroups 
in the lattice of a finite cyclic group by finding its generating function of one variable.  The 
problem of counting chains of subgroups of a given group G has received attention by 
researchers with related to classifying fuzzy subgroups of G under a certain type of 
equivalence relation (see [2-6]). 
 
2. Methodology 
A chain of subgroups of G is a set of subgroups of G totally ordered by set inclusion. This 
paper describes the set of all chains of subgroups of G that end in G. In this way, suppose 
that the group G is finite and let �: � → [0,1] be a fuzzy subgroup of G. Put �(G) = {��, 
��,…., ��} and assume that ��< ��<….< ��.Then � determines the following chain of 
subgroups of G which ends in G: 

���� ⊂ ���� ⊂ ⋯ . ⊂ ���� = � 
Moreover, for any  � ∈ � and � = 1, ����� , we have  

�(�� = ��  ⟺ � = max"#$� ∈ ���%& ⟺ � ∈ ����\����(� 
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A necessary and sufficient condition for two fuzzy subgroups �, ) of G to be equivalent 
with respect to ~ has been identified in [6] such that �~)  if and only if � and ) have the 
same set of level subgroups, that is they determine the same chain of subgroups. This result 
shows that there exists a bijection between the equivalence classes of fuzzy subgroups of 
G and the set of chains of subgroups of G which end in G, which is used to solve many 
computational problems in fuzzy group theory. 
 
3. Main results 
Let  +(G) be the number of subgroup chains of group G that terminates in G, then  
 

+(�� = ∑ +(-� × /(-�0�12�342 5 ∈617(8�       ….(#) 
where (i) Iso(G) is the set of representatives of isomorphism classes of subgroups of G. 
(ii) n(H) denotes the size of the isomorphism class with representative H. 
(iii) +(-9� = +(-:� = 1, for which -9 is the trivial subgroup of G and -: is the improper 
subgroup of G.  

In this work (#) was used to obtain the number of chains of subgroups of  G that 
terminates in G. We  also use GAP (Group, Algorithms and Programming) to get the 
subgroup structures. [7] 
 
Proposition 1.  Let G be  ;< × ;< where p is prime, then +(;< × ;<�= 2p + 4 
Proof: ;< × ;< has the following subgroups  -9 , ;<{(p + 1) times } and ;< × ;< from 
the Isomorphism class. 
 
Then, +=;< × ;<> = +(-9� + (@ + 1� +=;<> + +(-:� = 1 + 2(@ + 1� + 1 = 2@ + 4 
 
It also follows : 
   (i)   +=;<> = 2  where p is prime 
   (ii)  +=;<C> = 6 where p and q are distinct primes 
   (iii)  +(;<E�= 4 where p is any prime 

   (iv)  +=;< × ;<> = 2@ + 4 where p is any prime 
Above result are special cases of corollary 5.2, 5.4,5.5,5.6 of  [1].  
 
3 (i).  The number of chains of subgroups FG   
The alternating group HI is simple non-abelian group which has the following subgroups: 
[{e},1] , [ ;�, 15], [;J, 10] , [;� × ;� 15], [;I, 6], [KJ, 10] , [L�M, 6] , [HN, 5] and [HI, 1]. 
 
Lemma 1. Let G be Dihedral group of order 2p, where p is any prime then, +(G)= 4 + 2p  
Proof:  L�< has the following subgroups:  [{e}, 1] , [;�, p] ,  [;<, 1]  and [L�<, 1]  
+(L�<� = 1 + +(-9� + @ ∗ +(;�� + +=;<> = 2@ + 4  
 
Proposition 2.   Let G be HN then, +(G)= 24 
Proof: HN  has the following subgroups:  [{e}, 1] , [;�, 3], [;J, 4] , [;� × ;�, 1] and [HN, 
1] 
 
So, we get  +(�� = 1 + +(-9� + 3+(;�� + 4+(;J� ++(;� × ;�� = 24  
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Lemma 2. For the symmetric groups KJ and KN , we have  +(KJ� = 10  and +(KN� =
232. 
 
Let G be HI,  then  
+(HI� = 1 + +(-9� + 15+(;�� + 10+(;J� + 5+(;� × ;�� + 6+(;I� + 10+(KJ� +
6+(L�M� + 5+(HN� = 408  
  
Theorem 1. The number of chains of subgroups of HI  that terminates in HI  is 408. 
Above result is  a case of theorem 4 of  [4].  
 
3. (ii)  The number of chains of subgroups for  FS  
The alternating group HT is a simple non-abelian group of order 360 which possesses the 
following subgroups : [{e}, 1] ,[;�, 45], [;J, 40] , [;� × ;�, 30], [;N, 45] , [;I, 360], 
[;J × ;J, 10] , [KJ, 120] , [LU, 45] , [L�M, 36] , [HN, 30], [HI, 12], [KN, 30] , [(;J × ;J � ⋉
;�, 10], [(;J × ;J � ⋉ ;N, 10]  and [HT, 1]. 
 
Proposition 3. Let the wreath product of the cyclic groups : (;J × ;J � ⋉ ;� and  
(;J × ;J � ⋉ ;N   Then, (;J × ;J � ⋉ ;�= 158  and  (;J × ;J � ⋉ ;N= 352 
Proof: (;J × ;J � ⋉ ;� has the following subgroups :  [{e}, 1] ,[;�, 9], [;J × ;J, 1], [;J, 
4] , [KJ, 12] , [(;J × ;J � ⋉ ;�, 1]. 
 
+=(;J × ;J � ⋉ ;�> = 1 + +(-9�+9+(;�� + +(;J × ;J�+4+(;J�+12+(KJ� = 158 
 
(;J × ;J � ⋉ ;N has the following subgroups :  [{e}, 1] ,[;�, 9], [;J × ;J, 1], [;J, 4] 
,[;N, 9], [KJ, 12] , [(;J × ;J � ⋉ ;�, 1] and  [(;J × ;J � ⋉ ;N, 1] 
  
+=(;J × ;J � ⋉ ;N> = 1 + +(-9�+9+(;�� + +(;J × ;J�+4+(;J� + 9+(;N�+12+(KJ� +
+=(;J × ;J � ⋉ ;�> = 352 
 
Theorem 2. The number of chains of subgroups of A6 that terminates in A6   is 21584 
Proof: Let G be A6 , then δ(A6) = 1 + δ(Z1) + 45 ∗ δ(Z2) + 40 ∗ δ(Z3) + 30 ∗ δ(Z2 × Z2) 
+ 45 ∗ δ(Z4) + 360 ∗ δ(Z5) + 4 ∗ δ(S3) + 10 ∗ δ(Z3 × Z3) + 45 ∗ δ(D8) + 30 ∗ δ(A4) + 12 
∗ δ(A5) + 30 ∗ δ(S4)) + 36δ(D10) + 10 ∗ δ(;J × ;J � ⋉ ;�+ 10 ∗ δ(Z3 × Z3) n Z4) = 
21584. 
 
3. (iii) The number of  chains of  subgroups   for  A7 
The alternating group A7 is a simple non-abelian group of degree 7, it has the following 
subgroups: [{ e} ,1] , [Z2, 105],  [Z3, 175] ,  [Z2 × Z2 , 140],  [Z4, 315] ,  

[Z5, 126], [Z3 × Z3, 70] , [S3, 630] , [D8, 315] , [D10, 126] , [D12, 105], [A4, 210] ,[A5, 
63],  [S4, 420]  , [S5, 21] ,  [(;J × ;J � ⋉ ;�, 70], [(;J × ;J � ⋉ ;N ,70], [(Z3 × A4) ⋉ 
Z2, 35] , [(Z6 × Z2) ⋉Z2, 105],  [Z3 ⋉ Z4, 105] ,  [Z3 × A4, 35] , [Z5 ⋉Z4, 126], [Z6, 105] 
,[Z6 × Z2, 35], [Z7,120], [Z7 ⋉Z3, 120] ,[A6, 7] , [PSL(3,2), 30] and [A7, 1] 
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Proposition 4. Suppose that semidirect product of the cyclic groups:(Z3 ⋉ 
Z4) and (Z7  ⋉ Z3), then δ(Z3  ⋉ Z4) = 24 and δ(Z7  ⋉  Z3) = 18  
Proof: Z3 ⋉ Z4 which is isomorphic to A4 has the following subgroups : 

[{ e} ,1] , 
[Z2,1] , [Z3,1] ,[Z4,3] , [Z6,3] , and [(Z3 ⋉ Z4),1] 
 δ(Z3 ⋉ Z4) = 1 + δ(He) + δ(Z2) + δ(Z3) + 3 ∗ δ(Z4) + δ(Z6) = 24 

Z7 ⋉  Z3 has the following subgroups : [{ e} ,1] , [Z3,7] ,[Z7,1] and 
[(Z7 ⋉Z3),1]  
δ(Z7 ⋉Z3) = 1 + δ(He) + 7 ∗ δ(Z3) + δ(Z7) = 18  
 
Lemma 3. Suppose that G be direct product of the cyclic group 
Z2p × Z2, where p is prime number, then 

 
Proof: 
Case I: p≥ 3 
Z2p × Z2 has the following subgroups He , [Z2,3] , Zp , [Z2p,3],Z2 × Z2 and Z2p × Z2 from 
the Isomorphism class. . 

Then, δ(G) = 1 + δ(He) + 3 ∗ δ(Z2) + δ(Zp) + 3 ∗ δ(Z2p) + δ(Z2 × Z2) = 36 

Case II: p = 2 [3, Section 4] 
(Z4 ×Z2) has the following subgroups : [{ e} ,1] , [Z2,3], [(Z2 ×Z2),1] , [Z4,2] and [(Z4 × 
Z2),1] 
δ(G) = 1 + δ(He) + 3 ∗ δ(Z2) + δ(Z2 × Z2) + 2 ∗ δ(Z4) = 24 

 
Lemma 4. Let G be direct product of Z3 and A4, then δ(Z3×A4) = 208 
(Z3 × A4) has the following subgroups : [{ e} ,1] , [Z2,3] , [Z2 × Z2,1] , 
[Z3 × Z3,4] , [Z3,13] , [Z6,3] , [Z6 × Z2,1] , [A4,3] and [(Z3 × A4),1] 
δ(G) = 1 + δ(He) + 3 ∗ δ(Z2) + 13 ∗ δ(Z3) + 3 ∗ δ(Z6) + δ(Z2 × Z2) + 4 ∗ δ(Z3 × Z3) + 
δ(Z6 × Z2) + 3 ∗ δ(A4) = 208 
 
Proposition 5. If  G be the wreath product of the alternating group and the cyclic group 
(Z3 × A4) ⋉ Z2, then δ(G) = 5248. 
Proof: (Z3 × A4) ⋉ Z2 has the following subgroups :  
[{ e} ,1] , [Z2,21] , [Z3 × Z3,4] , [Z3 ,13] , [Z4 ,9] , [Z6, 3], [S3, 12] 
[Z2×Z2,10] , [Z3×Z3, 4], [Z6×Z2,1] , [Z3×A4,1] , [Z3⋉ Z4,3] , [(Z3×Z3) ⋉ Z2,4] 
[A4,3] , [S3,42] , [S4,9] , [D8,9] , [D12,3] ,[(Z6 ×Z2) ⋉ Z2,3] and  
[(Z3 ×A4) ⋉Z2,1]. 
δ(G) = 1 + δ(He) + 21 ∗ δ(Z2) + 13 ∗ δ(Z3) + 9(δ(Z4)) + 3 ∗ δ(Z6)  

+ 10 ∗ δ(Z2 × Z2)+1(δ(Z6 ×Z2))+4∗δ(Z3 ×Z3)+δ(Z3 ×A4)+3∗δ(Z3⋉ Z4) 

+3∗δ(A4)+3∗ δ(D12+9∗δ(D8)+42∗δ(S3)+9∗δ(S4)+4∗δ�;J . ;J � ⋉ ;� 

+3∗δ�;T . ;� � ⋉ ;� = 5248 
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Proposition 6. Suppose that G be the wreath product of the cyclic group: ((;T × ;�� ⋉
;�, then δ(G) = 328. 
Proof: (Z6 × Z2) ⋉ Z2) has the following subgroups : [{ e} ,1] , [Z2,9] , [Z3 × Z3,1] , 
[Z3, 1] ,  [Z4, 3],   [Z6, 3], [S3, 2] , [Z2 × Z2,4], [Z3 ⋉ Z4,1] , [Z6 × Z2,1] , [D8, 3],[D12,1] 
and  [(Z6 × Z2) ⋉  Z2),1] 
δ(G) = 1 + δ(He) + 9 ∗ δ(Z2) + δ(Z3) + 3 ∗ δ(Z4) + 3 ∗ δ(Z6) + 4 ∗ δ(Z2 × Z2) + δ(Z6 

× Z2) + 4 ∗ δ + 2 ∗ δ(S3) + δ(D12) + 3 ∗ δ(D8) = 328 
 
Lemma 5. If  G be the projective special linear group PSL(3,2), then δ(PSL(3,2)) = 
4992. 
Proof: PSL(3,2) is simple non-abelian group of order 168, it has the following 
subgroups : [{ e} ,1] , [Z2,21] , [Z3,28] , [Z4,21] , [Z7,8], [S3,28] 

[Z2×Z2,14] , [Z7⋉ Z3,8] , [A4,14] , [S3,28] , [S4,14] , [D8,21] and [PSL(3,2),1] 
δ(G) = 1+δ(He)+21∗δ(Z2)+28∗δ(Z3)+21∗δ(Z4)+8∗δ(Z7)+14∗δ(Z2 × Z2) + 8 ∗ δ(Z7 ⋉  

Z3) + 14 ∗ δ(A4) + 21 ∗ δ(D8) + 28 ∗ δ(S3) + 14 ∗ δ(S4) = 4992  

 

Theorem 3. The number of chains of subgroups of A7 that terminates in A7 is 811632  

Proof: Let G be A7 , then 

δ(G) = 1+δ(He)+ 105∗δ(Z2)+ 175∗δ(Z3)+ 140∗δ(Z2×Z2)+315∗δ(Z4)+126∗ δ(Z5)+ 

105∗δ(Z6)+120∗δ(Z7)+ 70∗δ(Z3×Z3)+ 35∗δ(Z6×Z2)+ 105∗δ(;J ⋉ ;N)+35∗ δ(Z3×A4)+ 

126∗δ(;I ⋉ ;N)+ 210∗δ(A4)+ 65∗δ(A5)+7∗δ(A6)+ 315∗δ(D8)+126∗ (δ(D10)+ 

105∗(δ(D12)+ 630∗δ(S3)+ 420∗δ(S4))+21∗δ(S5) +30∗δ(PSL(3,2))+ 35∗δ(;J × HN � ⋉ ;� 

+70∗δ(;J × ;J � ⋉ ;�+70∗δ(;J × ;J � ⋉ ;N +105∗δ(;T × ;� � ⋉ ;� 

= 811632. 
 
4. Conclusion 
In this paper, we treated to counting the number of chains of subgroups for some 
specific alternating groups which is also the exact number of distinct fuzzy subgroups 
by the natural equivalence relation ∼ as used in [4]. This will surely constitute the 
subject of further research on the classification of the fuzzy subgroups of finite 
alternating groups. 
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