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Abstract. Recently, a novel degree based topological indexim@oduced, so called the
Nirmala index. In this study, we introduce the nplitative Nirmala index, the
multiplicative first and second inverse Nirmalaiges of a molecular graph. Furthermore
we compute these Nirmala indices for certain néregu
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1. Introduction
A molecular graph is a graph such that its vertmmsespond to the atoms and the edges
to the bonds. Chemical Graph Theory is a brandidathematical Chemistry, which has
an important effect on the development of the Chahfbciences. A topological index is
a numerical parameter mathematically derived frtwm graph structure. Several such
topological indices have been considered in Thamle€Chemistry and have found some
applications, especially in QSPR/QSAR study, se@].1

Let G=(V(G), E(G)) be a finite, simple, connected graph. tefu) be the degree
of a vertexuin G. We refer [3] for undefined notations andn&rlogies.

In [4], Kulli introduced the Nirmaladex of a grapl® and it is defined as
N@G)= Y Jdg (W +dg (V).
wlE(G)
We now propose the multiplicative Nirmala indexaafraph and it is defined as

NI(©)= ] [de )+, W)]e.
wilE(G)

Recently, some Nirmala indices were studied, famgxe, in [5].
Inspired by work on Nirmala indices, we put fordidhe multiplicative first and

second inverse Nirmala indices of a graph and #neydefined as
1

_ 1 1 72
IN, 11 (G)_WDElG)[—dG m +—OIG (V)} ,
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1
_ 1 1 72
el (G)_umge)[de(u) +dG (V)} .

Recently, some topological indices were studiefbjrv, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19]. In this paper, we compute the multggive Nirmala index, multiplicative
first and second inverse Nirmala indices for twmifees of nanotubes.

2. Resultsfor HCsC/[p, g] nanotubes

In this section, we focus on the family of nanowbgenoted byHCsC;[p,q], in whichp

is the number of heptagons in the first row gmdws of pentagons repeated alternately.
Let G be the graph of a nanotud€sC,[p,q].

Figure 1. 2—D Iattlce of nanotubéIC5C7 [8, 4]

The 2-D lattice of nanotubdCsC-[p, g] is shown in Figure 1.By calculation, we obtain
thatG has 4q vertices and g — p edges. The grap® has two types of edges based on
the degree of end vertices of each edge as follows:

E; = {uvOJE(G) | dg(u) = 2,dg(Vv) = 3}, E:l = 4.

E. = {ulE(G) | dg(u) =ds(v) = 3}, [E2| = 60q — 5p.

Theorem 1. Let G be the graph of a nanotubl€5C7[p ql. Then
6
NI (HGSC, [ )= 57 & ™
Proof: From definition and by cardinalities of the edgetiian of HC:C/[p, q], we
deduce

1

NIl (HC,C, [p.q]) = (2+37 " x 3+ 3)2‘ Pamee)

— 52 « 62(6pq 5p)

Theorem 2. LetG be the graph of a nanotuH€5C7[p, ql- Then
_ 2p (6vq-5p)
M INIHCC ) = (5) x ()

. 2p 2(6vq—5p)

(i) INJICHCsClp,al) = (3) x (5

Proof: From definitions and by cardinalities of the egigetition of HCsC/[p, ], we

deduce

@) IN,(ICsC,Ip, ])—( )‘“’xe +§)§(6pq—5p>
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520 ,9\3(6Pa=5p)
= — X |—=
@ G
1
1 1)—;(6pq—5p)

1
. 1 1 ——4-p
(i) INHI(HCsCo[p,qD) = (5+5) © x (G+3
2p

5 313(6Pa-5p)
- <G
6 2

3. Resultsfor SCsC;[p,g] nhanotubes

In this section, we focus on the family of nanowtdenoted b8CsC/[p,q], in whichp is

the number of heptagons in the first row anws of vertices and edges are repeated
alternately. The 2-D lattice of nanotu8esC;[p,q] is presented in Figure 2.

Figure 2: 2-D lattice of nanotub&8C;C/[p,q]

Let G be the graph oB8C:sC;[p,q]. By calculation, we obtain thak has 4q
vertices and g — p edges. Also by calculation, we get tliahas three types of edges
based on the degree of end vertices of each edodags:

E: = {uDE(G) | dg(u) = dg(v) = 2}, Eil =q.

Ez = {ulE(G) | dg(u) = 2ds(v) = 3}, [E-| = €.

Ez = {ulE(G) | dg(u) = ds(v) = 3}, [Es| = 60q —p-70.
Theorem 3. LetG be the graph of a nanotuBesC;[p, g]. Then

1(Spq- p- 79)

NIl (SCsC, [p,q))= 27" 59" @ :

Proof: From definition and by cardinalities of the edgatjtion of SC:C/[p, q, we
deduce

}q 36(1 }(qu- p- 79)
NIF(SCsCqp.d])= @+ 2)2" + 2+ 2 + (3+ 2
}(qu-p-7q)

=29x59x &

Theorem 4. LetG be the graph of a nanotuBesC;[p, g]. Then
5 2)§(6pq—p—7q)

Q) INSCsColpaD = () x (2
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(i) IN,11SC5ColpaD) = () x
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3)§(6pq—p—7q)

Proof: From definitions and by cardinalities of the eqgatition of SCsC[p, ], we
deduce

(i) INI(SCsCrp qD) = (G + 5)'%" x5+ 5)'%6“ x(+3

1 1
~6pq >(6pq—p-7q)

1
_ 1, 1\24
(i) IN{II(SC5Cy[p,q]) = (5+5)2 273 33

537 ,9\3(6Pa-P=79)

-(g) <)

6

1 1)—%(61061—11—761)

4. Conclusion

In this study, we have introduced the multiplicatiMirmala index, multiplicative first
and second inverse Nirmala indices of a moleculaply Furthermore we have
computed these multiplicative Nirmala indices feptfamilies of nanotubes.
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