Edge Regularity on m-Bipolar Fuzzy Graph

Ramakrishna Mankena¹, T.V. Pradeep Kumar²
Ch. Ramprasad³ and J. Vijaya Kumar⁴

¹Acharya Nagarjuna University and Department of Mathematics
Malla Reddy College of Engineering, Hyderabad, India
²Department of Mathematics, University College of Engineering
Acharya Nagarjuna University, Nagarjuna Nagar
³, ⁴Department of Mathematics, Vasireddy Venkatadri Institute of Technology
Namburu, 522 508, India

Emails: ¹rams.prof@gmail.com; ²pradeepvt5@gmail.com; ³jyotvij@yahoo.com
Corresponding Author. ramprasadchegu1984@gmail.com

Received 30 November 2020; accepted 5 February 2021

Abstract. In this article, a new idea of m-bipolar fuzzy graph (m-BPFG) is initiated. Further, degree of an edge and total degree of an edge are defined and also determined necessary and sufficient condition under which edge regular m-BPFG and totally edge regular m-BPFG are equivalent.

Keywords: m-BPFG, Edge degree, Total edge degree.

AMS Mathematics Subject Classification (2010): 05C72

1. Introduction
Fuzzy sets are introduced for the parameters to solve problems related to vague and uncertain in real life situations were given by Zadeh [12] in 1965. The limitations of traditional model were overcome by the introduction of bipolar fuzzy set concept in 1994 by Zhang [13]. This was further improved by Chen et al. [4] to m-polar fuzzy set theory.

2. Preliminaries

In this section, basic terminologies of bipolar fuzzy graph (BPFG) and m-polar fuzzy graph (m-PFG) are studied.

For a given set \(V \), define an equivalence relation \(\leftrightarrow \) on \(V \times V - \{(k, k) : k \in V\} \) as follows: \((k_1, l_1) \leftrightarrow (k_2, l_2) \Leftrightarrow \) either \((k_1, l_1) = (k_2, l_2)\) or \(k_1 = l_2, l_1 = k_2\). The quotient set got in this way is denoted by \(\overline{V}^2 \).

Definition 2.1. A bipolar fuzzy graph of a graph \(G^b = (V, E) \) is a pair \(G = (V, S, T) \) where \(S = [\psi^p_s, \psi^o_s] \) is a bipolar fuzzy set in \(V \) and \(T = [\psi^p_t, \psi^o_t] \) is a bipolar fuzzy relation on \(\overline{V}^2 \) such that \(\psi^o_t(s, t) \leq \min \{\psi^p_s(s), \psi^o_s(t)\} \) and \(\psi^o_t(s, t) \geq \max \{\psi^o_s(s), \psi^o_s(t)\} \) for all \((s, t) \in \overline{V}^2\) and \(\psi^o_t(s, t) = 0 \) for all \((s, t) \in \overline{V}^2 - E\).

Definition 2.2. An m-polar fuzzy graph of a graph \(G^b = (V, E) \) is a pair \(G = (V, S, T) \) where \(S : V \rightarrow [0, 1]^m \) is an m-polar fuzzy set in \(V \) and \(T : \overline{V}^2 \rightarrow [0, 1]^m \) is an m-polar fuzzy set in \(\overline{V}^2 \) such that \(p_j \circ T(s, t) \leq \min \{p_j \circ S(s), p_j \circ S(t)\} \) for all \((s, t) \in \overline{V}^2, j = 1, 2, \cdots, m\) and \(T(s, t) = (0, 0, \cdots, 0) \) for all \((s, t) \in (\overline{V}^2 - E)\). Here, \(p_j \circ S(s) \) and \(p_j \circ T(s, t) \) represents the \(j^{th} \) component of the degree of membership value of the vertex \('s' \) and the edge \('(s, t)' \).

3. Regularity on m-bipolar fuzzy graphs

All the vertices and edges of an m-polar fuzzy graph have \(m \) components and these components are fixed. But these components may be bipolar. Using this idea, m-BPFG has been introduced. Before defining m-bipolar fuzzy graph, we assume the following:

Definition 3.1. An m-bipolar fuzzy set (m-BPFS) \(S \) on \(V \) is defined by

\[
S(s) = \left\{ \left[p_1 \circ \psi^o_s(s), p_1 \circ \psi^p_s(s) \right], \left[p_2 \circ \psi^o_s(s), p_2 \circ \psi^p_s(s) \right], \cdots, \left[p_m \circ \psi^o_s(s), p_m \circ \psi^p_s(s) \right] \right\}
\]
Edge Regularity on m-Bipolar Fuzzy Graph

for all \(s \in V \) or shortly

\[
S(s) = \left\{ \left. \left[p_j \circ \psi^p_s(s) , p_j \circ \psi^n_s(s) \right] \right| s \in V \right\}
\]

where the functions \(p_j \circ \psi^p_s : V \rightarrow [0, 1] \) and \(p_j \circ \psi^n_s : V \rightarrow [-1, 0] \) denote the positive memberships and negative memberships of the element respectively.

Definition 3.2. Let \(S \) be an m-BPFS on a set \(V \). An m-bipolar fuzzy relation on a set \(S \) is an m-BPFS \(T \) of \(\times V \),

\[
T(s,t) = \left\{ \left[p_j \circ \psi^p_s(s,t) , p_j \circ \psi^p_s(s,t) \right] , \left[p_j \circ \psi^p_s(s,t) , p_j \circ \psi^p_s(s,t) \right] , \ldots , \left[p_j \circ \psi^p_s(s,t) , p_j \circ \psi^p_s(s,t) \right] \right\}
\]

for all \(s, t \in V \) or shortly \(T(s,t) = \left\{ \left[p_j \circ \psi^p_s(s,t) , p_j \circ \psi^p_s(s,t) \right] \right\} \) such that

\[
p_j \circ \psi^p_s(s,t) \leq \min \{ p_j \circ \psi^p_s(s) , p_j \circ \psi^p_s(t) \}, \quad p_j \circ \psi^p_s(s,t) \geq \max \{ p_j \circ \psi^p_s(s) , p_j \circ \psi^p_s(t) \}
\]

for every \(j = 1, 2, \ldots, m \) and \(s, t \in V \).

Definition 3.3. An m-bipolar fuzzy graph (m-BPFG) of a graph \(G = (V, E) \) is a pair \(G = (V, S, T) \) where \(S = \left\{ p_j \circ \psi^p_s \right\} \), \(p_j \circ \psi^p_s : V \rightarrow [0, 1] \) and \(p_j \circ \psi^n_s : V \rightarrow [-1, 0] \) is an m-BPFS on \(V \); and \(T = \left\{ p_j \circ \psi^p_s \right\} \), \(p_j \circ \psi^p_s : V^2 \rightarrow [0, 1] \) and \(p_j \circ \psi^n_s : V^2 \rightarrow [-1, 0] \) is an m-BPFS in \(V^2 \) such that

\[
p_j \circ \psi^p_s(k,l) \leq \min \{ p_j \circ \psi^p_s(k) , p_j \circ \psi^p_s(l) \}, \quad p_j \circ \psi^p_s(k,l) \geq \max \{ p_j \circ \psi^p_s(k) , p_j \circ \psi^p_s(l) \}
\]

for all \((k,l) \in V^2 \), \(j = 1, 2, \ldots, m \) and \(p_j \circ \psi^p_s(k,l) = p_j \circ \psi^p_s(k,l) = 0 \) for all \((k,l) \in V^2 \) - \(E \).

Example 3.1. An example of a 3-BPFG is as shown in Figure 1.

![Figure 1: 3-Bipolar fuzzy graph G](image-url)
Definition 3.4. The degree of a vertex r in an m-BPFG $G = (V, S, T)$ of $G^*=(V, E)$ is $d_G(r) = \left\lceil \sum_{j \in \mathbb{Z}_m} p_j \circ d_G^p(r), p_j \circ d_G^o(r) \right\rceil$ where $p_j \circ d_G^p(r) = \sum_{\{r,s\} \in E} p_j \circ \psi_T^o(r, s)$ and $p_j \circ d_G^o(r) = $.

Definition 3.5. The degree of an edge $(r, s) \in E$ in an m-BPFG $G = (V, S, T)$ of $G^*=(V, E)$ is $d_G(r, s) = \left\lceil \sum_{j \in \mathbb{Z}_m} p_j \circ d_G^p(r, s), p_j \circ d_G^o(r, s) \right\rceil$ where $p_j \circ d_G^p(r, s) = p_j \circ d_G^p(r) + p_j \circ d_G^p(s) - 2p_j \circ \psi_T^o(r, s),$ $p_j \circ d_G^o(r, s) = p_j \circ d_G^o(r) + p_j \circ d_G^o(s) - 2p_j \circ \psi_T^o(r, s).$

Definition 3.6. The total degree of an edge $(r, s) \in E$ in an m-BPFG $G = (V, S, T)$ of $G^*=(V, E)$ is $td_G(r, s) = \left\lceil \sum_{j \in \mathbb{Z}_m} p_j \circ td_G^p(r, s), p_j \circ td_G^o(r, s) \right\rceil$ where $p_j \circ td_G^p(r, s) = p_j \circ d_G^p(r) + p_j \circ d_G^p(s) - p_j \circ \psi_T^o(r, s),$ $p_j \circ td_G^o(r, s) = p_j \circ d_G^o(r) + p_j \circ d_G^o(s) - p_j \circ \psi_T^o(r, s).$

Definition 3.7. If each vertex of an m-BPFG $G = (V, S, T)$ of $G^*=(V, E)$ is having the same degree $\left\lceil \delta^p_j, \delta^o_j \right\rceil \in \mathbb{Z}_m$, then G is called regular m-BPFG.

Definition 3.8. If each edge of an m-BPFG $G = (V, S, T)$ of $G^*=(V, E)$ is having the same degree $\left\lceil \delta^p_j, \delta^o_j \right\rceil \in \mathbb{Z}_m$, then G is called an edge regular m-BPFG.

Definition 3.9. If each edge of an m-BPFG $G = (V, S, T)$ of $G^*=(V, E)$ is having the same total degree $\left\lceil \delta^p_j, \delta^o_j \right\rceil \in \mathbb{Z}_m$, then G is called totally edge regular m-BPFG.

Theorem 3.1. Let $G = (V, S, T)$ be an m-BPFG on a cycle $G^*=(V, E)$. Then $\sum_{v_i \in V} d_G(v_i) = \sum_{(v_i, v_k) \in E \setminus \{e\}} d_G(v_i, v_k).$
Edge Regularity on m-Bipolar Fuzzy Graph

Proof: Suppose that $G = (V, S, T)$ is an m-BPFG and G^* is a cycle $v_i v_2 v_3 \cdots v_i$. Then

$$\sum_{i=1} d_G(v_i, v_{i+1}) = \left(\sum_{i=1}^j p_j \circ d^e_G(v_i, v_{i+1}), \sum_{i=1}^j p_j \circ d^n_G(v_i, v_{i+1}) \right).$$

Now for $j = 1, 2, \cdots, m$

$$\sum_{i=1}^j p_j \circ d^e_G(v_i, v_{i+1}) = p_j \circ d^e_G(v_1, v_2) + p_j \circ d^e_G(v_2, v_3) + \cdots + p_j \circ d^e_G(v_i, v_1),$$

where $v_{i+1} = v_i$. Then

$$\sum_{i=1}^j p_j \circ d^e_G(v_i, v_{i+1}) - 2 \sum_{i=1}^j P_j \circ \psi^e_T(v_i, v_{i+1}) = 2 \sum_{i=1}^j p_j \circ d^e_G(v_i, v_{i+1}).$$

Similarly,

$$\sum_{i=1}^j P_j \circ d^e_G(v_i, v_{i+1}) - 2 \sum_{i=1}^j P_j \circ \psi^e_T(v_i, v_{i+1}) = \sum_{i=1}^j P_j \circ d^e_G(v_i).$$

Remark 3.1. Let $G = (V, S, T)$ be an m-BPFG on $G^* = (V, E)$. Then

$$\sum_{(v_i, v_k) \in E} d_G(v_i, v_k) = \left(\sum_{(v_i, v_k) \in E} d_G(v_i, v_k), \sum_{(v_i, v_k) \in E} d_G(v_i, v_k) \right).$$

where $d_G(v_i, v_k) = d_G(v_i) + d_G(v_k) - 2 \text{ for all } (v_i, v_k) \in E$.

Theorem 3.2. Let $G = (V, S, T)$ be an m-BPFG on a c-regular graph $G^* = (V, E)$. Then

$$\sum_{(v_i, v_k) \in E} d_G(v_i, v_k) = (c-1) \sum_{v_i \in V} d_G(v_i).$$

Proof: From Remark 3.1., we have

$$\sum_{(v_i, v_k) \in E} d_G(v_i, v_k) = \left(\sum_{(v_i, v_k) \in E} d_G(v_i, v_k) p_j \circ \psi^e_T(v_i, v_k), \sum_{(v_i, v_k) \in E} d_G(v_i, v_k) p_j \circ \psi^e_T(v_i, v_k) \right)$$

$$= \left(\sum_{(v_i, v_k) \in E} (d_G(v_i) + d_G(v_k) - 2p_j \circ \psi^e_T(v_i, v_k)), \sum_{(v_i, v_k) \in E} (d_G(v_i) + d_G(v_k) - 2p_j \circ \psi^e_T(v_i, v_k)) \right).$$
Ramakrishna Mankena, T.V.Pradeep Kumar, Ch.Ramprasad and J.Vijaya Kumar

Since G^* is a regular graph, we have the degree of every vertex in G^* is c. So

$$
\sum_{(v_i, v_j) \in E} d_G(v_i, v_j) = (c + c - 2) \left(\sum_{(v_i, v_j) \in E} p_j \circ \psi_T^m(v_i, v_j) \right) + \sum_{(v_i, v_j) \in E} p_j \circ \psi_T^m(v_i, v_j)
$$

$$
\sum_{(v_i, v_j) \in E} d_G(v_i, v_j) = 2(c - 1) \left(\sum_{(v_i, v_j) \in E} p_j \circ \psi_T^m(v_i, v_j) \right) + \sum_{(v_i, v_j) \in E} p_j \circ \psi_T^m(v_i, v_j)
$$

$$
\sum_{(v_i, v_j) \in E} d_G(v_i, v_j) = (c - 1) \sum_{v_j \in V} d_G(v_j).
$$

Theorem 3.3. Let $G = (V, S, T)$ be an m-BPFG on a crisp graph $G^* = (V, E)$. Then,

$$
\sum_{(v_i, v_j) \in E} td_G(v_i, v_j) = \left(\sum_{(v_i, v_j) \in E} d_G(v_i, v_j) \right) + \sum_{(v_i, v_j) \in E} \left(p_j \circ \psi_T^m(v_i, v_j) \right)^m
$$

Proof: From the definition of total edge degree, we have

$$
\sum_{(v_i, v_j) \in E} td_G(v_i, v_j) = \sum_{(v_i, v_j) \in E} \left(d_G(v_i, v_j) + \left(p_j \circ \psi_T^m(v_i, v_j) \right)^m \right)
$$

$$
= \sum_{(v_i, v_j) \in E} d_G(v_i, v_j) + \sum_{(v_i, v_j) \in E} \left(p_j \circ \psi_T^m(v_i, v_j) \right)^m
$$

From Remark 3.1., we have

$$
\sum_{(v_i, v_j) \in E} td_G(v_i, v_j) = \left(\sum_{(v_i, v_j) \in E} d_G(v_i, v_j) \right) + \sum_{(v_i, v_j) \in E} \left(p_j \circ \psi_T^m(v_i, v_j) \right)^m
$$

Theorem 3.4. Let $G = (V, S, T)$ be an m-BPFG on a crisp graph $G^* = (V, E)$. Then

$$
T = \left[p_j \circ \psi_T^m, p_j \circ \psi_T^m \right]_{j=1}^m
$$

is a constant function if and only if the subsequent conditions are equivalent:

(i) G is an edge regular m-BPFG.

(ii) G is a totally edge regular m-BPFG.

Proof: Let us suppose that T be a constant function.

Then $\left[p_j \circ \psi_T^m(\alpha, \beta), p_j \circ \psi_T^m(\alpha, \beta) \right]_{j=1}^m = \left[p_j^m, p_j^m \right]_{j=1}^m$ for all $(\alpha, \beta) \in E$, where
Edge Regularity on m-Bipolar Fuzzy Graph

\(\gamma_0 \in [0, 1], \gamma_1 \in [-1, 0] \). Let \(G \) be an edge regular m-BPFG. Then for all \((v_i, v_j) \in E \),
\[
d_G(v_i, v_j) = \left[\delta_i^n, \delta_j^n \right]_{j=1}^m.
\] Now we prove that \(G \) is a totally edge regular m-BPFG.

Now we prove that \(G \) is a totally edge regular m-BPFG.

\[
td_G(v_i, v_j) = d_G(v_i, v_j) + \left[p_j \circ \psi_{T}^p (v_i, v_j), p_j \circ \psi_{T}^n (v_i, v_j) \right]_{j=1}^m = \left[h_i^n, h_j^n \right]_{j=1}^m.
\]

Now we prove that \(G \) is a totally edge regular m-BPFG.

Hence,
\[
d_G(v_i, v_j) = \left[h_i^n, h_j^n \right]_{j=1}^m - \left[h_i^n - \gamma_i^n, h_j^n - \gamma_j^n \right]_{j=1}^m
\]

for all \((v_i, v_j) \in E \). Then \(G \) is an \(\left[h_i^n - \gamma_i^n, h_j^n - \gamma_j^n \right]_{j=1}^m \)-edge regular m-BPFG.

Conversely, we assume that conditions (i) and (ii) are equivalent. Now we have to show that the function \(T \) is constant. In a contrary way suppose that, the function \(T \) is not constant. Then \(\left[p_j \circ \psi_{T}^p (v_i, v_j), p_j \circ \psi_{T}^n (v_i, v_j) \right]_{j=1}^m \neq \left[p_j \circ \psi_{T}^p (v_i, v_j), p_j \circ \psi_{T}^n (v_i, v_j) \right]_{j=1}^m \) for at least one pair of edges \((v_i, v_j), (v_i, v_s) \in E \). Let \(G \) be a \(\left[\delta_i^n, \delta_j^n \right]_{j=1}^m \)-edge regular m-BPFG. Then \(d_G(v_i, v_j) = d_G(v_i, v_s) = \left[\delta_i^n, \delta_j^n \right]_{j=1}^m \). Then for \((v_i, v_j), (v_i, v_s) \in E \), we have
\[
td_G(v_i, v_j) = d_G(v_i, v_j) + \left[p_j \circ \psi_{T}^p (v_i, v_j), p_j \circ \psi_{T}^n (v_i, v_j) \right]_{j=1}^m
\]
and
\[
td_G(v_i, v_s) = d_G(v_i, v_s) + \left[p_j \circ \psi_{T}^p (v_i, v_s), p_j \circ \psi_{T}^n (v_i, v_s) \right]_{j=1}^m
\]

for all \((v_i, v_j) \in E \). Then \(G \) is an \(\left[\delta_i^n, \delta_j^n \right]_{j=1}^m \)-edge regular m-BPFG.
we have \(td_G(v_i, v_j) \neq td_G(v_s, v_t) \). Hence \(G \) is not a totally edge regular m-BPFG.

This is a contradiction to our assumption and so that the function \(T \) is constant.

Similarly, we can show that the function \(T \) is constant, when \(G \) is a totally edge regular m-BPFG.

Theorem 3.5. Let \(G^* = (V, E) \) be a \(h \)-regular crisp graph and \(G = (V, S, T) \) be an m-BPFG on \(G^* \). Then, the function \(T = \left(\left\{ p_j \circ \psi^h_{\alpha} \right\}_{j=1}^{m}, \left\{ p_j \circ \psi^h_{\beta} \right\}_{j=1}^{m} \right) \) is constant if and only if \(G \) is both regular m-BPFG and totally edge regular m-BPFG.

Proof: Let \(T \) be a constant function. Then \(\left(\left\{ p_j \circ \psi^h_{\alpha} \right\}_{j=1}^{m}, \left\{ p_j \circ \psi^h_{\beta} \right\}_{j=1}^{m} \right) \) for all \(\left(\alpha, \beta \right) \in E \) where \(\gamma^o_j \) and \(\gamma^o_j \) are constants. From the definition of degree of a vertex, we get

\[
d_G(v_i) = \left\{ \sum_{(v_i, v_j) \in E} p_j \circ \psi^h_{\alpha} (v_i, v_j), \sum_{(v_i, v_j) \in E} p_j \circ \psi^h_{\beta} (v_i, v_j) \right\} = \left\{ \sum_{j=1}^{m} \gamma^o_j, \sum_{j=1}^{m} \gamma^o_j \right\} = \left\{ h \gamma^o_j, h \gamma^o_j \right\}_{j=1}^{m} \ 	ext{for all } v_i \in V.
\]

Therefore, \(G \) is a regular m-BPFG.

Again,

\[
td_G(v_i, v_j) = \left\{ \sum_{(v_i, v_j) \in E} p_j \circ \psi^h_{\alpha} (v_i, v_j), \sum_{(v_i, v_j) \in E} p_j \circ \psi^h_{\beta} (v_i, v_j) \right\} = \left\{ \sum_{j=1}^{m} \gamma^o_j, \sum_{j=1}^{m} \gamma^o_j \right\} = \left\{ h \gamma^o_j, h \gamma^o_j \right\}_{j=1}^{m} \ 	ext{for all } (v_i, v_j) \in E.
\]
Conversely, assume that \(G \) is both regular and totally edge regular m-BPFG. Now we have to prove that \(T \) is a constant function. Since \(G \) is regular,
\[
d_G(v_l) = \left[z_j^p, z_j^n \right]_{j=1}^m
\]
for all \(v_l \in V \). Also \(G \) is totally edge regular. Hence,
\[
td_G(v_l, v_r) = \left[h_j^p, h_j^n \right]_{j=1}^m
\]
for all \((v_l, v_r) \in E\). From the definition of totally edge degree, we get
\[
td_G(v_l, v_r) = \left[p_j \circ d_G^p(v_l), p_j \circ d_G^p(v_r) \right]_{j=1}^m + \left[p_j \circ d_G^n(v_l), p_j \circ d_G^n(v_r) \right]_{j=1}^m
\]
- \left[p_j \circ \psi_T^p(v_l, v_r), p_j \circ \psi_T^p(v_l, v_r) \right]_{j=1}^m
\]
for all \((v_l, v_r) \in E\). Hence \(T \) is a constant function.

4. Conclusions
In this article, edge degree and total edge degree of an m-BPFG are defined. Further, an equivalence condition for edge regular m-BPFG and totally edge regular m-BPFG is given. In future we intend to extend our work to density of m-BPFG and morphism between two m-BPFGs and study some of its properties.

Acknowledgments. We are very much thankful to the editor and the reviewer for their valuable comments and suggestions for the improvement of this paper.

REFERENCES