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Abstract. An efficient adaptive scheme based on a dual mixedirature rule of precision
eleven for approximate evaluation of line intégo& analytic functions has been
constructed. At first, the precision of Gauss-Lalyenfour point transformed rule is
enhanced by using Richardson extrapolation. A klgt@onvex combination of the
resulting ruleRGL,(f) and the Gauss-Legendre five point rule furtheramchs the
precision producing a new mixed quadrature S, z-; (f). This mixed rule is termed
as dual mixed Gaussian quadrature rule as it azgjugr very high precision eleven using
Gaussian quadrature rule in two steps. An adapirglrature scheme is designed .Some
test integrals having analytic function integrahdse been evaluated using the dual mixed
rule and its constituent rules in non- adaptive eadthe same set of test integrals have
been evaluated using those rules as base rules adaptive scheme. The dual mixed rule
based adaptive scheme is found to be most effective

Keywords: Gauss-Legendre 5-point rule, Mixed quadrature Riehardson extrapolation,
SMGLRGL(f)-
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1. Introduction
There are several rules for the approximate evialuaf real definite integral

1(f) = [} f)dx and [, f(z)dz (1.1)
However there are only few quadrature rules fofuatang an integral of type
I(f)=], f(@dz 1.2)

where L is a directed line segment from the pgigt— h) to (z, + &) in the domain of
f. Using the transformation = z, + ht,t € [—1,1] (due to [3]), we transformed the
integral (1.2) to the form
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h . f(zo+ht)dt (1.3)
and made the approximation of the integral by a@pglgtandard quadrature rule meant for
approximate evaluation of real definite integralljl The rules so formed are termed as
transformed rules for numerical integration of (1.2).

The integral (1.1) have been successfully approtdchy several Authors [1, 2,
10] by applying the mixed quadrature rule in th@lRand complex planes. These rules are
limited to precision upto nine. In literature, pséon of a quadrature rule has been
enhanced through Richardson extrapolation and Kobrextension [2, 5, 8]. These
methods of precision enhancement are very much ersaime and each having single base
rule. But the enhancement of precision by mixeddgataire approach is very much simple
with the aid of two rules and easy to handle.

In this paper, keeping in view the imy@ment of precision method proposed by
earlier authors, a mixed quadrature rule of prenigleven has been designed by the linear
combination of following two rules.

I.  The rule RGL,(f) obtained by Richardson extrapolation of Gauss-hdgge 4-
point rule.

.  Gauss-Legendre 5-point rule.

Gauss-Legendrerule
The (n+1) point Gauss-Legendre rule [6,7,9,11]veigy by

[} f(@)dz = p_g wif () (1.3)

wherew,'s are(n + 1) weights and;,'s are(n + 1)nodes. Th&2n + 2) unknowns can
be obtained by assuming the rule is exact for@iimppmials of degre€2n + 1).

Forn = 3 the Gauss-Legendre 4-point rule is
[ f@)dz = Tioo wnf (zi) (1.4)

Assuming the rule (1.4) is exact for all polynomiel degree-7. Taking(z) =
1,z,z%..z7, we get 8-equations. On solving these 8-equtinescan obtain all eight
unknownsw,,s and z;'s. Using the values of unknowns in (2.2), we get @Gauss-
Legendre 4-point transformed rule as

GLy(f) = 1< [(18 + V3O0){f (2o — ah) + f(zo + ah)} + (18 — V3O){f(zo — Bh) +

f(zo + Bh)}] (1.5)

3—2\@ 3+2\/§
where a = = B = — andf is infinitely differentiable in its domain.

Similarly Forn = 4 the Gauss-Legendre 5-point rule is

f_llf (2)dz = Y=o i f (21) (1.6)
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Assuming the rule (1.6) is exact for all polynomiel degree-9. Taking(z) =

1,z,z%..z°, we get 10-equations. On solving these 10-equtinescan obtain all ten

unknownswy,s and z;'s. Using the values of unknowns in (1.6), we get @auss-
Legendre 5-point transformed rule as

I(F) = [, f(2)dz = GLs(f) = 5[ (322 + 13V70){f (2o — ph) + f (2o + uh)} +
(322 — 13V70){f (zo — Yh) + f (2o + YR)} + 512f (20)] (1.7)

5— 2/ 5+2/39
7

9
2. Richardson extrapolation of Gauss-L egendre 4-point transformed rule
Consider the Gauss-Legendre 4-point rule (1.5)

GL,(f) = %[(18 +V30){f(zo — ah) + f(zo + ah)} + (18
—30){f (2o — Bh) + f (20 + BR)}]
We can write(18 + v30) = > (21 + 3582) and(18 — V30) = 5 (21 + 35a?).

whereu = andy =

Applying Taylor’'s theorem, we get

h? ii iv vi 3x3014° viii
GL4(f)=2h[f(zO>+ Fi(z0) + 5 F19(20) + 2 F7i(2) + 2L pi (70) +
3x1561 40 9x13503 it
74x52 10! x(ZO)+ 75x53 12'fxu(z )+ ] (2'1)

The exact value of the integral due to Taylor

I(f)—Zh[f(Zo)+3.f”(Zo)+ fw(Zo)+ f’”(Zo)+ f"‘”(Zo)+—f (20) +

11!
P Frize) ] (2.2)

Error Boundsfor GL,(f)
Let us denote the truncation error due to the Gllgf) by EGL,(f)

We have I(f) = GL4(f) + EGL4(f)

= EGLy(f)=1(f) — GLy(f) (2.3)
Using (2.1) and (2.2) on (2.3) we obtain EGLy(f) = 7;22 f; fri(zo) +
128x19 h1? 128x1163 h13
73x52 E x(ZO) + 74%53 13,fx”(Z ) + - (24)

The expression (2.4) is known as Error bounds etriimcation error of the rul@.,(f),
from the error term we concluded that the degrepre€ision of the Gauss-Legendre 4-
point rule is 7.

Richardson extrapolation of GL,(f)
Changing the number of sub-division fromto n/2 simultaneously the step length h
becomegh.
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Denoting the corresponding formula @yﬁ(f), we have
GL(f) = j—’; [(18 + V30){f (2o — 2ah) + f(zo + 2ah)} + (18 — V30){f (2o —

2Bh) + f(zo + 2ph)}] (2.5)
Using the values at, § and applying Taylors theorem, we get
GL(F) = 4h|f (20) + 5 fii(20) + 5 F 7 (20) + - F ¥ (20) +

9X13503212h12 s
FY1i(zg) + [ (20) + 2T i (g0) 4 .|

3x1561 210,10
74x52 10!

3x301 28h8
73%x52 8!

(2.6)
For this case the exact value of the integral,tdube Taylors theorem becomes
2p2 s 4n4 . 61,6 . 81,8
In(f) = 4h[f(20) + 5 FiL(20) + 25 F(20) + - F 7 (20) + S5 7 (20) +
> ! ! ! !

210h10 212h12 o
X (20) + T ¥ z) + - | (2.7)

Denoting the truncation error of the rlme4ﬁ(f) by EGL4E(f),
We haveln(f) = GLu(f) + EGL(f) = EGLA(f) = In(f) = GLu(f) (2.8)

Using (2.6) and (2.7) on (2.8), we get

128%2° h% L 1216x212 11 74432x214 13
EGL(P) = g 71 0) + S5 7 (o) + 0 15 o) + -+ (2.9)
Resuming the original integral, we have
I(f) = GL4(f) + EGL4(f) (2.10)
1) = GL () + EGL(f) (211)
2 2

Subtracting (2.11) from th2® times of (2.10), we get
(2 = DI = |26L() = GLa(H| + |2°EGLL() ~ EGLa(P)]
> 1) = 2= [2%6L.(p) - GL4%(f)] + [29EGL4(f) - EGL%(f)]
= I(f) = RGL4(f) + ERGL,(f)

where RGL,(f) = 51—1[29GL4(f) - GL4ﬂ(f)] (2.13)

and ERGL,(f) = [29EGL4(f) - EGL4E(f)] (2.14)

Using (1.5) and (2.5) in (2.14), we get
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RGL,(f) = —= [2°(18 + V30){f (2o — ah) + f(zo + ah)} + 2°(18 — V30){f (2o —

18396
Bh) + f(zo + Br)} — (18 + V30){f (2o — 2ah) + f(zo + 2ah)} — (18 —V30){f (2 —
2Bh) + f (20 + 2BM)}] @1

Here (2.13) and (2.14) are called Modified Gausgelnglre 4-pont rule due to
Richardson Extrapolation and truncation error ia Modified Gauss-Legendre 4-point
rule respectively.

Error boundsfor RGL4(f)
Using (2.4) and (2.9) in (2.14), we get

216x57 )t 216x3489 43
ERGL4(f) - 73x52 Efx(ZO) T T 7ax5% 13!
The expression (2.16) is known as Error boundsestrtincation error of the ruRGL,(f),

from the error term we concluded that the degrepretision of the Modified Gauss-
Legendre 4-pont rule due to Richardson Extrapalat®.

fA(zg) + - (2.16)

3. Gauss-L egendre 5-point transformed rule
Recalling the Gauss-Legendre 5-point transformé(du7), using the values pfand y

We can write (322 + 13v70) = (189 + 819y%) and (322 — 13v70) = (189 +
819u?), using these values and applying Taylors theomerfi ) we get

h2 . h4- . h6 . hS
GLs(f) = 2h [f(Zo) + 5 [ (20) + o 7 (20) + - 7 (20) + 5, f7 (20) +
55 th 5h12 ..
ST X (20) + T i (2) + -+ | (3.1)
Error boundsof GLs(f)

Let us denote the truncation error of the 1&g (f) by EGLs(f), we have
I(f) = GLs(f) + EGLs(f)
=EGLs(f)=1(f) — GLs(f) (3.2)
Using (2.2) and (3.5) on (3.6) we obtain

128 h1t 2755968 h13 ...
EGLs(f) = 5o " f¥(20) + et o 41 (7) + - (3.3)

The error term established that the degree of ietdf GL:(f) is 9.

4. Formulation of the Dual Mixed quadraturerule of precision eleven
The proposed mixed quadrature rule can be conetiumt using Gauss-Legendre 5-point
rule and Richardson Extrapolation of Gauss-Legeddueint rule [1], [2],[5] as follows

I(f) = GLs(f) + EGLs(f) (4.1)
I(f) = RGL4(f) + ERGL,(f) (4.2)
Adding 175 times of (4.2) witR* x 2° x 57 times of (4.1), we get

2364079 I(f) = [2363904 GLs(f) + 175 RGL,(f)] + [2363904 EGLs(f) +
175 ERGL, ()]
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1 1

= I(f) = [2363904 GLs(f) + 175 RGL,(f)] + [2363904 EGLs(f) +

2364079 2364079
175 ERGL,(f)]
= I(f) = SMgLreL (f) + ESMgLrer(f)
where  SMgyper(f) = 5-=—[2363904GLs () + 175 RGL4(f)] (4.3)
and  ESMgiper(f) = ——— [2363904EGLs(f) + 175 ERGL4(f)] (4.4)

2364079

The expression (4.3) is the desired mixed quadFatule and (4.4) is the truncation error
associated due to the rule.
Using (1.7) and (2.15) on (4.4), we get

65664 ll

SMairor(F) = J3ea07555 [(322 + 13VT0){f (20 — h) + f (2o + uh)} + (322 —
13v70){f (2o — vh) + f (2o + YR} + 512 (20)] +o—ee ——[29(18 + V30){f (20 —

2364079 1314
ah) + f(zo + ah)} + 2°(18 — V30){f (2o — Bh) + f (2o + P1)} — (18 + V30){f (2o —
2ah) + f(zo + 2ah)} — (18 = V30){f (2 — 28h) + f (2o + 25h)}] (4.5)

In the constructed mixed rule SM; r¢.. (f), the number of function evaluations is thirteen.

Gauss-L egendr e 4-point rule Gauss-L egendre 5-point rule
GL,(f) (Precision-7) GL;(f) (Precision-9)

||
=

Richardson Extrapolation of
GLy(f)

(Precision-9)

Dual mixed

Figure 1: Diagrammatic Representation of construction ofrthe

5. Error analysis
An error analysis of the constructed rule has lmtained by the following Theorems.

Theorem 1. If f(z) is analytic in the given doma@Q > [z, — &,z + k], then the
truncation error due to the ru§é1;; . (f) is denoted byESM; rq.. (f) and

4942879268 h'3 . i
|ESMgLreL(f)| = Tafx”(zo)

Proof: Using (2.16) and (3.3) on (4.4), we get
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4942879268 h13
ESMgrra(f) = T 13 fr(Zo) ...

= ESM¢peL(f) = 4942679268 h™* f*%(z,) [Since truncation error= a3)]

1011 13!
4942879268 h13
= |[ESMgLreL(f)] = o 13l fx”( 0) o

Theorem 2. The Error bound of the constructed quadratureisule
3735552 At

|ESMgLrer(f)] < mﬁﬁz $1l, 511525[—1: 1], whereM = _max, If (@)
128 h*

Proof: From (3.3), we getEGLs(f) = %Ef’f(gﬂ) &1€[—1,1]
2 6x57 jtt

and from (2.16), we geERGL,(f) = — 5= ¥ (20)f*(§2), §2€[—1,1]

Using above two values in (4.4), we can write

1 29184 x 128 4! 216 x 57 11
ESMgLrer(f) = [{ ll,fx(ﬁ)} {——f (fz)}]

2364079 49 49 11!
3735552 hll -3735552 pll
= e U @) — DY = e i U T €2) — (D)
3735552 h'l (& i
T 115839871 11! ff f*(2)dz "
3735552 hll| & 3735552 h'l & ;
= |ESMgLreL ()] = 115839871 11! J 2f’”(z)dz| = 115839871 11! f12|f’“(z)|dz

3735552 h'!
= 115839871 11!
3735552 Al
= |ESMgrrer(F)] < 115839871 111 €2 — &4 »p.

Since¢; and &, are arbitrarily chosen points in the interjall, 1], (5.1) shows that the
absolute value of the truncation error will be liésse pointst; and &, are closure to each
other. o

ngMdZ whereM = _max f(z)

Corollary 1. The error bound for the truncation error is

7471104M h** _ i
|ESMg1reL ()] < Tisesosiin M= _max. If*(2)]
Proof: From the theorem-2

3735552M Kt i
|ESMerrar (| < Tggsorr1m 162 — $1l §1,62€[-1, 1], whereM = max |f*(2)]
Again|&, — & | < 2, using on the above inequation, we get

7471104M A1 O
|ESMgLraL ()] < 115839871 11!

Theorem 3. The error committed due to the mixed quadratureSM;; . (f) is less
than its constituent rules.

Proof: From (3.3) and Theorem-1ESM¢; e (f)| < |EGL5(f)|

From (2.4) and Theorem-1 |ESM¢; ke ()] < |GLL(f)|

From (2.16) and Theorem-1|ESM¢; ke (f)| < |[ERGLL(f)| O
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The effectiveness of the rule is verified by appdyit in different integrals given in the

6. Numerical verification
table.

f(x)dx with error less

b
a

J

~

f(x)dx is computed.
90

b
a

J

thane, n is the number of interval initially chosen. Tdaptive strategy is outlined in the

7. Application of the quadraturerulein adaptive quadratureroutines
following four steps.

A simple adaptive strategy given in following Algbm [4, 10].

The input to this scheme isb,€,n, f. The output iP

Sep-1: An approximatior; to I

Algorithm



Dual Mixed Gaussian Quadrature Based Adaptive SetfemAnalytic Functions
Sep-2: The interval is divided into pieces, [a, c] dndb] wherec = azﬁ, and therd, =
J; f()dx andl; ~ fcb f(x)dx are computed.

Sep-3: 1, + I3 is compared witlh;, to estimate error ify, + I5.
Sep-4: If |estimated erroﬂ% (termination criterion), the, + I; is accepted as an

approximation tqf f(x)dx. Otherwise the same procedure is applied to [and][c, b],
allowing each piece to a tolerancegiof

Applying quadrature routines to the proposed quadsaule to each of the sub intervals
covering [a, b] until the termination criteriongatisfied. If the termination criterion is not
satisfied in one or more of the sub intervals, thlewse sub intervals must be further
subdivided and entire process repeated.

Table 2: Approximation of the integrals given in the Talilsy the constructed rule
SMgperkeL(f) and the constituent rul6L,(f) in the adaptive quadrature routines.
Let us consider the prescribed toleragee1.0 x 1078,

For the Mixed rule For the constituent rule GL4(f)
\ SMerrer(f)
Integrals Approximate value (P) No of [Error|= Approximate value (P) No of |Error|=
steps | puy) Seps | jp)
required required
i 2.35040238728626283 | 01 2.34x 10712 2.3504023872824851 03 5.118% 10712
I = J coszdz
-
I J’i 2q 1.68294196961556576 | 01 2272x 10713 | 1.6829419696120631 01 3.73x 10712
, = | e’dz
-
i 23.0974787145112096 | 07 4.286x 10712 | 23.09747871450818771 15 7.308x 10712
I3 = J cosz dz
—mi
2l -1.41614683654748182 01 3.394% 10713 | -1.416146836544004 03 3.139x 10712
Iy = J sinhzdz
0
1*71; 0.005113481707816661991 | 01 2.035x 1071* | 0.005113481718729i 01 1.0892x 10~ 11
Is = J Inzdz
% 0.654389393592214885 | 01 8.959% 1071* | 0.654389393592248 01 5.6x 107
Is = f icoshzdz
3
V3i -76.5251538616650488 i 15 1.443% 10731 | -76.5251538616128784 | | 31 6.6609x 10711
I, = J 210z
—/3i

8. Conclusions

From the tables it is evident that the mixed quadearule when applied each of the test
integrals gives better result than that of constiturules (Gauss-Legendre 4- point and
Gauss-Legendre 5-point transformed rules) in n@aptide mode. This mixed quadrature
ruleSMg e (f) also gives better results than its constituentiemused as base rules in
adaptive scheme. In some cases also the numbepsf equired to achieve the desired
accuracy is reduced.

It isimportant to note that the results obtained in the table-1 are much better than the
results of the same set of test integrals obtained in previous study in the papers[1,2, 5].
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