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Abstract. In this paper, the Rosenzweig-MacArthur predator-prey model with the 
hyperbolic tangent functional response is investigated. We choose capturing efficiency of 
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1. Introduction 
In recent years, ‘paradox of enrichment’ is a hot topic in both mathematical biology and 
population dynamics. More and more people give the corresponding explanations about 
this phenomenon. At present, some scholors work on using curve fitting method and 
graphical representation way to predict the population dynamics of the model. It can be 
referred to [1,2,3]. Their research direction tends to mathematical analysis and numerical 
simulation, rather than biological phenomena or experimental results. It means that the 
mathematical form of the model may play an important role. 

Back in 2005, Fussmann and Blasius [4] considered a classical Rosenzweig-
MacArthur predator-prey model as follows 
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where ( )u t
 
and ( )v t

 
stand for the prey population and predator population, respectively. 

r is prey intrinsic growth rate, K is carrying capacity, m is per capita mortality rate. 
Predator and prey population grow logistically at the rate ( )g u  and the nonlinear 

functional response ( )uΦ . 

Fussmann and Blasius [4] found a different result is that ‘paradox of enrichment’ 
phenomenon may depend on the mathematical form of functional response function. 

As is known to all, model ( )1
 
has three different response functions: Holling type Ⅱ

[5], Ivlev [6], and hyperbolic tangent [7] as follows 
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There is little literature that studies the R-M model with above three different response 
functions. Naturally, no one comes to a valuable conclusion. It was not until 2018 that Seo 
and Wolkowicz [8] concentrated on the general Rosenzweig-MacArthur predator-prey 
model with three different response functions. The conclusion is that in the case of 
hyperbolic tangent functional response, system ( )1  exhibits richer dynamics. 

Hence, inspired by Seo and Wolkowicz [8], we discuss the following modified model 
in this new direction of research 
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where a  is the conversion rate, c  implies the efficiency of the predator for capturing prey. 
h  is the harvesting effort. And other parameters are introduced in ( )1 . 

Obviously, model ( )2
 
has a trivial equilibrium ( )0= 0,0E , a semi-trivial equilibrium 

( )= ,0KE K ,  and a unique positive equilibrium ( )* * *= ,E u v
 
if and only if 
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2. Hopf bifurcation 
We choose capturing efficiency c  of predator as the bifurcation parameter to seek the 
condition for Hopf bifurcation of model ( )2  occurring at *E . We verify that 0c is the 

unique positive root of =0Θ  in the following. 
Set  

( ) ( )2 2: arctanh ,
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y b a b ab
a
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Notice that 

( )0 0,y =   ( ) 2 arctanh 0.
b

y b b
a
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Hence, ( ) 0,y b <  0 0.c >  

Suppose that ( ) ( ) ( )c c i cλ α β= ±  be a pair of complex roots of ( ) 0P λ =  when c  

is near 0c , then 

( ) 11 ,
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Simple computations show that  
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Thus, system ( )2
 
undergoes a Hopf bifurcation at *E  as c  passes through 0c .  

In the following, we perform a further analysis for the normal form to study the 
detailed property of Hopf bifurcation. We make the transformation *u u u= −ɶ , *v v v= −ɶ . 
For convenience, we still denote uɶ  and vɶ  by u and v , respectively. Thus, system ( )2

 
is 

transformed by  
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System ( )3  can be written as  
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( ) 2 2 3 2 2

1 1 3 4 5 6, , +  + + + ,f u v c a u a uv a v a u a u v a uv= + + ⋯  

( ) 2 2 3 2 2
1 2 3 4 5 6, , + + + + ,g u v c b u b uv b v b u b u v b uv= + + ⋯  

and 

( ) ( )( )22 2 * 2

1 2
,

m h Kc a m h v ra
a

Ka

+ − + −
=         

( )( )22

2 ,
c a m h

a
a

− +
= −                  3 0,a =  

( )( ) ( )( )2 23 2 2 *

4 3

3
,

3

c a m h a m h v
a

a

− + − +
=

     

( )( )22 2

5 2
,

mc a m h
a

a

− +
=                 6 0,a =  

( ) ( )( )22 2 *

1 2
,

m h c a m h v
b

a

+ − +
= −

           

( )( )22

2 ,
c a m h

b
a

− +
=                          3 0,b =  

( )( ) ( )( )2 23 2 2 *

4 3

3
,

3

c a m h a m h v
b

a

− + − +
= −

    

( ) ( )( )22 2

5 2
,

m h c a m h
b

a

+ − +
= −      6 0.b =  

Set the matrix 
1

: ,
0

B

A

 
Ρ =  

 
 

where 21a
A

β
= − , 22 11

2

a a
B

β
−= . Thus, 



Jing Zhang 

4 
 

 

( ) ( ) ( )
( ) ( )

-1 = : .
c c

J c
c c

α β
β α
 − 

Ρ Ρ Φ =  
 

 

Assume that 

0
0 : ,

c c
A A

=
=   

0
0 : ,

c c
B B

=
=   ( )0 0: .cβ β=  

By the transformation
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T T
u v x y= Ρ , model ( )4  is written as follows 
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The polar coordinate form of ( )5
 
is as follows 
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then the Taylor expansion of ( )6  at 0c c= is 
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In order to understand the stability of Hopf bifurcation periodic solution, we need to 
calculate the sign of ( )0a c ,  the formulation yields 
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where all partial derivative are evaluated at the bifurcation point ( ) ( )0, , , ,x y c x y c=  as 

follows 
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Note that 2 2 4 4 5 5, ,a b a b a b= − = − = −  and *
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Recall that ( )0 0cα ′ >
 
and Poincaré-Andronov-Hopf bifurcation theorem [9]. We have the 

following conclusion. 
 
Theorem 2.1. Suppose that ( )0H  holds, then system ( )2 produces a Hopf bifurcation at 

0c c= . Furthermore, 

(a) the direction of the Hopf bifurcation is subcritical and the bifurcated periodic solutions 
are unstable if ( )0 0a c > ; 

(b) the direction of the Hopf bifurcation is supercritical and the bifurcated periodic 
solutions are orbitally asymptotically stable if ( )0 0a c < . 

 
3. Conclusion  
In this paper, Hopf bifurcation of Rosenzweig-MacArthur predator-prey model with the 
hyperbolic tangent functional response is mainly considered. We chose capturing 
efficiency c  of predator as the bifurcation parameter and verified the transversality 
condition. Moreover, the result specifically showed that ( )0 0cα ′ > . Then the direction and 

stability of Hopf bifurcation were determined by Poincaré-Andronov-Hopf bifurcation 
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theorem. The conclusion is that the direction of the Hopf bifurcation is subcritical (resp. 
supercritical) and the bifurcated periodic solutions are unstable (resp. orbitally 
asymptotically stable) if ( )0 0a c > (resp. ( )0 0a c < ). It's worth noting that model ( )2  has 

richer dynamic behaviors that we'll reconsider them in the future. 
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