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Abstract. Petrag Petro, Kostaq Hila, and Jani Dine given év@roperties in leT" -

semigroups and especially in every Q-class satigfifie Green’s condition. Rabah Kellil
studied Green's Relations on Ternary Semigroup®0it8 and Parinyawat Choosuwa,
Ronnason Chinram the notion of the quasi-ideaterimary semigroups. In this paper we
study that the characterizations of le—ternary gemoips and In particular we proved that
the quasi-ideal element q of an le-ternary semigrduphas the intersection property if

and only if g=1(g) Om(q) Or(q).
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1. Introduction
Likewise with plain semigroups, le-semigroups aeiny studied globally and locally.
The first way aims to find out to what extent prapsrtof certain subsets of an le-
semigroup fiect the structure of the le-semigroup as a whald, the second way is
somehow the converse of the first, that is, it d@ionfind out to what rate and under what
conditions some properties of points (elements) teaasmitted to subsets of the le-
semigroup. In 1932, Lehmer introduced the concefptaoternary semigroup. He
investigated certain ternary algebraic structuiadked triplexes. Santiago developed the
theory of ternary semigroups and semiheaps. Heestudgular and completely regular
ternary semigroups. In [2] Dixit and Dewan studibé quani ideals and bi-ideals in
ternary semigroups. Hila K.[4] introduced the notiof regularle-I'-semigroup. In [6],
D.H. Lehmer introduced the concept of a ternaryigesup. He investigated certain
ternary algebraic structures called triplexes. 16]] Santiago developed the theory of
ternary semigroups and semiheaps. He studied regath completely regular ternary
semigroups. Nagi Reddy,U. and Shobhalatha,G[7t&diexd the Ideals in regular po-
ternary semigroups, they are also studied fuzzyklyemmpletely prime ideals, fuzzy Bi
ideals in ternary semigroups in [9,10].

This paper contains some results on le — ternaniggeups. Many researchers
conducted the researches on the generalizationtheofnotions of ideals in ternary
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semigroups with huge applications in computer,dsgind many branches of pure and
applied Mathematics.

2. Basic definitionsand preliminaries

Definition 2.1. A non-empty sefl is said to be ternary semigroup if theréstsxa
ternary operation: TXTXT - T written as satisfies the following identit
ab(cde = a(bcd)e = (abc)de forany a,b,c,d,eT.

Definition 2.2. A ternary semigroupT is said to be partially ordered (Po) ternary
semigroup if there exists a partially ordered fefat< on T such that

if forall a,b0T, a<bthenacd<bcd,cad<chd andcda<cdb, c,d T .

Definition 2.3. A poe ternary semigroufd is a po ternary semigroup with a greatest
element “e”. i.e.,forall@dT , e=a.

Definition 2.4. In a po ternary semigroup , an elementa is called a right(resp. lateral
and left) ideal element if for ah [1T,abc< a,(resp.bac< a and bca< a).

Definition 2.5. In a po ternary semigroup , an element is called a right(resp. lateral
and left) ideal element if for athee< a (resp.eae<a andeae<a)and for AO T,

We denote A={t0T/t<a for someall Al

Definition 2.6. An element a of a poe ternary semigrolip is called a quasi-ideal
element, ifee¢ [ eae[_aecexists andeee [ eac[_aee<a

Definition 2.7. The zero of a poe ternary semigrolipis an element ol is denoted by
O such that for everyg, bOT , eZ0<a.andOab=alb=ab0=0.

Let T be a poe ternary semigroup with A quasi-ideal element a of is called
minimal if a# 0 and there exist no quasi-ideal elememf T suchthalD<t<a.

Definition 2.8. An elementa of a poe ternary semigroup is called bi-ideal element of
T ,if aeaei<a.

Definition 2.9. Let T be a ternary semi-lattice under with a greatest element end at
the same time a po ternary semi group such thatlifa, b, c,d 0T,

ab(cC d) =abcCabd.
and(alb)cd=acdLCbcd..
ThenT is called & € - ternary semigroup.

Definition 2.10. A [ € - ternary semigroufd which is also a lattice is called an le —
ternary semigroup.

Here T will stand for any le ternary semigroup and thaalrder relationr on T is
denoted in followingwagp<b < alCb=b
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Then we can show that for arg;bOT, if a<b thenacd<bcd, cad<cbd and
cda<cdb, ¢, dOT.

Examples 2.1.

1) Let T be a partially ordered ternary semigroup . Mt be the set of all ideals
of T .then(M,O,,n ,[0) is an le ternary semigroup.

2) Let (X,<) and (Y,<) be two finite chains . L&t be the set of all isotones
mapping from X andY . Let f,g0OT we define f{g to denote the usual
mapping composition of and g ThenT is a ternary semigroup and for any
f,gUOT,the mappingf C g and f C g are defined as
(f Co)(a) =max{f(a),g(a)}, (f Cg)(a)=min{f(a),g(a)}, for eacha
0X.

The greatest element e is the mapping that senety @] X to the greatest
element of finite chaingY,<) . ThenT is an le{ -semi group.

Definition 2.11. Three mapping , m and| are defined by for anx T as follows:
r:T - T,r(x)=xeel x.

m:T - T,m(x) =exel x.
andl : T - T,I(x) =eexCx, forany xUT

Definition 2.12. Let T be a le — ternary smigroup then we define thppimg b and
q as follows:

b:T - T,b(x) =xL xex
g:T - T,q(x) = xC(eexCexel xed. forall xUT

Definition 2.13. Let T be le-ternary semigroup, the Green'’s relation detned as
follows:

L ={(x,y)OM?*/eexOx=eeyy}
Or
L={(x,y)OM?/1(x) =1(y)}
O={(x,y)OM?/exedx =eyely}
Or
O={(x,y)OM?/m(x) =m(y)}

O={(x,y)OM?/xeelx = yeely}
Or

O ={(x,y)OM?/r(x) =r(y)}
H=bR.
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Definition 2.14. An elementX of an le - ternary semigroup is called regular if
X < Xexe:.
A le —ternary semigroup is called regular, if every element ®fis regular.

Definition 2.15. An elementx of an le - ternary semigroup is called intra-regular, if

x<exe.
An elementXx of a le- ternary semigroupp is called intra-regular, if every element of
T isintra-regular.

Theorem 2.16. Let T be a le-ternary semigroup theq(x)) = q(x) for allxUT .
Proof: ~We know thatg(x) = xC (eexCexel_ xed), for allxUT .
g(q(x)) = q(x C (eexC exel_ xeq)
= (xC(xeel exel eeX) L ((eq xC (xeel exel eeX)
Ce(xC(xeeCexel eex)el (x L (xeel exel eex)ee
g(q(x)) = (xC (xeel exel eex) L ((eexC egx [ (xeel exel eeX)

C (xeel e(xeel_ exel_ eexe) L (xeel (xeel exel_ eexee)
g(g(x)) = (xC (xeelC exel_ eex)) L (exexel xed
d(g(x)) = (xC (xeelexel eex))
g (q(x)) =q(x), forall xUT .

Theorem 2.17. If an elementa of T is a left ideal element, an elemdnbf T is a
lateral ideal element and an elemenif T is a right ideal element, thei_b[Cc is a

guasi-ideal element.
Proof: Assume that a is a left ideal element, b is adhtdeal element and c is a right

ideal element of T. Then eea_a=Il(a)=a, ebeCb=m(b)=band
eec_c=r(c)=c, so , eei<a, ebe<b andcee<c. Hence edalbllc)
De(adbOc)e O(adbOc)ee< ee: Cebel cee<alblc.

ThereforeaCb C cis a quasi-ideal element

Definition 2.18. A quasi ideal element of an le-ternary semigrdugnas the intersection
property if it is expressed as an intersection lgflaideal element, a lateral-ideal element
and aright ideal element.

Theorem 2.19. The quasi ideal element q of an le —ternary semigrduphas the
intersection property if and only ify =1(q) Cm(q) Cr(q).

Proof: Let q be a quasi ideal element &f. Then by Theorem 2.17,

g=alblCc. wherea=Il(a) b=m(b)andc=r(c)

Then I(g) =Il(aCbCc)<l(a)

m(q) =m(@aCblCc)<m(b) andr(g)=r(aCbLCc)<r(c)

Consequently,
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q=1(a) Cm(b) Cr(c) 2 1(q) Cm(a) Cr(a).
q=1(q) Cm(a) Cr(q). @)
On the other hand,
g=9 (qeeCqgeeleeq)<qleeq=1(q).
q=q(qeel eqel eeq) < qLeqge=m(q)
andg=qg(geeCeqgel eeq) < gL gee=r(q)
thenq < 1(q) Cm(q) Cr(q). )
From equations (1) and (2) we ggt=1(q) Cm(q) Cr(q).
Conversely, assume tha=1(g) Cm(q) Cr(qg) for any left ideal I(q), lateral ideal
elements m(q) and right ideal elements r(qY of
By the theorem 2.17q = 1(q) Cm(q) C r(q) quasi ideal element oF .
We observe here that if
g=9(a)=al(aeCeaelea)
Thenl(q) =I(al (aeeCeael eea))
—al (aceCeaeleea)ee(al (aceleael eea)) =I(a)

m(q) = m(al (aeel eael eea))

—al (aceCeaeleea) e(al (aceleael eea))e=m(a)
And r(q) =r(al (aeelCeael eea))

—al (aeeCeaeleea)(al (aeeCeael eea))ee=r(a)
g=l(@Cm(@)Cr(a).

3. Conclusions

We introduced the notion of left(lateral and Rjgliteal, quasi ideal in a le - ternary
semigroup and studied their properties and relatt@iween them. In continuous of this
paper we propose to ideals over le - ternary semjzg.
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