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Abstract. An efficient adaptive scheme based on a dual mixed quadrature rule of precision 
eleven for approximate evaluation of   line integral of analytic functions has been 
constructed. At first, the precision of Gauss-Legendre four point transformed rule is 
enhanced by using Richardson extrapolation. A suitable convex combination of  the 
resulting rule �������  and the Gauss-Legendre five point rule further enhances the 
precision producing a new mixed quadrature rule �	
��
����. This mixed rule is termed 
as dual mixed Gaussian quadrature rule as it acquires  a very high precision eleven using 
Gaussian quadrature rule in two steps. An adaptive quadrature scheme is designed .Some 
test integrals having analytic function integrands have been evaluated using the dual mixed 
rule and its constituent rules in non- adaptive mode. The same set of test integrals have 
been evaluated using those rules as base rules in the adaptive scheme. The dual mixed rule 
based adaptive scheme is found to be most effective.  

Keywords: Gauss-Legendre 5-point rule, Mixed quadrature rule, Richardson extrapolation, �	
��
����. 
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1. Introduction 
There are several rules for the approximate evaluation of real definite integral 

             ���� = � ��������   and  � ���������                                                            (1.1) 
However there are only few quadrature rules for evaluating an integral of type 

���� = � �������                                                                                               (1.2) 
where L is a directed line segment from the point ��� − ℎ�  �� ��� + ℎ� in the domain of � . Using the transformation � = �� + ℎ�, � ∈ [−1, 1]  (due to [3]), we transformed the 
integral (1.2) to the form                            
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                                     ℎ � ���� + ℎ�������                                                              (1.3) 
and made the approximation of the integral by applying standard quadrature rule meant for 
approximate evaluation of real definite integral (1.1). The rules so formed are termed as 
transformed rules for numerical integration of (1.2). 

The integral (1.1) have been successfully approximated by several Authors [1, 2, 
10] by applying the mixed quadrature rule in the Real and complex planes. These rules are 
limited to precision upto nine. In literature, precision of a quadrature rule has been 
enhanced through Richardson extrapolation and Kronrod extension [2, 5, 8]. These 
methods of precision enhancement are very much cumbersome and each having single base 
rule. But the enhancement of precision by mixed quadrature approach is very much simple 
with the aid of two rules and easy to handle. 
            In this paper, keeping in view the improvement of precision method proposed by 
earlier authors, a mixed quadrature rule of precision eleven has been designed by the linear 
combination of following two rules.  

I. The rule  �������  obtained by Richardson extrapolation of Gauss-Legendre 4-
point rule.  

II.  Gauss-Legendre 5-point rule.  
 

Gauss-Legendre rule 
The (n+1) point Gauss-Legendre rule [6,7,9,11] is given by    

� ������ = ∑ %&���&�'&(����                                                          (1.3) 

where %&′* are �+ + 1� weights and �&′* are �+ + 1�nodes. The �2+ + 2� unknowns can 
be obtained by assuming the rule is exact for all polynomials of degree �2+ + 1�. 
For + = 3 the Gauss-Legendre 4-point rule is 

   � ������ = ∑ %&���&�.&(����                                                            (1.4) 

Assuming the rule (1.4) is exact for all polynomial of degree-7. Taking ���� =1, �, �/ … �1, we get 8-equations. On solving these 8-equtions, we can obtain all eight 
unknowns %&2 * 3+� �&′* . Using the values of unknowns in (2.2), we get the Gauss-
Legendre 4-point transformed rule as 

������ = 4.5 6718 + √30;<���� − =ℎ� + ���� + =ℎ�> + �18 − √30�<���� − ?ℎ� +
���� + ?ℎ�>@                                                                                                                 (1.5) 

where  = = A.�/BCD1  ,  ? = A.E/BCD1  and � is infinitely differentiable in its domain. 

Similarly For + = 4 the Gauss-Legendre 5-point rule is 

                   � ������ = ∑ %&���&��&(����                                                                  (1.6) 
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Assuming the rule (1.6) is exact for all polynomial of degree-9. Taking ���� =1, �, �/ … �G, we get 10-equations. On solving these 10-equtions, we can obtain all ten 
unknowns %&2 * 3+� �&′* . Using the values of unknowns in (1.6), we get the Gauss-
Legendre 5-point transformed rule as 

���� = � ������ ≅ ��I������ = 4G�� 67322 + 13√70;<���� − Kℎ� + ���� + Kℎ�> +7322 − 13√70;<���� − Lℎ� + ���� + Lℎ�> + 512�����@                                      (1.7) 

where K = AI�/BNOPG   and  L = AIE/BNOPG  

2. Richardson extrapolation of Gauss-Legendre 4-point transformed rule 
Consider the Gauss-Legendre 4-point rule (1.5) 

  ������ = ℎ36 6718 + √30;<���� − =ℎ� + ���� + =ℎ�> + �18
− √30�<���� − ?ℎ� + ���� + ?ℎ�>@ 

We can write 718 + √30; = �/ �21 + 35?/� and 718 − √30; = �/ �21 + 35=/�.  
Applying Taylor’s theorem, we get  

 ������ = 2ℎ R����� + ℎ
S

.! �UU���� + ℎ
V

I! �UW���� + ℎ
C

1! �WU���� + .×.��1Y×IS ℎ
Z

[! �WUUU���� +
.×�I5�1V×IS ℎ

NO
��! � \���� + G×�.I�.1D×IY ℎ

NS
�/! � \UU���� + ⋯ ^                                                           (2.1) 

The exact value of the integral due to Taylor 

���� = 2ℎ R����� + ℎ
S

.! �UU���� + ℎ
V

I! �UW���� + ℎ
C

1! �WU���� + ℎ
Z

G! �WUUU���� + ℎ
NO

��! � \���� +
ℎ

NS
�.! �\UU���� + ⋯ ^                                                                                                        (2.2) 

Error Bounds for ������ 
Let us denote the truncation error due to the rule ������ by _������ 

              We have      ���� = ������ + _������ 
 ⇒_������= ���� − ������                                                                                     (2.3)  

Using (2.1) and (2.2) on (2.3) we obtain  _������ = �/[1S×IS 4`
G! �WUUU���� +

�/[×�G1Y×IS 4NN
��! �\���� + �/[×��5.1V×IY 4NY

�.! �\UU���� + ⋯                                                              (2.4) 

The expression (2.4) is known as Error bounds or the truncation error of the rule ������, 
from the error term we concluded that the degree of precision of the Gauss-Legendre 4-
point rule is 7. 

Richardson extrapolation of ������ 
Changing the number of sub-division from +  to +/2 simultaneously the step length h 
becomes 2ℎ. 
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Denoting the corresponding formula by ���bS���, we have 

 ���bS��� = /ℎ.5 6718 + √30;<���� − 2=ℎ� + ���� + 2=ℎ�> + �18 − √30�<���� −
2?ℎ� + ���� + 2?ℎ�>@                                                                                               (2.5) 

Using the values of =, ? and applying Taylors theorem, we get 

 ���bS��� = 4ℎ R����� + /S4S
.! �UU���� + /V4V

I! �UW���� + /C4C
1! �WU���� +

.×.��1Y×IS /Z4Z
[! �WUUU���� + .×�I5�1V×IS /NO4NO

��! �\���� + G×�.I�.1D×IY /NS4NS
�/! � \UU���� + ⋯ ^               

                                 (2.6) 

For this case the exact value of the integral, due to the Taylors theorem becomes 

�bS��� = 4ℎ R����� + /S4S
.! �UU���� + /V4V

I! �UW���� + /C4C
1! �WU���� + /Z4Z

G! �WUUU���� +
/NO4NO

��! �\���� + /NS4NS
�.! �\UU���� + ⋯ ^                                                                         (2.7) 

Denoting the truncation error of the rule ���bS��� by _���bS���,  
       We have  �bS��� =  ���bS��� +  _���bS���  ⇒  _���bS��� = �bS��� −  ���bS���     (2.8) 

Using (2.6) and (2.7) on (2.8), we get 

 _���bS��� = �/[×/`
1S×IS 4`

G! �WUUU���� + �/�5×/NS
1Y×IS 4NN

��! �\���� + 1��./×/NV
1V×IY 4NY

�.! �\UU���� + ⋯ (2.9) 

Resuming the original integral, we have 

                       ���� = ������ + _������                                                                  (2.10) 
                      ���� =  ���bS��� +  _���bS���                                                               (2.11) 

Subtracting (2.11) from the 2G times of (2.10), we get 

     �2G − 1����� = d2G������ −  ���bS���e + d2G_������ −  _���bS���e  
               ⇒ ���� = �I�� d2G������ −  ���bS���e + �I�� d2G_������ − _���bS���e 
               ⇒ ���� = ������� + _�������  
   where  ������� = �I�� d2G������ −  ���bS���e                                                      (2.13) 

               and   _������� = d2G_������ −  _���bS���e                                          (2.14) 

Using (1.5) and (2.5) in (2.14), we get 
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������� = /ℎ�[.G5 62G718 + √30;<���� − =ℎ� + ���� + =ℎ�> + 2G718 − √30;<���� −?ℎ� + ���� + ?ℎ�> − 718 + √30;<���� − 2=ℎ� + ���� + 2=ℎ�> − �18 − √30�<���� −2?ℎ� + ���� + 2?ℎ�>@                                                                                                  (2.15) 
Here (2.13) and (2.14) are called Modified Gauss-Legendre 4-pont rule due to 

Richardson Extrapolation and truncation error in the Modified Gauss-Legendre 4-point 
rule respectively. 

Error bounds for fghi�j� 
Using (2.4) and (2.9) in (2.14), we get 

      _������� = − /NC×I11Y×IS ℎ
NN

��! � \���� − /NC×.�[G1V×IY ℎ
NY

�.! �\UU���� + ⋯                         (2.16) 

The expression (2.16) is known as Error bounds or the truncation error of the rule �������, 
from the error term we concluded that the degree of precision of the Modified Gauss-
Legendre 4-pont rule due to Richardson Extrapolation is 9. 

3. Gauss-Legendre 5-point transformed rule 
Recalling the Gauss-Legendre 5-point transformed rule (1.7), using the values of K 3+� L 
We can write 7322 + 13√70; = �189 + 819L/�  and  7322 − 13√70; = �189 +819K/�, using these values and applying Taylors theorem on (1.7) we get 

��I��� = 2ℎ R����� + 4S
.! �UU���� + 4V

I! �UW���� + 4C
1! �WU���� + 4Z

G! �WUUU���� +
.II.G5G 4NO

��! �\���� + �[G1�/IGC×1S 4NS
�/! �\UU���� + ⋯ ^                                                          (3.1) 

Error bounds of ��I��� 
Let us denote the truncation error of the rule ��I��� by _��I���, we have 
                       ���� = ��I��� + _��I��� 

 ⇒_��I���= ���� − ��I���                                                                 (3.2)  

Using (2.2) and (3.5) on (3.6) we obtain 

         _��I��� = �/[.G5G 4NN
��! � \���� + /1IIG5[GC×1S 4NY

�.! �\UU���� + ⋯                                (3.3) 

The error term established that the degree of precision of  ��I��� is 9. 
  

4. Formulation of the Dual Mixed quadrature rule of precision eleven 
The proposed mixed quadrature rule can be constructed by using Gauss-Legendre 5-point 
rule and Richardson Extrapolation of Gauss-Legendre 4-point rule [1], [2],[5] as follows 

                                 ���� = ��I��� + _��I���                                                         (4.1) 

                                 ���� = ������� + _�������                                                    (4.2) 

Adding 175 times of (4.2) with 3� × 2G × 57 times of (4.1), we get 

2364079 ���� = [2363904 ��I��� + 175 �������] + [2363904 _��I��� +175 _�������]      
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⇒ ���� � �
/.5��1G

!2363904 ��I��� � 175 �������# � �
/.5��1G

!2363904 _��I��� �
175 _�������#     

⇒ ���� � �	
��
���� � _�	
��
����  

where      �	
��
���� � �
/.5��1G

!2363904��I��� � 175 �������#                         (4.3) 

and          _�	
��
���� � �
/.5��1G

!2363904_��I��� � 175 _�������#                 (4.4) 

The expression (4.3) is the desired mixed quadrature rule and (4.4) is the truncation error 
associated due to the rule. 

Using (1.7) and (2.15) on (4.4), we get 

�	
��
���� � 5I55�
/.5��1G

ℎ

/I
67322 � 13√70;<���� � Kℎ� � ���� � Kℎ�> � 7322 �

13√70;<���� � Lℎ� � ���� � Lℎ�> � 512�����@  +
/I

/.5��1G
 
ℎ

�.��
62G718 � √30;<���� �

=ℎ� � ���� � =ℎ�> � 2G718 � √30;<���� � ?ℎ� � ���� � ?ℎ�> � 718 � √30;<���� �
2=ℎ� � ���� � 2=ℎ�> � �18 � √30�<���� � 2?ℎ� � ���� � 2?ℎ�>@                           (4.5) 
In the constructed mixed rule �	
��
����, the number of function evaluations is thirteen. 
 

 

 

 

  

                                                                                                                                                                               

 

 

 

                                                                        
                                                                          Dual mixed 

Figure 1: Diagrammatic Representation of construction of the rule 
 

5. Error analysis 
An error analysis of the constructed rule has been obtained by the following Theorems. 
 
Theorem 1.  If ����  is analytic in the given domain Ω ⊃ !�� � ℎ, �� � ℎ# , then the 
truncation error due to the rule �	
��
���� is denoted by  _�	
��
���� and 

|_�	
��
����| ≅ �G�/[1G/5[
��NN

ℎ
NY

�.!
�\UU����    

Proof:  Using (2.16) and (3.3) on (4.4), we get 

Gauss-Legendre 4-point rule 
ghi�j�   (Precision-7) 

 

Gauss-Legendre 5-point rule 
ghn�j�   (Precision-9) 

 

The mixed quadrature 
rule  opghfgh�j� 

(Precision-11) 
 

Richardson Extrapolation of 
ghi�j�  

(Precision-9) 
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                              _�	
��
���� = �G�/[1G/5[��NN 4NY
�.! �\UU����+... 

⇒ _�	
��
���� ≅ �G�/[1G/5[��NN 4NY
�.! � \UU���� [Since truncation error= o(ℎ�.)] 

                        ⇒ |_�	
��
����| ≅ �G�/[1G/5[��NN 4NY
�.! � \UU����    

 

Theorem 2. The Error bound of the constructed quadrature rule is |_�	
��
����| ≤ .1.III/��I[.G[1� ℎ
NN

��! |r/ − r�|,      r�, r/s[−1, 1] , where 	 = max��wxw� |� \U���| 
Proof:    From (3.3), we get   _��I��� ≅ �/[.G5G ℎ

NN
��! � \�r��,  r�s[−1, 1] 

   and from (2.16), we get   _������� ≅ − /NC×I11Y×IS ℎ
NN

��! �\�����\�r/�, r/s[−1, 1] 
Using above two values in (4.4), we can write 

_�	
��
���� ≅ 12364079 yz 29184 × 12849 ℎ
��

11! �\�r��{ − z2�5 × 5749 ℎ
��

11! � \�r/�{| 
                          = .1.III/��I[.G[1� 4NN

��! <�\�r�� − �\�r/�> = �.1.III/��I[.G[1� 4NN
��! <�\�r/� − �\�r��> 

                             = �.1.III/��I[.G[1� 4NN
��! � � \U�����}S}N                                                                                                                              

     ⇒ |_�	
��
����| ≅ .1.III/��I[.G[1� 4NN
��! ~� � \U�����}S}N ~ ≤ .1.III/��I[.G[1� 4NN

��! � ��\U������}S}N  

                                       ≤ .1.III/��I[.G[1� 4NN
��! � 	��}S}N ,   where 	 = max��wxw� ���� 

      ⇒ |_�	
��
����| ≤ .1.III/��I[.G[1� 4NN
��! |r/ − r�|                                                (5.1) 

Since r� 3+� r/ are arbitrarily chosen points in the interval [−1, 1], (5.1) shows that the 
absolute value of the truncation error will be less if the points r� 3+� r/ are closure to each 
other.                                    

 

Corollary 1. The error bound for the truncation error is 

 |_�	
��
����| ≤ 1�1�������I[.G[1� ℎ
NN

��!,    	 = max��wxw� |� \U���| 
Proof: From the theorem-2  |_�	
��
����| ≤ .1.III/���I[.G[1� ℎ

NN
��! |r/ − r�|,   r�, r/s[−1, 1] , where 	 = max��wxw� |�\U���| 

Again |r/ − r�| ≤ 2, using on the above inequation, we get 

|_�	
��
����| ≤ 1�1�������I[.G[1� 4NN
��!   

Theorem 3. The error committed due to the mixed quadrature rule �	
��
���� is less 
than its constituent rules. 
Proof: From (3.3) and Theorem-1    |_�	
��
����| ≤ |_��I���| 
From (2.4) and Theorem-1      |_�	
�������| ≤ |G�����|      

      From (2.16) and Theorem-1     |_�	
�������| ≤ |_�������|                                                                                                                             
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6. Numerical verification 
The effectiveness of the rule is verified by applying it in different integrals given in the 
table. 

Table 1: 

 
7. Application of the quadrature rule in adaptive quadrature routines    
A simple adaptive strategy given in following Algorithm [4, 10]. 

Algorithm 

The input to this scheme is 3, �, ∈, +, � . The output is � ≅ � ��������  with error less 
than ∈, n is the number of interval initially chosen. The adaptive strategy is outlined in the 
following four steps. 

Step-1: An approximation �� to � = � ��������  is computed. 
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Step-2: The interval is divided into pieces, [a, c] and [c, b] where � = �E�/ , and then �/ ≈
� ��������  and �. ≈ � ��������  are computed. 
Step-3: �/ + �. is compared with ��, to estimate error in �/ + �.. 
Step-4: If |estimated error|≤ ∈/  (termination criterion), then �/ + �.  is accepted as an 

approximation to � �������� . Otherwise the same procedure is applied to [a, c] and [c, b], 

allowing each piece to a tolerance of 
∈/. 

Applying quadrature routines to the proposed quadrature rule to each of the sub intervals 
covering [a, b] until the termination criterion is satisfied. If the termination criterion is not 
satisfied in one or more of the sub intervals, then those sub intervals must be further 
subdivided and entire process repeated. 

Table 2: Approximation of the integrals given in the Table-1 by the constructed rule �	�
������� and the constituent rule  ������ in the adaptive quadrature routines. 
Let us consider the prescribed tolerance ∈= 1.0 × 10�[. 

 
 
8. Conclusions 
From the tables it is evident that the mixed quadrature rule when applied each of the test 
integrals gives better result than that of constituent rules (Gauss-Legendre 4- point and 
Gauss-Legendre 5-point transformed rules) in non-adaptive mode. This mixed quadrature 
rule �	
��
���� also gives better results than its constituent’s when used as base rules in 
adaptive scheme. In some cases also the number of steps required to achieve the desired 
accuracy is reduced.  

       It is important to note that the results obtained in the table-1 are much better than the 
results of the same set of test integrals obtained in previous study in the papers [1,2, 5]. 
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