Brief Note

Verification of a Conjecture Proposed by N. Burshtein on a Particular Diophantine Equation

Nechemia Burshtein

117 Arlozorov Street, Tel-Aviv 6209814, Israel
Email: anb17@netvision.net.il

Received 3 September 2020; accepted 2 October 2020

Abstract. In [1] among other equations, the author considered the equation \(p^x + (p + 1)^y + (p + 2)^z = M^2\) when \(p = 4N + 3\) is prime, \(x = 1, y = z = 2\) and \(M\) is a positive integer. For all values \(0 \leq N \leq 50\), he established that the equation has exactly one solution when \(N = 2\), namely when \(p = 11\). In [1 – Conjecture 1] he stated that the equation has no solutions for all values \(N > 50\). In this note we verify that Conjecture 1 is indeed true for all values \(N > 50\).

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation \(p^x + q^y = z^2\) has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds.

In [1], we extended the above equation, and considered equations of the form \(p^x + (p + 1)^y + (p + 2)^z = M^2\) for all primes \(p \geq 2\) and integers \(x, y, z\) satisfying \(1 \leq x, y, z \leq 2\). The value \(M\) is a positive integer. All the possibilities for infinitely many solutions, no solution cases and unique solutions have been determined, except for the equation \(p + (p + 1)^2 + (p + 2)^2 = M^2\) when \(p\) is of the form \(4N + 3\). In this case, it was established that \(p = 11\) is the only solution when \(3 \leq p \leq 199\). We have conjectured [1 – Conjecture 1] that for all primes \(p > 199\), the equation has no solutions. In this note, we provide a formal proof as to the validity of our conjecture in [1] implying now that the solution with \(p = 11\) is unique.

2. All the solutions of \(p + (p + 1)^2 + (p + 2)^2 = M^2\) when \(p = 4N + 3\)

In the following theorem we will show that the equation has a unique solution.
Nechemia Burshtein

Theorem 2.1. Suppose that \(p = 4N + 3 \) (\(N \geq 0 \)) is prime. Then the equation \(p + (p + 1)^2 + (p + 2)^2 = M^2 \) has a unique solution when \(p = 11 \) (\(N = 2 \)).

Proof: The left side of the equation yields
\[
p + (p + 1)^2 + (p + 2)^2 = 2p^2 + 7p + 5 = (p + 1)(2p + 5) = (p + 1)(p + 1) + 3.
\]
(1)

If \((p + 1)(2(p + 1) + 3) = M^2 \) has a solution for some value \(p \), then the two factors \((p + 1) \), \((2(p + 1) + 3) \) in (1) must satisfy simultaneously the two conditions in each of the following cases, namely:

(a) \(p + 1 = A^2, \quad 2(p + 1) + 3 = B^2 \).
(b) \(p + 1 \neq A^2, \quad 2(p + 1) + 3 \neq B^2 \).

Suppose (a): \(p + 1 = A^2, \quad 2(p + 1) + 3 = B^2 \).
The equality \(p + 1 = A^2 \) implies that \(p = A^2 - 1 = A^2 - 1^2 = (A - 1)(A + 1). \) When \(A = 2, \) then \(p = 3. \) But \(2(3 + 1) + 3 = 11 \neq B^2 \). Thus \(A \neq 2. \) For all values \(A > 2, \) the prime \(p = (A - 1)(A + 1) \) is a product of two distinct factors which is impossible. The two conditions in (a) are not satisfied simultaneously.

Hence case (a) does not exist.

Suppose (b): \(p + 1 \neq A^2, \quad 2(p + 1) + 3 \neq B^2 \).
We have two cases, namely \(\gcd (p + 1, 2(p + 1) + 3) = 1, \) \(\gcd (p + 1, 2(p + 1) + 3) = 3. \)

If \(\gcd (p + 1, 2(p + 1) + 3) = 1, \) and \((p + 1)(2(p + 1) + 3) = M^2, \) it then follows that \(p + 1 = A^2 \) and \(2(p + 1) + 3 = B^2 \) must exist simultaneously. But this contradicts our supposition, and hence \(\gcd (p + 1, 2(p + 1) + 3) \neq 1. \)

If \(\gcd (p + 1, 2(p + 1) + 3) = 3, \) denote \(p + 1 = 3K, \) and \(2(p + 1) + 3 = 2 \cdot 3K + 3 = 3(2K + 1) \) where \(\gcd (K, 2K + 1) = 1. \) If \((p + 1)(2(p + 1) + 3) = 3 \cdot 2(2K + 1) = 3 \cdot (2K + 1)M^2, \) it now follows that the two conditions \(K = H^2 \) and \(2K + 1 = 2H^2 + 1 = L^2 \) exist simultaneously. In order to achieve the smallest possible difference \(L^2 - 2H^2 = 1, \) set \(H \) as the largest possible value \(H = L - 1. \) We then obtain
\[
L^2 - 2H^2 = L^2 - 2(L - 1)^2 = -L^2 + 4L - 2 = L(4 - L) - 2.
\]
(2)
Since for all values \(L \geq 4, \) it follows from (2) that \(L(4 - L) - 2 < 0, \) therefore \(L \) may assume only the two values \(L = 2, 3. \) When \(L = 2, \) then in (2) \(L^2 - 2H^2 = 2 > 1, \) and hence \(H = 2. \) This in turn implies that \(K = H^2 = 4, \) \(p + 1 = 3K = 12 \) and \(p = 11 \) for which \(M = 18. \) When \(p = 11, \) it follows that the two conditions in which \(p + 1 = 12 \neq A^2, \) and \(2(p + 1) + 3 = 27 \neq B^2 \) are indeed satisfied simultaneously.

The equation \(p + (p + 1)^2 + (p + 2)^2 = M^2 \) has a unique solution in which \(p = 11 \) and \(M = 18. \)

This concludes the proof of Theorem 2.1. \(\Box \)

Final remark. In [1] we have shown that when \(3 \leq p \leq 199, \) the equation \(p + (p + 1)^2 + (p + 2)^2 = M^2 \) has exactly one solution with \(p = 11. \) Theorem 2.1 establishes that
Verifying a Conjecture Proposed by N. Burshtein on a Particular Diophantine Equation

Conjecture 1 in [1] which stated that for all \(p > 199 \) the equation has no solutions is indeed true now, and the solution with \(p = 11 \) is therefore unique.

REFERENCES

1. N. Burshtein, Solutions of the diophantine equations \(p^x + (p + 1)^y + (p + 2)^z = M^2 \) for primes \(p \geq 2 \) when \(1 \leq x, y, z \leq 2 \), *Annals of Pure and Applied Mathematics*, 22 (1) (2020) 41-49.
2. N. Burshtein, On solutions of the diophantine equation \(8^x + 9^y = z^2 \) when \(x, y, z \) are positive integers, *Annals of Pure and Applied Mathematics*, 20 (2) (2019) 79-83.