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Abstract. Recently, a novel degree based topological index was introduced, so called the 
Nirmala index. In this study, we introduce the multiplicative Nirmala index, the 
multiplicative first and second inverse Nirmala indices of a molecular graph. Furthermore 
we compute these Nirmala indices for certain nanotubes.  
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1. Introduction 
A molecular graph is a graph such that its vertices correspond to the atoms and the edges 
to the bonds. Chemical Graph Theory is a branch of Mathematical Chemistry, which has 
an important effect on the development of the Chemical Sciences. A topological index is 
a numerical parameter mathematically derived from the graph structure. Several such 
topological indices have been considered in Theoretical Chemistry and have found some 
applications, especially in QSPR/QSAR study, see [1, 2]. 
 Let G=(V(G), E(G)) be a finite, simple, connected graph. Let dG(u) be the degree 
of a vertex u in G.  We refer [3] for undefined notations and terminologies. 
              In [4], Kulli  introduced the Nirmala index of a graph G and it is defined as  
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 We now propose the multiplicative Nirmala index of a graph and it is defined as 
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Recently, some Nirmala indices were studied, for example, in [5]. 
 Inspired by work on Nirmala indices, we put forward the multiplicative first and 
second inverse Nirmala indices of a graph and they are defined as 
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Recently, some topological indices were studied in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19]. In this paper, we compute the multiplicative Nirmala index, multiplicative 
first and second inverse Nirmala indices for two families of nanotubes. 

 
2. Results for HC5C7[p, q] nanotubes 
In this section, we focus on the family of nanotubes, denoted by HC5C7[p,q], in which p 
is the number of heptagons in the first row and q rows of pentagons repeated alternately. 
Let G be the graph of a nanotube HC5C7[p,q]. 
 

 
Figure 1: 2-D lattice of nanotube HC5C7 [8, 4] 

 
The 2-D lattice of nanotube HC5C7[p, q] is shown in Figure 1.By calculation, we obtain 
that G has 4pq vertices and 6pq – p edges. The graph G has two types of edges based on 
the degree of end vertices of each edge as follows: 
 E1 = {uv∈E(G) | dG(u) = 2, dG(v) = 3},  |E1| = 4p. 
 E2 = {uv∈E(G) | dG(u) = dG(v) = 3},  |E2| = 6pq – 5p. 
 
Theorem 1. Let G be the graph of a nanotube HC5C7[p, q]. Then  
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Proof: From definition and by cardinalities of the edge partition of HC5C7[p, q], we 
deduce 
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Theorem 2.  Let G be the graph of a nanotube HC5C7[p, q]. Then  
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3. Results for SC5C7[p,q] nanotubes 
In this section, we focus on the family of nanotubes, denoted by SC5C7[p,q], in which p is 
the number of heptagons in the first row and q rows of vertices and edges are repeated 
alternately. The 2-D lattice of nanotube SC5C7[p,q] is presented in Figure 2. 

 
Figure  2: 2-D lattice of nanotube SC5C7[p,q] 

 
Let G be the graph of SC5C7[p,q]. By calculation, we obtain that G has 4pq 

vertices and 6pq – p edges. Also by calculation, we get that G has three types of edges 
based on the degree of end vertices of each edge as follows: 
 E1 = {uv∈E(G) | dG(u) =  dG(v) = 2},  |E1| = q. 
 E2 = {uv∈E(G) | dG(u) = 2,dG(v) = 3},  |E2| = 6q. 
 E2 = {uv∈E(G) | dG(u) = dG(v) = 3},  |E3| = 6pq – p–7q. 
 
Theorem 3.  Let G be the graph of a nanotube SC5C7[p, q]. Then  
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Proof: From definition and by cardinalities of the edge partition of SC5C7[p, q],   we 
deduce 
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Theorem 4.  Let G be the graph of a nanotube SC5C7[p, q]. Then  

(i) ������$����	
, �
� � ��
���� � ��

��
�
�����������

 



V.R.Kulli 

60 
 

(ii) ������$����	
, �
� = ��
���� × ��

��
�
�(���������
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4. Conclusion 
In this study, we have introduced the multiplicative Nirmala index, multiplicative first 
and second inverse Nirmala indices of a molecular graph. Furthermore we have 
computed these multiplicative Nirmala indices for two families of nanotubes. 
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