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Abstract. In this paper, we investigate the existence of positive solutions for third-order 

three-point nonhomogeneous boundary value problems. By using Leray-Schauder fix 

point theorem, some sufficient conditions for the existence of positive solutions are 

obtained, which improve the previous results. 
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1. Introduction 
In latest years, third-order differential equations appear in various fields of applied 

mathematics and physics, and third-order three-point boundary value problems have 

always been the focus of attention. One may see Anderson [1,2], Anderson and Davis [3], 

Bai [4], Boucherif and Al-Malki [5]. Since then, Tariboon and Sitthiwirattham [6] studied 

the three-point integral boundary value problem. Recently, all sorts of three-point 

boundary value problems for nonlinear differential equations have been studied by many 

authors. We refer the readers to [7,8,9,10,11].  

In 2009, Sun [7] studied the existence of positive solutions of the following  

third-order three-point inhomogeneous boundary value problem  
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In the article [12] studied the existence of positive solutions of boundary value 

problems (1.1)-(1.2), by using Krasnoselskii fixed point theorem, the obtained the 

following results: 

Theorem 1.1. If f satisfies the superlinear condition: then the boundary value problem 

(1.1)-(1.2) has at least one positive solution when it is sufficiently small and there is no 

positive solution when it is sufficiently large. 

 
Theorem 1.2. If f satisfies the sublinear condition: then the boundary value problem 

(1.1)-(1.2) must have at least one positive solution. 

In this article, we discuss the existence of positive solutions for boundary value 

problems (1.1)-(1.2). Using the Leary-Schauder fixed point theorem, our results are better 

than the conditions of Theorem 1.1 and Theorem 1.2. 

The rest of this paper is organized as follows. In section 2, we present some 

preliminaries that will be used in Section 3.The main results and proofs will be given in 

Section 3.Finally,the conclusion and future work are given in Section 4. 

 

2. Preliminaries 
Consider the boundary value problem 
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Lemma 2.1. [12] Let ]}.1,0[,0)(],1,0[{:]1,0[ ∈≥∈=∈ + ttxCxCx Then the problem 

(2.1)-(2.2) has a unique solution 
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Lemma 2.4. [12] If ]1,0[+∈Cx then the only solution of problems (2.1)-(2.2) is 

non-negative and satisfies 
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From Lemma 2.1, (1.1)-(1.2) has a unique solution 
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Obviously, y(t) is the solution of the boundary value problem (1.1)-(1.2) if and only if y(t) 

is the fixed point of the operator T. 

Lemma  2.5. [12] (Leray-Schauder) Let Ωbe the convex subset of Banah space X，

00 ∈ Ω, �: Ω → Ω be complete continuous operator, then 

(1) � has at least one fixed point in Ω； 
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(2) �� ∈ �|� = �Φ�, 0 < � < 1} is unbounded. 

  

3. Main results 
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Theorem 3.1.  Assume (H) hold, if ,00 =f  when ))1(,0( αηλ −∈ B , then the 

boundary value problem (1.1)-(1.2) has at least one positive solution. 
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Thus, .|||| BTy ≤ Hence, Ω→ΩΩ⊂Ω :, TT is completely continuous. 

For ,10, <<=Ω∈ λλTyyandy we have ,)()()( BtTytTyty ≤<= λ which implies 

||�|| ≤ B. 

}10,|{ <<=Ω∈ λλTyyy is bounded. By Lemma 2.5, we know the operator T has at 

least one fixed point in Ω  .Thus the boundary value problem (1.1)-(1.2) has at least one 

positive solution. The proof is complete. 
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Thus, BTy ≤|||| . Hence, Ω→ΩΩ⊂Ω :, TT is completely continuous. 

For ,10, <<=Ω∈ λλTyyandy we have ,)()()( BtTytTyty ≤<= λ which implies 

.|||| By ≤  

}10,|{ <<=Ω∈ λλTyyy is bounded. By Lemma 2.5，we know the operator T has at 

least one fixed point in Ω，Then the boundary value problem (1.1)-(1.2) has at least one 
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positive solution. 

Theorem 3.3. Assume )(H hold, if there exists constant ,01 >ρ  when
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boundary value problem (1.1)-(1.2)has at least one positive solution. 
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Thus, Ω→ΩΩ⊂Ω≤ :,,.|||| 1 TTHenceTy ρ is completely continuous. 

For ,10, <<=Ω∈ λλTyyandy we have .||||,)()()( 11 ρρλ ≤≤<= ytTytTyty  

So, }10,|{ <<=Ω∈ λλTyyy is bounded. By Lemma 2.5，we know the operator T has 

at least one fixed point in Ω . Thus the boundary value problem (1.1)-(1.2) has at least 

one positive solution. 

Theorem 3.4. Assume )(H hold. If there exists constant ,02 >ρ such that 
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then the boundary value problem (1.1)-(1.2) has at least one positive solution. 
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Thus, .|+�|. ≤ =. Hence, Ω→ΩΩ⊂Ω :, TT  is completely continuous. 

For ,10, <<=Ω∈ λλTyyandy we have .||||,)()()( dydtTytTyty ≤≤<= λ So,

}10,|{ <<=Ω∈ λλTyyy is bounded. By Lemma 2.5，we know the operator T has at 

least one fixed point in Ω，Thus the boundary value problem (1.1)-(1.2) has at least one 
positive solution. 

5. Conclusion and future work 
The main purpose of this paper was to present new result of positive solutions for 
third-order three-point nonhomogeneous boundary value problems with Leray-Schauder 
fixed point theorem, highlighting the method which has been used by Sun [12] to some 
results. 
  In the future research, the third-order boundary value problem of the scientific research 
award was raised to the n-order boundary value problem, and its different boundary 
conditions were changed to obtain the existence of its positive solution, and the existence 
of multiple solutions can even be considered. These suggestions will be treated in the 
future. 
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