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Abstract. We say that Kn → (G,H), if for every red/blue colouring of edges of the 
complete graph Kn,  there exists a red copy of G, or a blue copy of H in the colouring of 
Kn.  The Ramsey number r(G,H) is the smallest positive integer n such that Kn → (G,H).  
Let r(n,m)=r(Kn, Km).  A closely related concept of Ramsey numbers is the Star-critical 
Ramsey number r*(G, H) defined as the largest value of k such that K r(G,H)-1 ˅ K 1,k → 
(G,H).  Literature on survey papers in this area reveals many unsolved problems related 
to these numbers. One of these problems is the calculation of Ramsey numbers for certain 
classes of graphs. The primary objective of this paper is to calculate the Star critical 
Ramsey numbers for the case of Stars versus K1,m+e. The methodology that we follow      
in solving this problem is to first find a closed form for the Ramsey number                           
r*(K1,n , K1,m+e) for all n, m ≥ 3.  Based on the values of  r*(K1,n , K1,m+e) for different n, 
m we arrive at a general formula for r*(K1,n , K1,m+e). Henceforth, we show that            
r*(K1,n , K1,m+e) = n+m-1 is defined by a piecewise function related to the three disjoint 
cases of n, m both even and n ≤ m - 2, n or m is odd and n ≤ m-2 and n > m-2. 
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1. Introduction 
Given two graphs G and H, we say that Kn → (G, H), if any red and blue two colouring 
of Kn contains a copy of G in red or a copy of H in bue. Studies on Ramsey 
numbers/Multipartite Ramsey numbers related to different classes have been studied 
extensively in the past few decades (see [4-7,9]).  Studies on Star- critical Ramsey 
numbers related to different classes of graphs are trees vs complete graphs [3], paths vs. 
paths [2], stars vs. stripes [1] and complete graphs vs stripes are some such examples 
(also see [8,10]). In this paper, we extend this list by calculating Star-critical Ramsey 
numbers related to stars versus K1,m + e. 
 
2. Notation 
Consider a simple graph G and let v∈V(G). We denote the neighborhood of v by Γ(v) 
which represents the set of vertices adjacent to v. The degree of v which is equal to |Γ(v)| 
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is denoted by d(v). Consider a red/blue colouring of the complete graph Kn given by        
Kn = HR ⊕ HB where HR and HB denote the red and blue graphs with vertex set V (G). 
Likewise, the degree of vertex v in HR and HB are denoted by dR(v) and dB(v) respectively. 
Then clearly, we get n − 1 = dR(v) + dB(v). 
 
3. The exact values of r∗∗∗∗(K1,n, K1,m + e) for n, m ≥ 3 
In order to find lower bounds for Star critical Ramsey numbers, we deal with 
constructions of graphs generated by regular Kn convex n-gons drawn in an Euclidean 
plane. Label the vertices of Kn by v0, v1, v2, ..., vn−1 in the anti-clockwise order. Given any 
0 ≤ i, k ≤ n − 1, vi + k (mod n) and vi − k (mod n) are represented by the two vertices separated 
from vi by a path of length k along the outer cycle of the n-gon, in the anti-clockwise 
direction and the clockwise direction respectively. The red/blue colorings of Kn in such a 
scenario are called standard regular colorings of Kn. The following lemma plays an 
crucial role in finding r∗(K1,n, K1,m + e) for n, m ≥ 3. 
 
Lemma 2.1. Given n, m ≥ 3 
 

 

r(K1,n, K1,m + e) 
 

 
Proof. We break up the proof in to 4 parts correspondingly. 
 
Case 1. If n and m are both even and n ≤ m − 2 
Consider a standard coloring on Kn+m−2 such that each vi ∈ V (HR) (0 ≤ i ≤ n + m−3) is 
adjacent in red to all vertices of { v( i ± k ) mod (n+m−2) | 0 < k ≤ (n-2)/2 } and adjacent in blue 
to all the other vertices of V (Kn+m−2) \ { vi   } except for the (m-2) / 2  diagonal red edges 
joining vi  to the diametrically opposite vertex v(i + (n+m-2) / 2) mod (n+m−2)  when i = 0, 
1, ..., ((m-2) / 2)-1 (see Figure 1). We note that there are many alternative colorings with 
different number of red diagonals. However, this particular coloring was selected as the 
same coloring can be used to find Star-critical Ramsey numbers. Such a coloring is well 
defined, since by definition, (vi, vj) is a red edge iff (vj, vi) is a red edge. In such a 
construction, any vertex of Kn+m−2 will be adjacent in red to (n-2)/2 vertices                       
immediately left of it, (n-2) / 2 vertices immediately right of it and at most one vertex 
opposite it. Therefore, the red degree of any vertex adjacent in red to its opposite vertex is 
equal to 2 × (n-2) / 2+ 1 = n − 1. Similarly, the red degree of any vertex not adjacent in 
red to its opposite vertex is equal 2 × (n-2) / 2 = n − 2. Accordingly, the blue                        
degree will be (n + m − 3) − (n − 1) = m − 2 or else (n + m − 3) − (n − 2) = m − 1, 
respectively.  In this coloring, HR has no red K1,n. Also, HB has no blue K1,m + e. That is, 
Kn+m−2 ↛ (K1,n, K1,m + e). Hence, r(K1,n, K1,m + e) ≥ n + m − 1. 
 
 

Next, we need to show that, r(K1,n, K1,m + e)  ≤  n + m − 1.  Suppose there exists a 
red/blue coloring of Kn+m−1 such that HR contains no K1,n and HB contains no  K1,m + e. In 
order to avoid a red K1,n, every vertex v ∈ V (Kn+m−1) must satisfy dR(v) ≤ n − 1. However, 
by Handshaking lemma, all vertices of V (Kn+m−1) cannot have dR(v) = n−1 since 
otherwise it will force HR to have  an odd number of odd degree vertices. Therefore, there 
exists a vertex v0 ∈ V (Kn+m−1) such that dR(v0) ≤ n − 2. Hence dB(v0) ≥ m. In order to 
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v2 

avoid a blue K1,m + e, all vertices of ΓB(v0) must be adjacent to each other in red. That is, 
the vertices of ΓB(v0) induce a red complete graph of order at least m. 
 

 

 

                                                                                                    1                                                                                                       v1
 

 

                                                                                                    0                                                                                                        v0 

 

                                                                                                                                          v15 

                       

 

HR HB 

Figure 1: A Ramsey critical (K1,8, K1,10 + e) coloring of K16 = HR ⊕ HB 
 
Let w ∈ ΓB(v0). Then, dR(w) ≥ m − 1 ≥ n. That is, HR contains a red K1,n, a contradiction.  
Therefore, Kn+m−1 →  (K1,n, K1,m  + e).  Hence, r(K1,n, K1,m  + e) ≤ n + m - 1. Combining 
with the earlier result, we find r(K1,n, K1,m + e) = n + m - 1, as required. 
 
Case 2. If n is odd and n ≤ m − 2 
As before, consider a standard coloring on Kn+m−1 such that each vi ∈ V (HR) (0 ≤ i ≤ n + 
m − 2) is adjacent to {v( i ± k ) mod (n + m − 1) | 0 < k ≤ (n-1)/2} in red and adjacent to all the 
other vertices of V (Kn+m−1) \ {vi} in blue. This coloring is also well defined. In such a 
construction, any vertex of Kn+m−1 will be adjacent in red to (n-1)/2 vertices immediately 
left of it, (n-1)/2 vertices immediately right of it.  The red degree of any vertex is equal to 
2 × (n-1)/2= n − 1 and the blue degree of any vertex is (n + m − 2) − n − 1 = m − 1. 
Therefore, HR has no red K1,n. Also, HB has no  blue K1,m + e. That is,                                       
Kn+m−1 ↛ (K1,n, K1,m + e). Hence, r(K1,n, K1,m + e) ≥ n + m. 

Next we need to show that, r(K1,n, K1,m +e) ≤ n+m. Suppose there exists a 
red/blue coloring of Kn+m such that HR contains no K1,n and HB contains no K1,m + e. 

In order to avoid a red K1,n, every vertex v ∈ V (Kn+m) must satisfy dR(v) ≤ n−1. 
That is, for any vertex v ∈ V (Kn+m), dB(v) ≥ m. Let v0 ∈ V (Kn+m). In order to avoid a blue 
K1,m + e, all vertices of ΓB(v0) must be adjacent to each other in red. However, as n + 1 ≤ 
m, we argue that ΓB(v0) contains a red K1,n, a contradiction. Hence, r(K1,n, K1,m+e) ≤ n+m. 
Combining with the earlier result, r(K1,n, K1,m+e) = n+m, as required. 
 
Case 3. If n is even, m is odd and n ≤ m − 2 
Now consider a standard coloring on Kn+m−1 such that each vi ∈ V (HB) (0 ≤ i  ≤ n + m − 
2) is adjacent to {v(i ± k) mod (n+m−1) | 0 < k ≤ (m-1)/2} in blue and adjacent to all the other 
vertices of  V (Kn+m−1) \ {vi} in red. This coloring is also well defined. In such a 
construction, any vertex of Kn+m−1 will be adjacent in blue to (m-1)/2 vertices immediately 
left of it, (m-1)/2 vertices immediately right of it. Therefore, the blue degree of any            

v2 

v 
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vertex is equal to 2 × (m-1) /2  = m − 1 and the red degree of any vertex is                                   
(n + m − 2) − (m − 1) = n − 1. Therefore, HR has no red K1,n. Also HB  has                                  
no K1,m + e since it has no blue K1,m. That is, Kn+m−1 ↛ (K1,n, K1,m + e). Hence,                           
r(K1,n, K1,m + e) ≥ n + m. 

Next we need to show that, r(K1,n, K1,m +e) ≤ n + m. Suppose there exists a 
red/blue coloring of Kn+m such that HR contains no K1,n and HB contains no K1,m+e. In 
order to avoid a red K1,n, every vertex    v ∈ V (Kn+m) must satisfy dR(v) ≤ n− 1. Hence, for 
any vertex v ∈ V (Kn+m), dB(v) ≥ m. Let v0 ∈ V (Kn+m). In order to avoid a blue K1,m + e, all 
vertices of ΓB(v0) must be adjacent to each other in red. As n + 1 ≤ m, ΓB(v0) contains a 
red K1,n, a contradiction. Hence, r(K1,n, K1,m + e) = n + m. 
 
Case 4. n > m – 2 
Consider a standard regular coloring of K2n = HR ⊕ HB such that each vi ∈ V (K2n) (0 ≤ i ≤ 
n) forms a red clique of size n and each vi ∈ V(K2n) (n + 1 ≤ i ≤ 2n) also forms an 
independent red clique of size n.  That is, HR  = 2Kn  and HB = Kn,n  (see Figure 2). 

 
Figure 2: A Red/blue graph coloring of K12 with no red K1,6 and no blue K1,7 + e 

 

 
 
 

              Blue neighborhood will be forced to induce          
                v0                                               a red Kn+1 

 

                                                                           
 

 
 
 
Figure 3: Neighborhood of a vertex of K2n+1 used in the argument containing no 

red K1,n 
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Clearly, HR has no K1,n.  Furthermore, HB has no K1,m + e, since it has no blue C3.  
That is,  K2n ↛ (K1,n, K1,m + e). Hence, r(K1,n, K1,m + e) ≥ 2n + 1. 

Next we need to show that, r(K1,n, K1,m+e) ≤ 2n+1. Suppose there exists a 
red/blue coloring of K2n+1 such that HR contains no K1,n and HB contains no K1,m + e. 

Let v0 ∈ V (K2n+1). In order to avoid a red K1,n, v0 must satisfy dB(v0) ≥ 2n − (n 
−1) = n + 1 ≥ m. To avoid a blue K1,m + e, all vertices of ΓB(v0) must be adjacent to each 
other in red. That is, the vertices of ΓB(v0) induces a red complete graph of order at least n 
+ 1 (see Figure 3). Hence, V (K2n+1) will contain a vertex of red degree n, a contradiction.  
 
Lemma 2.1. Given n, m ≥ 3 
 

 

r* (K1,n, K1,m + e) 
 

 
Proof. We break up the proof in to 3 cases. 
 
Case 1. n and m are even and n ≤ m − 2 
To show that, r∗(K1,n, K1,m + e) ≥ n + m − 2, consider the coloring of Kn+m−2 ˅ K1,n+m−3 
introduced in Case 1 of Lemma 1.   

Add a vertex (say x) and connect it in blue to all the vertices vi and the 
diametrically opposite vertices vj mod (n+m−2) for i = 0, 1, ..., (m-2)/2  − 1 where  j = i + 
(n+m-2)/2.  Connect all the other vertices excluding the vertex v (n+m−4)/2  to x in red (see 
Figure 4). 
 
 
 
 
 
 
 
 
 
 x 
 
 
 
 
 
 
 
 

Figure 4: A red/blue coloring of Kn+m−2 ˅ K1,n+m−3 when n = 8 and m = 14 
 

This coloring of Kn+m−2 ˅K1,n+m−3 contains neither red K1,n nor blue K1,m +e. Thus,                 
Kn+m−2 ˅ K1,n+m−3 ↛ (K1,n, K1,m + e) . Therefore, r∗(K1,n, K1,m + e) ≥ n + m − 2. Finally, 
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using r∗(K1,n, K1,m + e) ≤ r(K1,n, K1,m + e) − 1 = n + m − 2, we conclude that                             
r∗(K1,n, K1,m + e) = n + m − 2. 

Case 2. n or m is odd and n ≤ m – 2 
We first show that, r∗(K1,n, K1,m + e) ≤ 1. Suppose there exists a red/blue coloring of 
Kn+m−1 ˅ K1,1 such that HR contains no K1,n and HB contains no K1,m + e. First let us restrict 
our attention to the red/blue coloring of Kn+m−1. In order to avoid a red K1,n, any vertex              
v ∈ Kn+m−1 must satisfy dR(v) ≤ n − 1 and hence dB(v) ≥ m − 1. Suppose that there exists a 
vertex v0 ∈ Kn+m−1 such that dR(v0) ≤ n − 2. That is, dB(v0) ≥ m. In order to avoid a blue 
K1,m + e, ΓB(v0) must induce a red complete graph. Since n < m − 1, the vertices of ΓB(v0) 
will contain a red complete graph of order at least n + 1. Hence, HR contains a red K1,n, a 
contradiction. Thus, we can assume that, any vertex v ∈ Kn+m−1 must satisfy dR(v) = n − 1 
and dB(v) = m − 1. Choose the point outside of Kn+m−1. In order to avoid a red K1,n, this 
vertex cannot be adjacent in red to any vertex of Kn+m−1. Furthermore, if this vertex v0 is 
adjacent to some vertex in blue, then since n ≤ m−2, ΓB(v0) will contain a red complete 
graph of order at least n + 1, a contradiction. Therefore, if the vertex outside of Kn+m−1  is 
adjacent in any colour to a vertex of Kn+m−1, we  will get a red K1,n  or a blue  K1,m + e.  

Hence, r∗(K1,n, K1,m + e) ≤ 1. Since by definition, r∗(K1,n, K1,m + e) ≥ 1, we 
conclude that r∗(K1,n, K1,m + e) = 1. 
 
Case 3. n > m − 2 
Consider the regular standard coloring of K2n = HR ⊕ HB given in Case 4 of Lemma 1. 
Extend this coloring to a coloring of K2n ˅K1,n such that the new vertex (say x) of degree 
n is adjacent in blue to all vertices of one partite set of HB = Kn,n (see Figure 4). Observe 
that, HR has no K1,n. Furthermore, HB has no K1,m + e since it has no blue C3. That is,                  
K2n ˅ K1,n ↛ (K1,n, K1,m + e). Hence, r∗(K1,n, K1,m + e) ≥ n + 1. 

 
 
Figure 5: The blue graph of K2n ˅ K1,n considered in proving r∗(K1,n, K1,m + e) ≥ n + 1 
when n = 6 and m ≤ 7 
 

Next we show that, r∗(K1,n, K1,m + e) ≤ n + 1. Suppose there exists a red/blue 
coloring of K2n ˅ K1,n+1 such that HR contains no K1,n and HB contains no K1,m + e. Let us 
first restrict our attention to a red/blue coloring of K2n.  In order to avoid   a red K1,n, any 
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vertex v ∈ K2n must satisfy dR(v) ≤ n − 1 and hence dB(v) ≥ n. Next, suppose that there 
exists a vertex v0 ∈ K2n such that dR(v0) ≤ n − 2. Then, dB(v0) ≥ n + 1 ≥ m. In order to 
avoid a blue K1,m + e,  all vertices of ΓB(v0)  must be adjacent to each other in red. Thus, 
the vertices of ΓB(v0) will contain a red complete graph of order at least n+1. Hence, HR 
contains a red K1,n, a contradiction. Therefore, we can assume that, any vertex v ∈ K2n 
must satisfy  dR(v) = n − 1 and dB(v) = n. 

Let the vertex outside of K2n in K2n ˅K1,n+1 be denoted by x. In order to avoid a 
red K1,n, x cannot be adjacent in red to any vertex of  K2n. If the vertex x is adjacent to n + 
1 vertices of K2n in blue, then since n + 1 m, ΓB(x) will contain a red complete graph of 
order at least n + 1, a contradiction. Hence, x cannot be adjacent to n + 1 vertices of K2n 
in any color. Therefore, r∗(K1,n, K1,m +e) ≤ n+1. Since by definition, r∗(K1,n, K1,m + e) ≥ n + 
1, we can conclude that r∗(K1,n, K1,m + e) = n + 1. 

 
4. Results and discussion 
In this paper, we  proved  that the Ramsey number r(K1,n, K1,m + e) is 2n + 1 for                            
n >  m - 2.  When n >  m - 2, r(K1,n, K1,m + e) is n + m + 1 or n + m  depending  on 
whether n and m are both even or at least one of them is odd, respectively. Furthermore, 
we showed that the Star critical Ramsey number r∗(K1,n, K1,m + e) is n + 1 for n > m   2. 
When n <  m - 2, r∗(K1,n, K1,m + e) is n + m- 2 or 1 depending on whether n and m are both 
even or at least one of them is odd, respectively. This result is consistent with the known 
result that, Star critical Ramsey number r∗(G, H) for any two simple graphs G and H, 
satisfies 1≤ r∗(G, H) ≤ r(G, H)-1. These findings are in agreement with the known result 
that, Star-critical Ramsey number r∗(G, H) for any two simple graphs G and H, satisfies                          
1 ≤ r∗(G, H) ≤ r(G, H) − 1. 
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