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Abstract. The double integral is numerically evaluated in this paper using higher 
precision quadrature rules. With the combination of Newtonian and Gaussian rules of 
precision three each, a mixed quadrature rule of precision five is obtained. Three test 
problems are used to numerically validate the rule. The approximations are compared to 
analytical solutions, and error bounds are calculated. 
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1. Introduction 
A mixed quadrature rules of higher degree of precision for real and complex analytic 
functions for single integrals are constructed by [1-4, 6-7, 11, 13, 14, 16-24, 28-30, 33-
37]. A mixed quadrature rule of degree of precision-5 for double integrals is incorporated 

taking the convex combination of Simpson’sth
8

3  th and Gauss-Legendre-2 

point rule each ofdegree of precision 3.The other techniques [5, 8-10, 12, 15, 25, 26, 31, 
32,38-42] are the back bone to the present method.The main aim of this paper is the const
ruction of mixed quadrature rule of higher degree precision of double integrals for two va
riables. The aim of this work is how to implement mixed quadrature in line integral, surfa
ce integral and also in volume integral in mathematical physics and electromagnetic field 
theory. 
        This paper is designed as follows. Section 1 is an introduction part. Section 2 
contains construction of quadrature of constituent rules and the corresponding errors in-2 
variables are obtained in Section 3. Section 4 is devoted to construction of mixed 
quadrature rule. The error analysis is done in section 5. In section 6 the rule is 
numerically verified by taking three examples. The conclusions are drawn in section 7.  
 
2. Construction of quadrature rules in two variables  
Newtonian and Gaussian quadrature are: 

The Simpson’s th
8

3  rule is  
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Gauss-Legendre – 2-point rule is  








+






 −+






−+






 −−=
3

1
,

3

1

3

1
,

3

1

3

1
,

3

1

3

1
,

3

1
)(2 fffffIGL                 (2.2) 

)()()(
8
3

8
3 fEfIfI

ss
+=                                                                                                    (2.3) 
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where )(
8
3 fE

S and )(2 fEGL are error in approximating the integrals )( fI by equation 

(2.3) and equation (2.4) respectively. 
Now assuming ),( yxf to be sufficiently differentiable in 1,1 ≤≤− yx . 
For approximate evaluation of real definite integral and applying Maclaurin series 
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Applying, Maclaurin’s expansion in equation (2.1) 
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Also using Maclaurin’s expansion in equation (2.2) 
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3. Errors 
In Simpson’s th

8

3  rule: 

Using equation (2.5) and equation (2.6) in equation (2.3) error associated with Simpson’s 

8

3 th rule is  
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In Gauss-Legendre-2 point rule: 
Now the error associated with the Gauss- Legendre-2 point rule is obtained substituting 
equation (2.5) and (2.7) in equation (2.4) 
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Thus, the degree of the precision for each rule is 3.  
 
4. Mixed quadrature rule 
Now multiplying (2) by equation (2.8) and (3) by (2.9) and then adding them, we get
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where )(28
3 fI GLS and )(

2
8
3 fE

GLS
are mixed quadrature rule and its error obtained by 

Simpson’s 
8
3

th and Gauss-Legendre-2 point rule respectively.  

 
5. Error analysis 
Theorem 1. Let ),( yxf be sufficiently differentiable function in the closed interval 

[−1,1]. The bounds of truncation error )(
2

8
3 fE
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 associated with the rule �
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Proof: The proof obviously follows from the equation (2.8). 
 

Theorem 2. The bounds for the truncation error 122 675
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which, gives only the truncation error bound on 21, ββ are known points in [-1, 1] 
 
Corollary 1. The error bound for the truncation error 
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6. Numerical verification 
The approximate value of the integrals  
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Table 1: Approximate solution for various integrals 

 
7. Conclusions 
Based on the numerical results for three integrals in Table-1, it is clear that the mixed 
quadrature rule produces better results than the constituent rule for each degree of 
precision 3. As a result, the mixed quadrature rule is more efficient and numerically 
closer to the exact result. This manuscript not only evaluates double integrals but also 
triple integrals, which are frequently used in Mathematical Physics and Applied Sciences 
for the approximate evaluation of line integrals and surface integrals. 
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