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Abstract.  In this article, the author has investigated the equations 13x – 5y = z2  and  19x – 
5y = z2  with positive integers  x, y, z.  It was established that 13x – 5y = z2  has a unique 
solution, whereas  19x – 5y = z2  has no solutions.  
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to decide 
whether a given Diophantine equation has any solutions, or how many solutions. 
       The famous general equation 

px + qy = z2 
has many forms.  The literature contains a very large number of articles on non-linear such 
individual equations involving particular primes and powers of all kinds.  Among them are 
for example [2, 4, 6, 8]. 
       In this article, we consider the two equations  

13x – 5y = z2 
19x – 5y = z2 

in which  x, y, z  are positive integers.  Although resemblance exists between the two 
equations, they nevertheless differ in one point namely, 13  is a prime of the form  4N + 1,  
whereas  19  is a prime of the form  4N + 3.  It is our interest to find all the solutions for 
these two equations.  This is done in Sections  2  and  3,  where all theorems are self-
contained. 
 
2.   All the solutions of the equation  13x – 5y = z2   
In this section we will show that the equation  13x – 5y = z2  in positive integers  x, y, z  has 
exactly one solution. 
 
Theorem  2.1.    The equation  13x – 5y = z2  in positive integers  x, y, z  has a unique 
solution. 
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Proof:    We shall assume two cases, namely when  x  is odd and when  x  is even. 
       Suppose that  x  is odd. 
 
For all values  y ≥ 1,  the power  5y  ends in the digit  5.  When  x  is odd, then  13x  ends in 
the digit  3  or in the digit  7.  Therefore, the difference  13x – 5y  respectively ends in the 
digit  8  or in the digit  2.  Since for all values  x, y,  the above difference  is even, it follows 
that if  13x – 5y = z2,  then  z2  is even.  An even square cannot end in the digit  8  or end in 
the digit  2.  Therefore,  when  x  is odd  13x – 5y ≠ z2.   
       Suppose that  x  is even.  
Let  x = 2n  where  n ≥ 1 is an integer.  If  132n – 5y = z2  has a solution for some value  z,  
then  5y = 132n – z2 = (13n)2 – z2  or   
                                                       5y = (13n – z)(13n + z).                                                  (1) 
Denote in  (1) 

13n – z = 5A,           13n + z = 5B,          A < B,          A + B = y, 
where  A, B  are non-negative integers.  The sum  5A + 5B  yields  
                                                             2⸱13n = 5A(5B – A  + 1).                                            (2) 
If  A > 0, then 5 ∤ 2⸱13n.  Therefore  A ≯ 0.  When  A = 0, then  B = y. Hence  (2) results in  
                                                             2⸱13n = 5y + 1.                                                         (3) 
If  (3)  holds,  it  then  follows  that   n = 4m + 1  where  m ≥ 0   is  an  integer.  The values   
n = 1  (m = 0)  and  y = 2  yield a solution of  (3),  namely  2⸱131 = 52 + 1.  Thus,  the 
equation  13x – 5y = z2  has the solution 

                                                               132 – 52 = 122.                                                        (4) 

       The uniqueness of  (4)  is now determined as follows.  Let  n ≥ 2.  Writing  (3)  as 
2⸱13n = 5y + 1y,  then for all odd values  y ≥ 3, we obtain the identity 

                                 5y + 1y = (5 + 1)(5y – 1 – 5y – 2 +  5y – 3 – ⸱⸱⸱ – 51 + 1).                         (5) 

In  (5),  the  factor (5 + 1)  is a  multiple  of  3,  but in  (3)  3 ∤ 2⸱13n.  Therefore,  for  all  
odd values  y ≥ 3,  equation  (3)  has no solutions.   
       Suppose that y is even, and let  y = 2a  where  a ≥ 2 is an integer. Then (3) implies 
2⸱13n – 5y = 1 or 
                                                             2⸱134m + 1 – 52a = 1.                                                  (6) 

Certainly, the value  1  in  (6)  may be achieved only if  a  is the largest possible value for 
which  (6)  holds. We shall now examine the first three possibilities of  (6)  when  m = 1, 
2, 3,  with their respective largest possible values  a. 
Let  m = 1.  Then  a = 4,  and we have 

2⸱135 – 58 = 742586 – 390625 = 351961 ≠ 1. 

Let  m = 2.  Then  a = 7,  and we have   

2⸱139 – 514 = 21208998746 – 6103515625 = 15105483121 ≠ 1. 

Let  m = 3.  Then  a = 10,  and we have   

2⸱1313 – 520 = 605750213184506 – 95367431640625 = 510382781543881 ≠ 1. 
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Decisively and without any doubt, it follows from the above three cases that when  m  and  
a  are increasing, so does the difference of the left side of  (6).  The value  1  in  (6)  is 
never attained, and  y  is not even.  Equation  (6)  has no solutions. 
       Equality  (4)  is therefore unique, and the equation  13x – 5y = z2  has exactly one 
solution as asserted. 
       The proof of Theorem  2.1  is complete.                                              □ 
 
3.   All the solutions of the equation  19x – 5y = z2  
In this section we consider the equation  19x – 5y = z2  in positive integers  x, y, z.  In 
Theorem  3.1  we establish that the equation has no solutions. 
 
Theorem  3.1.   The equation  19x – 5y = z2  in positive integers  x, y, z  has no solutions. 
 
Proof:   We shall consider two cases, namely  x = 2n   and   x = 2n + 1,  where  n ≥ 0  is an 
integer. 
       Suppose that  x = 2n. 
We shall assume that  192n – 5y = z2  has a solution, and reach a contradiction. 
       By our assumption, we have 192n – 5y = z2  implying that  5y = 192n – z2 = (19n)2 – z2  or 
                                                           5y = (19n – z)(19n + z).                                             (7) 
Denote in  (7) 

19n – z = 5A,           19n + z = 5B,          A < B,          A + B = y, 

where  A, B  are non-negative integers.  Then  5A + 5B  yields  2⸱19n = 5A + 5B  or 

                                                           2⸱19n = 5A(5B – A  + 1).                                                (8) 

If  A > 0, then  5 ∤ 2⸱19n,  and therefore A ≯ 0. When A = 0, then  B = y  and  (8)  results in   

                                                           2⸱19n = 5y + 1.                                                           (9) 

For all values  y ≥ 1,  the power  5y  ends in the digit  5,  and hence  5y + 1  ends in the digit  
6.  For all values  n ≥ 1,  the power  19n  ends either  in  the digit  9  or in the digit  1.  Thus,  
2⸱19n  respectively ends either in the digit  8  or  in the digit  2.  Both sides of  (9)  now end 
in two distinct digits such as  8  and  6  or  2  and  6.  The equality in  (9)  is therefore 
impossible. This contradiction implies that  (9)  has no solutions, and hence  x ≠ 2n. 
       Suppose that  x = 2n +1. 
Since  5 = 4N + 1  (N = 1),  then for all values  y ≥ 1  the power  5y  is of the form  4U + 1  
where  U  is an integer. The prime 19 = 4M + 3  (M = 4), and for all values  n ≥ 0  the power  
192n + 1  is of the form  4V + 3  where  V  is an integer.  If  192n + 1 – 5y = z2  has a solution, 
then  z2  is even, and  z2 = 4T2.  The difference  192n + 1 –  5y  has the form  (4V + 3) – (4U 
+ 1) = 4(V – U) + 2 ≠  4T2 = z2.  This implies that  x ≠ 2n + 1, and  192n + 1 –  5y ≠  z2. 
       Since no value  x  exists which  satisfies the equation  19x – 5y = z2,  it follows that the 
equation has no solutions as asserted. 
       This concludes the proof of Theorem  3.1.                                     □ 
 
Corollary  3.1.   Consider the equation  px – qy = z2.   Suppose that  p  =  4M + 3  (M ≥ 0)  
is prime,  and  x  = 2n + 1.  Furthermore,  suppose that   q = 4N+ 1  (N ≥ 1)  is prime, and  
y ≥ 1.  Then the equation  px – qy = z2  has no solutions.   



Nechemia Burshtein 

96 
 

 
Proof:   When 19 is replaced by a prime  p = 4M + 3, then  (4M + 3)2n + 1  is of the form  
4V + 3  for all  M, n.  When  5  is replaced by a prime q = 4N + 1, then  (4N + 1)y  is of the 
form  4U + 1  for all  N > 0,  y ≥ 1.  The result which follows from the proof of the second 
part (x = 2n + 1)  of Theorem 3.1 is also valid now, and  (4M + 3)2n + 1 –  (4N + 1)y  ≠  z2.  
Moreover, the result holds when one of  p, q  or both are composites of the same forms.  

 
Final remark.    It has been shown in this article that the equation  13x – 5y = z2  has a  
unique solution, whereas the equation  19x – 5y = z2  has no solutions.  The results were  
achieved mainly by our new elementary technique which uses the last digits of the 
powers involved. 
We note that to the best of our knowledge, other authors have not considered equations of 
the kind  px – qy = z2.  It is therefore obvious, that no references concerning such 
equations can be provided. 
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