A Note on le-Ternary Semigroups

U. Nagi Reddy1* and C. Meena Kumari2

1*Department of Mathematics Rayalaseema University
Kurnool, AP – 518007, India
2Department of Mathematics, Sri Krishnadevarya University
Anantapur AP – 515003, India
*Corresponding author. Email: nagireddyppr@gmail.com

Received 1 March 2021; accepted 15 April 2021

Abstract. Petraq Petro, Kostaq Hila, and Jani Dine given several properties in le-Γ-semigroups and especially in every Q-class satisfying the Green’s condition. Rabab Kellil studied Green’s Relations on Ternary Semigroups in 2013 and Parinyawat Choosuwa, Ronnason Chinram the notion of the quasi-ideals in ternary semigroups. In this paper we study that the characterizations of le–ternary semigroups and in particular we proved that the quasi-ideal element q of an le–ternary semigroup T has the intersection property if and only if:

\[q = l(q) \land m(q) \land r(q). \]

Keywords: le-ternary semigroups, partially ordered (PO), ideal, quasi ideal

AMS Mathematics Subject Classification (2010): 18B40

1. Introduction
Likewise with plain semigroups, le-semigroups are being studied globally and locally. The first way aims to find out to what extent properties of certain subsets of an le-semigroup affect the structure of the le-semigroup as a whole, and the second way is somehow the converse of the first, that is, it aims to find out to what rate and under what conditions some properties of points (elements) are transmitted to subsets of the le-semigroup. In 1932, Lehmer introduced the concept of a ternary semigroup. He investigated certain ternary algebraic structures called triplexes. Santiago developed the theory of ternary semigroups and semiheaps. He studied regular and completely regular ternary semigroups. In [2] Dixit and Dewan studied the quasi ideals and bi-ideals in ternary semigroups. Hila K.[4] introduced the notion of regular le-Γ-semigroup. In [6], D.H. Lehmer introduced the concept of a ternary semigroup. He investigated certain ternary algebraic structures called triplexes. In [15], Santiago developed the theory of ternary semigroups and semiheaps. He studied regular and completely regular ternary semigroups. Nagi Reddy,U. and Shobhalatha,G[7,8] studied the Ideals in regular po Γ-ternary semigroups, they are also studied fuzzy weekly completely prime ideals, fuzzy Bi ideals in ternary semigroups in [9,10].

This paper contains some results on le – ternary semigroups. Many researchers conducted the researches on the generalizations of the notions of ideals in ternary
U. Nagi Reddy and C. Meena Kumari

semigroups with huge applications in computer, logics and many branches of pure and applied Mathematics.

2. Basic definitions and preliminaries

Definition 2.1. A non-empty set \(T \) is said to be ternary semigroup if there exists a ternary operation \(\cdot : T \times T \times T \rightarrow T \) written as satisfies the following identity
\[
ab(cde) = a(bcd)e = (abc)de \quad \text{for any} \quad a, b, c, d, e \in T.
\]

Definition 2.2. A ternary semigroup \(T \) is said to be partially ordered (Po) ternary semigroup if there exists a partially ordered relation \(\leq \) on \(T \) such that if for all \(a, b \in T \), \(a \leq b \) then \(a cd \leq b cd, cad \leq c db \) and \(cda \leq cdb \), \(c, d \in T \).

Definition 2.3. A po ternary semigroup \(T \) is a po ternary semigroup with a greatest element “e”. i.e., for all \(a \in T \), \(e \geq a \).

Definition 2.4. In a po ternary semigroup \(T \), an element \(a \) is called a right (resp. lateral and left) ideal element if for all \(b \in T, abc \leq a \) (resp. \(bac \leq a \) and \(bca \leq a \)).

Definition 2.5. In a po ternary semigroup \(T \), an element \(a \) is called a right (resp. lateral and left) ideal element if for all \(a e e \leq a \) (resp. \(e a e \leq a \) and \(e e a \leq a \)) and for \(A \subseteq T \),
We denote \((A] = \{ t \in T / t \leq a \) for some \(a \in A \} \).

Definition 2.6. An element \(a \) of a po ternary semigroup \(T \) is called a quasi-ideal element, if \(e a e \wedge e e a \wedge a e e \leq a \)

Definition 2.7. The zero of a po ternary semigroup \(T \) is an element of \(T \) is denoted by 0 such that for every \(a, b \in T, e \neq 0 \leq a \) and \(0ab = a0b = ab0 = 0 \).

Let \(T \) be a po ternary semigroup with 0. A quasi-ideal element \(a \) of \(T \) is called minimal if \(a \neq 0 \) and there exist no quasi-ideal element \(t \) of \(T \) such that \(0 < t < a \).

Definition 2.8. An element \(a \) of a po ternary semigroup \(T \) is called a bi-ideal element of \(T \), if \(a e a e a \leq a \).

Definition 2.9. Let \(T \) be a ternary semi-lattice under \(\lor \) with a greatest element end at the same time a po ternary semigroup such that for all \(a, b, c, d \in T \),
\[
ab(c \lor d) = abc \lor abd.
\]
and \((a \lor b) cd = acd \lor bcd \).
Then \(T \) is called a \(e \lor e \)-ternary semigroup.

Definition 2.10. A \(e \lor e \)-ternary semigroup \(T \) which is also a lattice is called an le-ternary semigroup. Here \(T \) will stand for any le ternary semigroup and the usual order relation \(\leq \) on \(T \) is denoted in following way \(a \leq b \iff a \lor b = b \).
A Note on le-Ternary Semigroups

Then we can show that for any \(a, b \in T \), if \(a \leq b \) then \(a \ cd \leq b \ cd, \ cad \leq c b d \) and \(c d a \leq c d b \), \(c, d \in T \).

Examples 2.1.
1) Let \(T \) be a partially ordered ternary semigroup. Let \(M \) be the set of all ideals of \(T \), then \((M, \subseteq, \cap, \cup) \) is an le ternary semigroup.

2) Let \((X, \leq) \) and \((Y, \leq) \) be two finite chains. Let \(T \) be the set of all isotones mapping from \(X \) and \(Y \). Let \(f, g \in T \) we define \(fg \) to denote the usual mapping composition of \(f \) and \(g \). Then \(T \) is a ternary semigroup and for any \(f, g \in T \), the mapping \(f \lor g \) and \(f \land g \) are defined as

\[
(f \lor g)(a) = \max\{f(a), g(a)\}, \quad (f \land g)(a) = \min\{f(a), g(a)\}, \text{ for each } a \in X.
\]

The greatest element \(e \) is the mapping that sends every \(a \in X \) to the greatest element of finite chains \((Y, \leq) \). Then \(T \) is an le- \(\Gamma \) -semi group.

Definition 2.11. Three mapping \(r, m \) and \(l \) are defined by for any \(x \in T \) as follows:

\[
r : T \to T, \quad r(x) = exe \lor x.
\]

\[
m : T \to T, \quad m(x) = exe \lor x.
\]

and \(l : T \to T, \quad l(x) = ee x \lor x, \text{ for any } x \in T \)

Definition 2.12. Let \(T \) be a le – ternary smigroup then we define the mapping \(b \) and \(q \) as follows:

\[
b : T \to T, \quad b(x) = x \lor xex.
\]

\[
q : T \to T, \quad q(x) = x \lor (exe \land exe \land xee). \text{ for all } x \in T
\]

Definition 2.13. Let \(T \) be le-ternary semigroup, the Green’s relation are defined as follows:

\[
L = \{(x, y) \in M^2 / ee x \lor x = ee y \lor y\}
\]

Or

\[
\complement = \{(x, y) \in M^2 / l(x) = l(y)\}
\]

\[
\complement = \{(x, y) \in M^2 / exe \lor x = exe \lor y\}
\]

Or

\[
\complement = \{(x, y) \in M^2 / m(x) = m(y)\}
\]

\[
\complement = \{(x, y) \in M^2 / xee \lor x = ye e \lor y\}
\]

Or

\[
\complement = \{(x, y) \in M^2 / r(x) = r(y)\}
\]

\[
H = L \cap R.
\]
Definition 2.14. An element x of an le-ternary semigroup T is called regular if $x \leq xexex$.

A le-ternary semigroup T is called regular, if every element of T is regular.

Definition 2.15. An element x of an le-ternary semigroup T is called intra-regular, if $xexex \leq x$.

An element x of a le-ternary semigroup T is called intra-regular, if every element of T is intra-regular.

Theorem 2.16. Let T be a le-ternary semigroup then $q(q(x)) = q(x)$ for all $x \in T$.

Proof: We know that, $q(x) = x \lor (eex \land exe \land xee)$, for all $x \in T$.

$$q(q(x)) = q(x \lor (eex \land exe \land xee))$$

$$= (x \lor (xee \land exe \land xex)) \lor ((exe \land (xee \land exe \land eex))$$

$$\land (exe \land (xee \land exe \land eex))e \lor (exe \land (xee \land exe \land eex)))$$

$$q(q(x)) = (x \lor (xee \land exe \land eex)) \lor (eex \land exe \land xee)$$

$$q(x) = (x \lor (xee \land exe \land eex))$$

Hence $q(q(x)) = q(x)$, for all $x \in T$.

Theorem 2.17. If an element a of T is a left ideal element, an element b of T is a lateral ideal element and an element c of T is a right ideal element, then $a \land b \land c$ is a quasi-ideal element.

Proof: Assume that a is a left ideal element, b is a lateral ideal element and c is a right ideal element of T. Then $eea \lor a = l(a) = a$, $ebe \lor b = m(b) = b$ and $cee \lor c = r(c) = c$. So, $eea \leq a$, $ebe \leq b$ and $cee \leq c$. Hence $ee(a \land b \land c) \land (a \land b \land c)ee \leq eea \land ebe \land cee \leq a \land b \land c$.

Therefore $a \land b \land c$ is a quasi-ideal element.

Definition 2.18. A quasi ideal element of an le-ternary semigroup T has the intersection property if it is expressed as an intersection of a left-ideal element, a lateral-ideal element and a right ideal element.

Theorem 2.19. The quasi ideal element q of an le-ternary semigroup T has the intersection property if and only if $q = l(q) \land m(q) \land r(q)$.

Proof: Let q be a quasi ideal element of T. Then by Theorem 2.17, $q = a \land b \land c$. where $a = l(a)$, $b = m(b)$ and $c = r(c)$.

Then $l(q) = l(a \land b \land c) \leq l(a)$

$m(q) = m(a \land b \land c) \leq m(b)$ and $r(q) = r(a \land b \land c) \leq r(c)$.

Consequently,
A Note on le-Ternary Semigroups

\[q = l(a) \land m(b) \land r(c) \geq l(q) \land m(q) \land r(q). \]
\[q \geq l(q) \land m(q) \land r(q). \] \hspace{1cm} (1)

On the other hand,
\[q = q(gee \land gee \land e e q) \leq q \lor e e q = l(q). \]
\[q = q(gee \land e q e \land ee q) \leq q \lor e q e = m(q) \]
and \[q = q(gee \land e q e \land ee q) \leq q \lor q e e = r(q) \]
then \[q \leq l(q) \land m(q) \land r(q). \] \hspace{1cm} (2)

From equations (1) and (2) we get \[q = l(q) \land m(q) \land r(q). \]

Conversely, assume that \[q = l(q) \land m(q) \land r(q) \] for any left ideal \(l(q) \), lateral ideal elements \(m(q) \) and right ideal elements \(r(q) \) of \(T \).

By the theorem 2.17 \[q = l(q) \land m(q) \land r(q) \] quasi ideal element of \(T \).

We observe here that if
\[q = q(a) = a \lor (ae \land eae \land e a) \]
Then \[l(q) = l(a \lor (ae \land eae \land eea)) \]
\[= a \lor (ae \land eae \land eea) \lor e(a \lor (ae \land eae \land eea)) = l(a) \]
\[m(q) = m(a \lor (ae \land eae \land eea)) \]
\[= a \lor (ae \land eae \land eea) \lor e(a \lor (ae \land eae \land eea))e = m(a) \]
And \[r(q) = r(a \lor (ae \land eae \land eea)) \]
\[= a \lor (ae \land eae \land eea) \lor (a \lor (ae \land eae \land eea))ee = r(a) \]
\[q = l(a) \land m(a) \land r(a). \]

3. Conclusions
We introduced the notion of le-left(lateral and Right) ideal, quasi ideal in a le-ternary semigroup and studied their properties and relations between them. In continuous of this paper we propose to ideals over le-ternary semigroups.

Acknowledgement. We are thankful to the reviewer for the reviewing our paper. Your suggestions and Comment are very helpful in making further improvement if any. Thank you for your support.

REFERENCES
DOI 10.2298/FIL1605127P
DOI: http://dx.doi.org/10.22457/apam.v21n1a6644