Annals of Pure and Applied Mathematics Vol. 23, No. 1, 2021, 27-36 ISSN: 2279-087X (P), 2279-0888(online) Published on 4 March 2021 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v23n1a05689

Edge Regularity on m-Bipolar Fuzzy Graph

Ramakrishna Mankena¹, T.V. Pradeep Kumar² Ch. Ramprasad^{3*} and J. Vijaya Kumar⁴

 ¹Acharya Nagarjuna University and Department of Mathematics Malla Reddy College of Engineering, Hyderabad, India
 ²Department of Mathematics, University College of Engineering Acharya Nagarjuna University, Nagarjuna Nagar
 ^{3,4}Department of Mathematics, Vasireddy Venkatadri Institute of Technology Namburu, 522 508, India
 Emails: ¹rams.prof@gmail.com; ²pradeeptv5@gmail.com; ⁴jyotvij@yahoo.com Corresponding Author. <u>ramprasadchegu1984@gmail.com</u>

Received 30 November 2020; accepted 5 February 2021

Abstract. In this article, a new idea of m-bipolar fuzzy graph (m-BPFG) is initiated. Further, degree of an edge and total degree of an edge are defined and also determined necessary and sufficient condition under which edge regular m-BPFG and totally edge regular m-BPFG are equivalent.

Keywords: m-BPFG, Edge degree, Total edge degree.

AMS Mathematics Subject Classification (2010): 05C72

1. Introduction

Fuzzy sets are introduced for the parameters to solve problems related to vague and uncertain in real life situations were given by Zadeh [12] in 1965. The limitations of traditional model were overcome by the introduction of bipolar fuzzy set concept in 1994 by Zhang [13]. This was further improved by Chen et al. [4] to m-polar fuzzy set theory.

Free body diagrams using set of nodes connected by lines representing pairs are good problem solving tools in non-deterministic real life situations. Thus, Rosenfeld [10] first initiated the fuzzy graphs by taking fuzzy relations on fuzzy sets in 1975. Akram [1] introduced the notion of bipolar fuzzy graphs and studied some isomorphic properties on it. Pal and Rashmanlou [7] studied irregular interval-valued fuzzy graphs and several of their classifications. Rashmanlou et al. [11] studied categorical properties of bipolar fuzzy graphs. Radha and Kumarvel [9] initiated the notion of edge regular bipolar fuzzy graphs. Ghorai and Pal [5, 6] introduced generalized m-polar fuzzy graphs and studied some isomorphic properties and density of an m-polar fuzzy graph. Banasode and Umathar [2] introduced minimum total edge dominating energy of a graph. Bera and pal [3] introduced the concept of m-polar interval-valued fuzzy graph and studied the algebraic properties like density, regularity and irregularity etc. on m-PIVFG. Pal et al. [8] studied intersection graphs and provides tools for applying fuzzy mathematics and graph theory to real world problems.

This paper attempts to develop theory to analyze parameters combining concepts from m-polar fuzzy graphs and bipolar fuzzy graphs as a unique effort. The resultant graph is turned to m-BPFG and studied properties on it.

2. Preliminaries

In this section, basic terminologies of bipolar fuzzy graph (BPFG) and m-polar fuzzy graph (m-PFG) are studied.

For a given set V, define an equivalence relation \leftrightarrow on $V \times V - \{(k, k) : k \in V\}$ as follows: $(k_1, l_1) \leftrightarrow (k_2, l_2) \Leftrightarrow$ either $(k_1, l_1) = (k_2, l_2)$ or $k_1 = l_2, l_1 = k_2$. The quotient set got in this way is denoted by $\overrightarrow{V^2}$.

Definition 2.1. A bipolar fuzzy graph of a graph $G^* = (V, E)$ is a pair G = (V, S, T)where $S = \begin{bmatrix} \psi_S^p, \psi_S^n \end{bmatrix}$ is a bipolar fuzzy set in V and $T = \begin{bmatrix} \psi_T^p, \psi_T^n \end{bmatrix}$ is a bipolar fuzzy relation on $\overrightarrow{V^2}$ such that $\psi_T^p(s, t) \le \min \{ \psi_S^p(s), \psi_S^p(t) \}, \psi_T^n(s, t) \ge \max \{ \psi_S^n(s), \psi_S^n(t) \}$ for all $(s, t) \in \overrightarrow{V^2}$ and $\psi_T^p(s, t) = \psi_T^n(s, t) = 0$ for all $(s, t) \in \overrightarrow{V^2} - E$.

Definition 2.2. An m-polar fuzzy graph of a graph $G^* = (V, E)$ is a pair G = (V, S, T) where $S: V \to [0, 1]^m$ is an m-polar fuzzy set in V and $T: \overrightarrow{V^2} \to [0, 1]^m$ is an m-polar fuzzy set in $\overrightarrow{V^2}$ such that $p_j \circ T(s, t) \le \min \{ p_j \circ S(s), p_j \circ S(t) \}$ for all $(s, t) \in \overrightarrow{V^2}, j = 1, 2, \cdots, m$ and $T(s, t) = \langle 0, 0, \cdots, 0 \rangle$ for all $(s, t) \in (\overrightarrow{V^2} - E)$. Here, $p_j \circ S(s)$ and $p_j \circ T(s, t)$

represents the j^{th} component of the degree of membership value of the vertex 's' and the edge '(s, t)'.

3. Regularity on m-bipolar fuzzy graphs

All the vertices and edges of an m-polar fuzzy graph have m components and those components are fixed. But these components may be bipolar. Using this idea, m-BPFG has been introduced. Before defining m-bipolar fuzzy graph, we assume the following:

Definition 3.1. An m-bipolar fuzzy set (m-BPFS) *S* on *V* is defined by

$$S(s) = \left\{ \left\langle \left[p_1 \circ \psi_s^p(s), p_1 \circ \psi_s^n(s) \right], \left[p_2 \circ \psi_s^p(s), p_2 \circ \psi_s^n(s) \right], \cdots, \left[p_m \circ \psi_s^p(s), p_m \circ \psi_s^n(s) \right] \right\rangle \right\}$$

for all $s \in V$ or shortly

$$S(s) = \left\{ \left\langle \left[p_{j} \circ \psi_{S}^{p}(s), p_{j} \circ \psi_{S}^{n}(s) \right]_{j=1}^{m} \right\rangle | s \in V \right\}$$

where the functions $p_j \circ \psi_S^p : V \to [0, 1]$ and $p_j \circ \psi_S^n : V \to [-1, 0]$ denote the positive memberships and negative memberships of the element respectively.

Definition 3.2. Let S be an m-BPFS on a set V. An m-bipolar fuzzy relation on a set S is an m-BPFS T of $V \times V$,

$$T(s,t) = \left\{ \left\langle \left[p_1 \circ \psi_T^p(s,t), p_1 \circ \psi_T^n(s,t) \right], \left[p_2 \circ \psi_T^p(s,t), p_2 \circ \psi_T^n(s,t) \right], \cdots, \right. \\ \left[p_m \circ \psi_T^p(s,t), p_m \circ \psi_T^n(s,t) \right] \right\rangle \right\}$$

for all $s, t \in V$ or shortly $T(s,t) = \left\{ \left\langle \left[p_j \circ \psi_T^p(s,t), p_j \circ \psi_T^n(s,t) \right]_{j=1}^m \right\rangle | s, t \in V \right\}$ such that
 $p_j \circ \psi_T^p(s,t) \le \min \{ p_j \circ \psi_S^p(s), p_j \circ \psi_S^p(t) \}, \quad p_j \circ \psi_T^n(s,t) \ge \max \{ p_j \circ \psi_S^n(s), p_j \circ \psi_S^n(t) \},$
for every $i = 1, 2, \cdots, m$ and $s, t \in V$.

Definition 3.3. An m-bipolar fuzzy graph (m-BPFG) of a graph $G^* = (V, E)$ is a pair G = (V, S, T) where $S = \left\langle \left[p_j \circ \psi_S^p, p_j \circ \psi_S^n \right]_{j=1}^m \right\rangle, p_j \circ \psi_S^p : V \rightarrow [0, 1]$ and $p_j \circ \psi_S^n : V \rightarrow [-1, 0]$ is an m-BPFS on V; and $T = \left\langle \left[p_j \circ \psi_T^p, p_j \circ \psi_T^n \right]_{j=1}^m \right\rangle, p_j \circ \psi_T^p : \overrightarrow{V^2} \rightarrow [0, 1]$ and $p_j \circ \psi_T^n : \overrightarrow{V^2} \rightarrow [-1, 0]$ is an m-BPFS in $\overrightarrow{V^2}$ such that $p_j \circ \psi_T^n (k, l) \le \min \left\{ p_j \circ \psi_S^p (k), p_j \circ \psi_S^p (l) \right\}, p_j \circ \psi_T^n (k, l) \ge \max \left\{ p_j \circ \psi_S^n (k), p_j \circ \psi_S^n (l) \right\}$ for all $(k, l) \in \overrightarrow{V^2}, j = 1, 2, \cdots, m$ and $p_j \circ \psi_T^p (k, l) = p_j \circ \psi_T^n (k, l) = 0$ for all $(k, l) \in \overrightarrow{V^2} - E$.

Example 3.1. An example of a 3-BPFG is as shown in Figure 1.

Figure 1: 3-Bipolar fuzzy graph G

Definition 3.4. The degree of a vertex r in an m-BPFG G = (V, S, T) of $G^{\mathbb{K}} = (V, E)$ is $d_G(r) = \left\langle \left[p_j \circ d_G^p(r), p_j \circ d_G^n(r) \right]_{j=1}^m \right\rangle$ where $p_j \circ d_G^p(r) = \sum_{\substack{r \neq s \\ (r,s) \in E}} p_j \circ \psi_T^p(r, s)$ and $p_j \circ d_G^n(r) = \sum_{\substack{r \neq s \\ (r,s) \in E}} p_j \circ \psi_T^n(r, s)$.

Definition 3.5. The degree of an edge $(r, s) \in E$ in an m-BPFG G = (V, S, T) of $G^* = (V, E)$ is $d_G(r, s) = \left\langle \left[p_j \circ d_G^p(r, s), p_j \circ d_G^n(r, s) \right]_{j=1}^m \right\rangle$ where $p_j \circ d_G^p(r, s) = p_j \circ d_G^p(r) + p_j \circ d_G^p(s) - 2p_j \circ \psi_T^p(r, s),$ $p_j \circ d_G^n(r, s) = p_j \circ d_G^n(r) + p_j \circ d_G^n(s) - 2p_j \circ \psi_T^n(r, s).$

Definition 3.6. The total degree of an edge $(r, s) \in E$ in an m-BPFG G = (V, S, T)of $G^* = (V, E)$ is $td_G(r, s) = \langle \left[p_j \circ td_G^p(r, s), p_j \circ td_G^n(r, s) \right]_{j=1}^m \rangle$ where $p_j \circ td_G^p(r, s) = p_j \circ d_G^p(r) + p_j \circ d_G^p(s) - p_j \circ \Psi_T^p(r, s),$ $p_j \circ td_G^n(r, s) = p_j \circ d_G^n(r) + p_j \circ d_G^n(s) - p_j \circ \Psi_T^n(r, s).$

Definition 3.7. If each vertex of an m-BPFG G = (V, S, T) of $G^* = (V, E)$ is having the same degree $\left\langle \left[\delta_j^p, \delta_j^n \right]_{j=1}^m \right\rangle$, then *G* is called regular m-BPFG.

Definition 3.8. If each edge of an m-BPFG G = (V, S, T) of $G^* = (V, E)$ is having the same degree $\left\langle \left[\delta_j^p, \delta_j^n \right]_{j=1}^m \right\rangle$, then G is called an edge regular m-BPFG.

Definition 3.9. If each edge of an m-BPFG G = (V, S, T) of $G^* = (V, E)$ is having the same total degree $\left\langle \left[\delta_j^p, \delta_j^n \right]_{j=1}^m \right\rangle$, then G is called totally edge regular m-BPFG.

Theorem 3.1. Let G = (V, S, T) be an m-BPFG on a cycle $G^* = (V, E)$. Then $\sum_{v_l \in V} d_G(v_l) = \sum_{(v_l, v_k) \in E, \ l \neq k} d_G(v_l, v_k).$

 $\begin{aligned} & \text{Proof: Suppose that } G = (V, S, T) \text{ is an m-BPFG and } G^* \text{ is a cycle } v_l v_2 v_3 \cdots v_l v_l. \\ & \text{Then } \sum_{l=1}^t d_G \left(v_l, v_{l+1} \right) = \left\langle \left[\sum_{l=1}^t p_j \circ d_G^p \left(v_l, v_{l+1} \right), \sum_{l=1}^t p_j \circ d_G^n \left(v_l, v_{l+1} \right) \right]_{j=1}^m \right\rangle \\ & \text{Now for } j = 1, 2, \cdots, m \\ & \sum_{l=1}^t p_j \circ d_G^p \left(v_l, v_{l+1} \right) = p_j \circ d_G^p \left(v_1, v_2 \right) + p_j \circ d_G^p \left(v_2, v_3 \right) + \cdots + p_j \circ d_G^p \left(v_l, v_1 \right) \\ & \text{where } v_{l+1} = v_l \\ &= p_j \circ d_G^p \left(v_1 \right) + p_j \circ d_G^p \left(v_2 \right) - 2p_j \circ \psi_T^p \left(v_1, v_2 \right) + p_j \circ d_G^p \left(v_2 \right) + p_j \circ d_G^p \left(v_3 \right) \\ & -2p_j \circ \psi_T^p \left(v_2, v_3 \right) + \cdots + p_j \circ d_G^p \left(v_l \right) - 2p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^p \left(v_l \right) - 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^p \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) - 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^p \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) - 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^p \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) - 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^p \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) - 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^n \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) - 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^n \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) - 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l, v_{l+1} \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^n \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l \right) \\ &= \sum_{v_l \in V} p_j \circ d_G^n \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^n \left(v_l \right) + 2\sum_{l=1}^t p_j \circ \psi_T^p \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^n \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^n \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^n \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^n \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^n \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^n \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^n \left(v_l \right) \\ &= \sum_{v_l \in V} p_l \circ d_G^$

Remark 3.1. Let G = (V, S, T) be an m-BPFG on $G^* = (V, E)$. Then

$$\sum_{(v_{l},v_{k})\in E} d_{G}(v_{l},v_{k}) = \left\langle \left[\sum_{(v_{l},v_{k})\in E} d_{G^{*}}(v_{l},v_{k}) p_{j} \circ \psi_{T}^{p}(v_{l},v_{k}), \sum_{(v_{l},v_{k})\in E} d_{G^{*}}(v_{l},v_{k}) p_{j} \circ \psi_{T}^{n}(v_{l},v_{k}) \right]_{j=1}^{m} \right\rangle$$

where $d_{G^{*}}(v_{l},v_{k}) = d_{G^{*}}(v_{l}) + d_{G^{*}}(v_{k}) - 2$ for all $(v_{l},v_{k})\in E$.

Theorem 3.2. Let G = (V, S, T) be an m-BPFG on a c -regular graph $G^* = (V, E)$. Then $\sum_{(v_l, v_k) \in E} d_G(v_l, v_k) = (c-1) \sum_{v_l \in V} d_G(v_l)$.

Proof: From Remark 3.1., we have

$$\sum_{(v_l,v_k)\in E} d_G(v_l,v_k) = \left\langle \left[\sum_{(v_l,v_k)\in E} d_{G^*}(v_l,v_k) p_j \circ \psi_T^p(v_l,v_k), \sum_{(v_l,v_k)\in E} d_{G^*}(v_l,v_k) p_j \circ \psi_T^n(v_l,v_k) \right]_{j=1}^m \right\rangle$$
$$= \left\langle \left[\sum_{(v_l,v_k)\in E} (d_{G^*}(v_l) + d_{G^*}(v_k) - 2) p_j \circ \psi_T^p(v_l,v_k), \sum_{(v_l,v_k)\in E} (d_{G^*}(v_l) + d_{G^*}(v_k) - 2) p_j \circ \psi_T^p(v_l,v_k) \right]_{j=1}^n \right\rangle.$$

Since G^* is a regular graph, we have the degree of every vertex in G^* is c. So

$$\sum_{(v_l,v_k)\in E} d_G(v_l,v_k) = (c+c-2) \left\langle \left[\sum_{(v_l,v_k)\in E} p_j \circ \psi_T^p(v_l,v_k), \sum_{(v_l,v_k)\in E} p_j \circ \psi_T^n(v_l,v_k) \right]_{j=1}^m \right\rangle$$

$$\sum_{(v_l,v_k)\in E} d_G(v_l,v_k) = 2(c-1) \left\langle \left[\sum_{(v_l,v_k)\in E} p_j \circ \psi_T^p(v_l,v_k), \sum_{(v_l,v_k)\in E} p_j \circ \psi_T^n(v_l,v_k) \right]_{j=1}^m \right\rangle$$

$$\sum_{(v_l,v_k)\in E} d_G(v_l,v_k) = (c-1) \sum_{v_l\in V} d_G(v_l).$$

Theorem 3.3. Let G = (V, S, T) be an m-BPFG on a crisp graph $G^* = (V, E)$. Then,

$$\sum_{(v_l,v_k)\in E} td_G(v_l,v_k) = \left\langle \left[\sum_{(v_l,v_k)\in E} d_{G^*}(v_l,v_k) p_j \circ \psi_T^p(v_l,v_k), \sum_{(v_l,v_k)\in E} d_{G^*}(v_l,v_k) p_j \circ \psi_T^n(v_l,v_k) \right]_{j=1}^m \right\rangle + \sum_{(v_l,v_k)\in E} \left\langle \left[p_j \circ \psi_T^p(v_l,v_k), p_j \circ \psi_T^n(v_l,v_k) \right]_{j=1}^m \right\rangle.$$

Proof: From the definition of total edge degree, we have

$$\sum_{(v_l,v_k)\in E} td_G(v_l,v_k) = \sum_{(v_l,v_k)\in E} \left(d_G(v_l,v_k) + \left\langle \left[p_j \circ \psi_T^p(v_l,v_k), p_j \circ \psi_T^n(v_l,v_k) \right]_{j=1}^m \right\rangle \right\rangle$$
$$= \sum_{(v_l,v_k)\in E} d_G(v_l,v_k) + \sum_{(v_l,v_k)\in E} \left\langle \left[p_j \circ \psi_T^p(v_l,v_k), p_j \circ \psi_T^n(v_l,v_k) \right]_{j=1}^m \right\rangle$$
Every Prover 2.1, we have

From Remark 3.1., we have

$$\sum_{(\nu_{l},\nu_{k})\in E} td_{G}(\nu_{l},\nu_{k}) = \left\langle \left[\sum_{(\nu_{l},\nu_{k})\in E} d_{G^{*}}(\nu_{l},\nu_{k}) p_{j} \circ \psi_{T}^{p}(\nu_{l},\nu_{k}), \sum_{(\nu_{l},\nu_{k})\in E} d_{G^{*}}(\nu_{l},\nu_{k}) p_{j} \circ \psi_{T}^{n}(\nu_{l},\nu_{k}) \right]_{j=1}^{m} \right\rangle + \sum_{(\nu_{l},\nu_{k})\in E} \left\langle \left[p_{j} \circ \psi_{T}^{p}(\nu_{l},\nu_{k}), p_{j} \circ \psi_{T}^{n}(\nu_{l},\nu_{k}) \right]_{j=1}^{m} \right\rangle.$$

Theorem 3.4. Let G = (V, S, T) be an m-BPFG on a crisp graph $G^* = (V, E)$. Then $T = \left\langle \left[p_j \circ \psi_T^p, p_j \circ \psi_T^n \right]_{j=1}^m \right\rangle$ is a constant function if and only if the subsequent conditions

are equivalent:

- (i) G is an edge regular m-BPFG.
- (*ii*) G is a totally edge regular m-BPFG.

Proof: Let us suppose that T be a constant function.

Then
$$\left\langle \left[p_{j} \circ \psi_{T}^{p}(\alpha, \beta), p_{j} \circ \psi_{T}^{p}(\alpha, \beta) \right]_{j=1}^{n} \right\rangle = \left\langle \left[\gamma_{j}^{p}, \gamma_{j}^{p} \right]_{j=1}^{n} \right\rangle$$
 for all $(\alpha, \beta) \in E$, where

 $\gamma_j^p \in [0, 1], \gamma_j^n \in [-1, 0].$ Let *G* be an edge regular m-BPFG. Then for all $(\nu_l, \nu_\gamma) \in E$, $d_G(\nu_l, \nu_\gamma) = \left\langle \left[\delta_j^p, \delta_j^n \right]_{j=1}^m \right\rangle$. Now we prove that *G* is a totally edge regular m-BPFG. Now

$$td_{G}(v_{l},v_{\gamma}) = d_{G}(v_{l},v_{\gamma}) + \left\langle \left[p_{j} \circ \psi_{T}^{p}(v_{l},v_{\gamma}), p_{j} \circ \psi_{T}^{n}(v_{l},v_{\gamma}) \right]_{j=1}^{m} \right\rangle$$
$$= \left\langle \left[\delta_{j}^{p}, \delta_{j}^{n} \right]_{j=1}^{m} \right\rangle + \left\langle \left[\gamma_{j}^{p}, \gamma_{j}^{n} \right]_{j=1}^{m} \right\rangle = \left\langle \left[\delta_{j}^{p} + \gamma_{j}^{p}, \delta_{j}^{n} + \gamma_{j}^{n} \right]_{j=1}^{m} \right\rangle \text{ for all } (v_{l},v_{\gamma}) \in E. \text{ Then } G \text{ is a totally edge regular m-BPFG.}$$

Now, let G be a $\left\langle \begin{bmatrix} h_j^p, h_j^n \end{bmatrix}_{j=1}^m \right\rangle$ totally edge regular m-BPFG. Then $td_G(v_l, v_\gamma) = \left\langle \begin{bmatrix} h_j^p, h_j^n \end{bmatrix}_{j=1}^m \right\rangle$ for all $(v_l, v_\gamma) \in E$. So, we have $td_G(v_l, v_\gamma) = d_G(v_l, v_\gamma) + \left\langle \begin{bmatrix} p_j \circ \psi_T^p(v_l, v_\gamma), p_j \circ \psi_T^n(v_l, v_\gamma) \end{bmatrix}_{j=1}^m \right\rangle = \left\langle \begin{bmatrix} h_j^p, h_j^n \end{bmatrix}_{j=1}^m \right\rangle.$ Hence, $d_G(v_l, v_\gamma) = \left\langle \begin{bmatrix} h_j^p, h_j^n \end{bmatrix}_{j=1}^m \right\rangle - \left\langle \begin{bmatrix} p_j \circ \psi_T^p(v_l, v_\gamma), p_j \circ \psi_T^n(v_l, v_\gamma) \end{bmatrix}_{j=1}^m \right\rangle$

$$= \left\langle \left[h_{j}^{p} - \gamma_{j}^{p}, h_{j}^{n} - \gamma_{j}^{n} \right]_{j=1}^{m} \right\rangle \text{ for all } \left(\nu_{l}, \nu_{\gamma} \right) \in E. \text{ Then } G \text{ is an } \left\langle \left[h_{j}^{p} - \gamma_{j}^{p}, h_{j}^{n} - \gamma_{j}^{n} \right]_{j=1}^{m} \right\rangle \text{ -edge regular m-BPFG.}$$

Conversely, we assume that conditions (i) and (ii) are equivalent. Now we have to show that the function *T* is constant. In a contrary way suppose that, the function *T* is not constant. Then $\left\langle \left[p_{j} \circ \psi_{T}^{p}(v_{l},v_{\gamma}), p_{j} \circ \psi_{T}^{n}(v_{l},v_{\gamma}) \right]_{j=1}^{n} \right\rangle \neq \left\langle \left[p_{j} \circ \psi_{T}^{p}(v_{\delta},v_{s}), p_{j} \circ \psi_{T}^{n}(v_{\delta},v_{s}) \right]_{j=1}^{m} \right\rangle$ for at least one pair of edges $(v_{l},v_{\gamma}), (v_{\delta},v_{s}) \in E$. Let *G* be a $\left\langle \left[\delta_{j}^{p}, \delta_{j}^{n} \right]_{j=1}^{m} \right\rangle$ -edge regular m-BPFG. Then $d_{G}(v_{l},v_{\gamma}) = d_{G}(v_{\delta},v_{s}) = \left\langle \left[\delta_{j}^{p}, \delta_{j}^{n} \right]_{j=1}^{m} \right\rangle$. Then for $(v_{l},v_{\gamma}),$ $(v_{\delta},v_{s}) \in E$, we have $td_{G}(v_{l},v_{\gamma}) = d_{G}(v_{\ell},v_{\gamma}) + \left\langle \left[p_{j} \circ \psi_{T}^{p}(v_{\ell},v_{\gamma}), p_{j} \circ \psi_{T}^{n}(v_{\ell},v_{\gamma}) \right]_{j=1}^{m} \right\rangle$ $= \left\langle \left[\delta_{j}^{p}, \delta_{j}^{n} \right]_{j=1}^{m} \right\rangle + \left\langle \left[p_{j} \circ \psi_{T}^{p}(v_{\ell},v_{\gamma}), p_{j} \circ \psi_{T}^{n}(v_{\ell},v_{\gamma}) \right]_{j=1}^{m} \right\rangle$ and $td_{G}(v_{\delta},v_{s}) = d_{G}(v_{\delta},v_{s}) + \left\langle \left[p_{j} \circ \psi_{T}^{p}(v_{\delta},v_{s}), p_{j} \circ \psi_{T}^{n}(v_{\delta},v_{s}) \right]_{j=1}^{m} \right\rangle$. Since $\left\langle \left[p_{j} \circ \psi_{T}^{p}(v_{\ell},v_{\gamma}), p_{j} \circ \psi_{T}^{n}(v_{\ell},v_{\gamma}) \right]_{j=1}^{m} \right\rangle \neq \left\langle \left[p_{j} \circ \psi_{T}^{p}(v_{\delta},v_{s}), p_{j} \circ \psi_{T}^{n}(v_{\delta},v_{s}) \right]_{j=1}^{m} \right\rangle$.

we have $td_G(v_l, v_\gamma) \neq td_G(v_\delta, v_s)$. Hence *G* is not a totally edge regular m-BPFG. This is a contradiction to our assumption and so that the function *T* is constant.

Similarly, we can show that the function T is constant, when G is a totally edge regular m-BPFG.

Theorem 3.5. Let $G^* = (V, E)$ be a *h*-regular crisp graph and G = (V, S, T) be an m-BPFG on G^* . Then, the function $T = \left\langle \left[p_j \circ \psi_T^p, p_j \circ \psi_T^n \right]_{j=1}^m \right\rangle$ is constant if and only if *G* is both regular m-BPFG and totally edge regular m-BPFG. **Proof:** Let *T* be a constant function. Then $\left\langle \left[p_j \circ \psi_T^p(\alpha, \beta), p_j \circ \psi_T^n(\alpha, \beta) \right]_{j=1}^m \right\rangle = \left\langle \left[\gamma_j^p, \gamma_j^p \right]_{j=1}^m \right\rangle$

for all $(\alpha, \beta) \in E$ where γ_j^p and γ_j^n are constants. From the definition of degree of a vertex, we get

$$\begin{split} d_{G}(\boldsymbol{\nu}_{l}) = & \left\langle \left[\sum_{\substack{\nu_{l} \neq \nu_{\gamma} \\ (\nu_{l}, \nu_{\gamma}) \in E}} p_{j} \circ \boldsymbol{\psi}_{T}^{p}(\boldsymbol{\nu}_{l}, \boldsymbol{\nu}_{\gamma}), \sum_{\substack{\nu_{l} \neq \nu_{\gamma} \\ (\nu_{l}, \nu_{\gamma}) \in E}} p_{j} \circ \boldsymbol{\psi}_{T}^{n}(\boldsymbol{\nu}_{l}, \boldsymbol{\nu}_{\gamma}) \right]_{j=1}^{m} \right\rangle = \left\langle \left[\sum_{\substack{\nu_{l} \neq \nu_{\gamma} \\ (\nu_{l}, \nu_{\gamma}) \in E}} \gamma_{j}^{p}, \sum_{\substack{\nu_{l} \neq \nu_{\gamma} \\ (\nu_{l}, \nu_{\gamma}) \in E}} \gamma_{j}^{p} \right]_{j=1}^{m} \right\rangle \\ = \left\langle \left[h\gamma_{j}^{p}, h\gamma_{j}^{n} \right]_{j=1}^{m} \right\rangle \text{ for all } \boldsymbol{\nu}_{l} \in V \text{ . So } d_{G}(\boldsymbol{\nu}_{l}) = \left\langle \left[h\gamma_{j}^{p}, h\gamma_{j}^{n} \right]_{j=1}^{m} \right\rangle \text{ for all } \boldsymbol{\nu}_{l} \in V \text{ .} \end{split}$$

Therefore, G is a regular m-BPFG. Again,

$$\begin{split} td_{G}\left(\nu_{l},\nu_{\gamma}\right) &= \left\langle \left[\sum_{\substack{z\neq \gamma\\(\nu_{l},\nu_{z})\in E}} p_{j}\circ\psi_{T}^{p}\left(\nu_{l},\nu_{z}\right),\sum_{\substack{z\neq \gamma\\(\nu_{l},\nu_{z})\in E}} p_{j}\circ\psi_{T}^{n}\left(\nu_{l},\nu_{z}\right)\right]_{j=1}^{m}\right\rangle + \\ \left\langle \left[\sum_{\substack{z\neq l\\(\nu_{z},\nu_{\gamma})\in E}} p_{j}\circ\psi_{T}^{p}\left(\nu_{z},\nu_{\gamma}\right),\sum_{\substack{z\neq l\\(\nu_{z},\nu_{\gamma})\in E}} p_{j}\circ\psi_{T}^{n}\left(\nu_{z},\nu_{\gamma}\right)\right]_{j=1}^{m}\right\rangle + \left\langle \left[p_{j}\circ\psi_{T}^{p}\left(\nu_{l},\nu_{\gamma}\right),p_{j}\circ\psi_{T}^{n}\left(\nu_{l},\nu_{\gamma}\right)\right]_{j=1}^{m}\right\rangle \\ &= \sum_{\substack{z\neq \gamma\\(\nu_{l},\nu_{z})\in E}} \left\langle \left[\gamma_{j}^{p},\gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle + \sum_{\substack{z\neq l\\(\nu_{z},\nu_{\gamma})\in E}} \left\langle \left[\gamma_{j}^{p},\gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle + \left\langle \left[\gamma_{j}^{p},\gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle + \left\langle \left[\gamma_{j}^{p},\gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle \\ &= (h-1)\left\langle \left[\gamma_{j}^{p},\gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle + (h-1)\left\langle \left[\gamma_{j}^{p},\gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle + \left\langle \left[\gamma_{j}^{p},\gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle \\ &= (2h-1)\left\langle \left[\gamma_{j}^{p},\gamma_{j}^{n}\right]_{j=1}^{m}\right\rangle \text{ for all } (\nu_{l},\nu_{\gamma})\in E. \end{split}$$

Conversely, assume that *G* is both regular and totally edge regular m-BPFG. Now we have to prove that *T* is a constant function. Since *G* is regular, $d_G(v_l) = \left\langle \left[z_j^p, z_j^n \right]_{j=1}^m \right\rangle$ for all $v_l \in V$. Also *G* is totally edge regular. Hence, $td_G(v_l, v_\gamma) = \left\langle \left[h_j^p, h_j^n \right]_{j=1}^m \right\rangle$ for all $(v_l, v_\gamma) \in E$. From the definition of totally edge degree, we get $td_G(v_l, v_\gamma) = \left\langle \left[p_j \circ d_G^p(v_l), p_j \circ d_G^n(v_l) \right]_{j=1}^m \right\rangle + \left\langle \left[p_j \circ d_G^p(v_\gamma), p_j \circ d_G^n(v_\gamma) \right]_{j=1}^m \right\rangle$ $- \left\langle \left[p_j \circ \psi_T^p(v_l, v_\gamma), p_j \circ \psi_T^n(v_l, v_\gamma) \right]_{j=1}^m \right\rangle$ for all $(v_l, v_\gamma) \in E$. $\left\langle \left[h_j^p, h_j^n \right]_{j=1}^m \right\rangle = \left\langle \left[z_j^p, z_j^n \right]_{j=1}^m \right\rangle + \left\langle \left[z_j^p, z_j^n \right]_{j=1}^m \right\rangle - \left\langle \left[p_j \circ \psi_T^p(v_l, v_\gamma), p_j \circ \psi_T^n(v_l, v_\gamma) \right]_{j=1}^m \right\rangle$, $\left\langle \left[p_j \circ \psi_T^p(v_l, v_\gamma), p_j \circ \psi_T^n(v_l, v_\gamma) \right]_{j=1}^m \right\rangle = 2 \left\langle \left[z_j^p, z_j^n \right]_{j=1}^m \right\rangle - \left\langle \left[h_j^p, h_j^n \right]_{j=1}^m \right\rangle = \left\langle \left[2 z_j^p - h_j^p, 2 z_j^n - h_j^n \right]_{j=1}^m \right\rangle$

for all $(\nu_1, \nu_{\nu_1}) \in E$. Hence *T* is a constant function.

4. Conclusions

In this article, edge degree and total edge degree of an m-BPFG are defined. Further, an equivalence condition for edge regular m-BPFG and totally edge regular m-BPFG is given. In future we intend to extend our work to density of m-BPFG and morphism between two m-BPFGs and study some of its properties.

Acknowledgments. We are very much thankful to the editor and the reviewer for their valuable comments and suggestions for the improvement of this paper.

REFERENCES

- 1. M. Akram, Bipolar fuzzy graphs, Information Sciences, 181 (2011) 5548-5564.
- 2. S. N. Banasode and Y. M. Umathar, The minimum total edge dominating energy of a graph, *Annals of Pure and Applied Mathematics*, 17 (2018) 197-202.
- S. Bera and M. Pal, Certain types of m-polar interval-valued fuzzy graph, *Journal of Intelligent & Fuzzy Systems*, 39(3) (2020) 3137-3150.
- 4. J. Chen, S. Li, S. Ma and X. Wang, m-polar fuzzy sets: an extension of bipolar fuzzy sets, *The Scientific World Journal*, 2014 (2014) 416530.
- 5. G. Ghorai and M. Pal, On some operations and density of m-polar fuzzy graphs, *Pac. Sci. Rev. A Nath. Sci. Eng*, 17 (2015) 14-22.
- 6. G. Ghorai and M. Pal, Some isomorphic properties of m-polar fuzzy graphs with Applications, *Springer plus*, 5 (2016) 1-21.
- 7. M. Pal, H. Rashmonlou, Irregular interval-valued fuzzy graphs, *Annals of Pure and Applied Mathematics*, 3 (2013) 56-66.
- 8. M. Pal, S. Samanta and G. Ghorai, Modern Trends on Fuzzy Graph Theory, *Springer*, 2020. DOI: 10.1007/978-981-15-8803-7
- 9. K. Radha and N. Kumarvel, On edge regular bipolar fuzzy graphs, *Annals of Pure and Applied Mathematics*, 10 (2015) 129-139.

- 10. A. Rosenfeld, Fuzzy Graphs, in: L. A. Zadeh, K. S. Fu, M. Shimura (Eds) Fuzzy sets and their Applications, *Academic Press, New York*, (1975) 77-95.
- 11. H. Rashmanlou, S. Samanta, M. Pal and A. R. Borzooei, Bipolar fuzzy graphs with categorical Properties, *International Journal of Computational Intelligence Systems*, 8 (2015) 808-818.
- 12. L. A. Zadeh, Fuzzy sets, Inf. Control, (1965) 338-353.
- W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for Cognitive modeling and multi agent decision analysis, *Proceedings of IEEE Conf*, (1994) 305-309.