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Abstract. Singular boundary value problems (SBVPs) occur frequently in various 
branches of applied mathematics, mechanics, and atomic theory and chemical sciences. 
In this paper, we proposed the numerical solution of SBVPs by Hermite wavelet based 
Galerkin method (HWMG). Here, Hermite wavelets are used as weight functions and 
these are assumed bases elements which allow us to obtain the numerical solutions of the 
singular boundary value problems.  The obtained numerical results using this method are 
compared with the exact solution and existing methods (FDM, LWGM).  Some of the 
problems are taken to demonstrate the applicability and validity of the proposed method. 
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1. Introduction 
 

In recent years, strenuous action and interest have been investigating singular boundary 
value problems (SBVPs) and a number of methods have been proposed. The singular 
boundary value problems arise frequently in many branches of applied mathematics, 
mechanics, and nuclear physics, atomic theory and chemical sciences. Hence, the 
singular boundary value problems have attracted much attention and have been 
investigated by many researchers [1,2].   Some of them are Parametric spline method [3], 
Chebyshev polynomial and B-spline method [4], Laguerre Wavelet based Galerkin 
Method (LWGM) [5], a new numerical approach [6], etc. 

Wavelet analysis is newly developed mathematical tool and have been applied 
extensively in many engineering filed. This has been received a much interest because of 
the comprehensive mathematical power and the good application potential of wavelets in 
science and engineering problems. Special interest has been devoted to the construction 
of compactly supported smooth wavelet bases. As we have noted earlier that, spectral 
bases are infinitely differentiable but have global support. On the other side, basis 
functions used in finite-element methods have small compact support but poor continuity 
properties. Already we know that, spectral methods have good spectral localization but 
poor spatial localization, while finite element methods have good spatial localization, but 
poor spectral localization. Wavelet bases perform to combine the advantages of both 
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spectral and finite element bases. We can expect numerical methods based on wavelet 
bases to be able to attain good spatial and spectral resolutions [7].  An approach to study 
differential equations, is the use of wavelet function bases in place of other conventional 
piecewise polynomial trial functions in finite element type methods.  Because of its 
implementation and simplicity, the Galerkin method is considered the most widely used 
in applied mathematics [8]. 

The benefit of wavelet-Galerkin method over finite difference or finite element 
method has lead to remarkable applications in science and engineering.  To a certain 
extent, the wavelet technique is a strong competitor to the finite element method.   Even 
though the wavelet based method provides an efficient alternative technique for solving 
singular boundary value problems numerically [5]. 

In this paper, we developed Hermite wavelet based Galerkin method for the 
numerical solution of singular boundary value problems.   This method is based on 
expanding the solution by Hermite wavelets with unknown coefficients.  The properties 
of Hermite wavelets together with the Galerkin method are utilized to evaluate the 
unknown coefficients and then a numerical solution of the singular boundary value 
problems is obtained.    

The organization of the paper is as follows.  Preliminaries and properties of 
Hermite wavelets are given section 2.  Section 3 deals with Hermite wavelet based 
Galerkin method for the solution of the singular boundary value problems.  Numerical 
implementation is given in section 4.  Finally, conclusions of the proposed work are 
discussed in section 5. 

 
2. Preliminaries and properties of Hermite wavelets  
Wavelets form a family of functions which are generated from dilation and translation of 
a single function which is called as mother wavelet( )xψ . If the dialation parameter a  

and translation parameter b  varies continuously, we have the following family of 
continuous wavelets [9 , 10]: 

,

1
2( ) = | | , , , 0.a b

x b
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If we restrict the parameters a  and b  to discrete values as 

0 0 0 0= , = , > 1 ,k ka a b n b a a− −   

0 > 0.b  We have the following family of discrete wavelets 
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where    2
( )H H xm mπ

=%                                                                        (2.2) 

where = 0 , 1 , , 1.m M −K  In Eq. (2.2) the coefficients are used for 

orthonormality. Here )(xH m  are the second  Hermite polynomials of degree m with 

respect to weight function 21=)( xxW −  on the real line R  and satisfies the following 

reccurence formula 1=)(0 xH , xxH 2=)(1 , 

( ) ( ) ( ) ( )= 2 2 12 1H x x H x m H xmm m − ++ + ,   where = 0 , 1 ,m K .       (2.3) 

For k = 1 and n = 1  in Eq. (2.1) and (2.2), then the Hermite wavelets are given by 

1,0

2
( )xψ

π
= ,                      

1,1

2
( ) ( 4 2)x xψ

π
= − ,          

 2
1,2

2
( ) (16 16 2)x x xψ

π
= − + ,      

 3 2
1,3

2
( ) (64 96 36 2)x x x xψ

π
= − + − ,  

 4 3 2
1,4

2
( ) (256 512 320 64 2)x x x x xψ

π
= − + − +  , and so on. 

Function approximation: 
We would like to bring a solution function  ( )y x  under Hermite space by 

approximating ( )y x  by elements of Hermite wavelet bases as follows, 

( ) ( ), ,
1 0

n m n m
n m

y x c xψ
∞ ∞

= =

=                                    (2.4) 

where  ( ),n m xψ  is given in Eq. (2.1). 

We approximate ( )y x  by truncating the series represented in Eq. (2.4) as, 

( ) ( )
1 12

, ,
1 0

k M

n m n m
n m

y x c xψ
− −

= =

=                                        (2.5) 

where   ,n mc  and  ψ   are   
12 1k M− ×  matrix. 

 
Convergence of Hermite wavelets 
Theorem 2.1. If a continuous function ( ) ( )2y x L R∈ defined on  [ )0 , 1  be 

bounded, i.e. ( )y x K≤ , then the Hermite wavelets expansion of ( )y x  converges 

uniformly to it [11]. 
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3. Method of solution 
Consider the singular boundary value problem is of the form, 

���

���
+

�

�

��

��
+ ��	
� = 
�	
                                   (3.1) 

With boundary conditions     ��0
 = �, ��1
 = �                                                         (3.2) 
where ( ) ( )andp x q x are analytic in [ )0 , 1x ∈  and  �, � and � are finite constants.  

In Eq. (3.1) has singularity at the initial point 0x = . We note that the main difficulty 
arises in the singularity of the equation   at 0x = . 
Write the Eq. (3.1) as 

��	
 =
���

���
+

�

�

��

��
+ ��	
� − 
�	
                                   (3.3) 

where ( )R x   is the residual of the Eq. (3.1).  When ( ) 0R x =  for the exact solution, 

( )y x  only which will satisfy the boundary conditions.  

Consider the trail series solution of the Eq. (3.1), ( )y x defined over [ )0 , 1 can be 

expanded as a modified Hermite wavelet, satisfying the given boundary conditions which 
is involving unknown parameter as follows,  

( ), ,

12
( )

1 1
i j i j

k M
y x c x

i j
ψ

−
=  

= =
                                       (3.4) 

where  , 'i jc s  are unknown coefficients to be determined. 

Accuracy in the solution is increased by choosing higher degree Hermite wavelet 
polynomials.  

Differentiating Eq. (3.4) twice with respect to  x  and substitute the values of 
2

2 , ,
d y d y

y
d x d x

  in Eq. (3.3). To find , 'i jc s  we choose weight functions as assumed 

bases elements and integrate on boundary values together with the residual to zero [12]. 

                                      i.e.              ( ) ( )1,

1
0

0
j x R x d xψ = , 0 , 1 , 2 , ........ ,j n=  

then we obtain a system of linear equations, on solving this system, we get unknown 
parameters. Then substitute these unknowns in the trail solution, numerical solution of 
Eq. (3.1) is obtained. 
 
4. Numerical implementation 
In this section, we applied Hermite wavelet based Galerkin method for the numerical 
solution singular boundary value problems and subsequently presented the efficiency of 
the method in the form of tables and figures. The error analysis is considered as 

i.e.   Absolute error maxmax e aE y y= = − , 

where ey  and ay  are exact and approximate solutions respectively.  
Problem 4.1 Consider the singular boundary value problem [13],   

2

2 2

2 2
4 , 0 1

d y d y
y x

d x x d x x
+ − = ≤ ≤                           (4.1) 

With boundary conditions:             ( ) ( )0 0 , 1 0y y= =                          (4.2) 
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The implementation of the Eq. (4.1) as per the method explained in section 3 is as 
follows: 
Now rewrite the Eq. (4.1) as       

	�
���

�	�
+ 2	

��

�	
− 2� = 4	� 

and its  residual can be written as:     

��	
 = 	� ���

���
+ 2	

��

��
− 2� − 4	�                                                   (4.3) 

Now, choosing the weight function ( ) ( )1 xw x x −=  for Hermite wavelet bases   

( )for 1 and 3k m= =  to satisfy the given boundary conditions Eq. (4.2), i.e. 

( ) ( ) ( )x w x xψ= ×ψ  

    1,0

2
( ) (1 ) (1 )( ) x x x x xx ψ

π
= × − = −1,0ψ ,    

     1,1 1,1

2
( ) ( ) (1 ) ( 4 2) (1 )x x x x x x xψ

π
= × − = − −ψ       

     2
1,2 1,2 (1 )

2
( ) ( ) (16 16 2) (1 )x xx x x x x xψ

π
− == × − + −ψ  

Assuming the trail solution of (4.1) for   1k =  and 3m =  is given by 

( ) ( ) ( )1,0 1,0 1,1 1,1 1,2 1,2( )y x c x c x c x= + +ψ ψ ψ                          (4.4) 

Then the Eq. (4.4) becomes           

2

1,0 1,1

1,2

2 2
( ) (1 ) ( 4 2) (1 )

2
(16 16 2) (1 )

c c

c

y x x x x x x

x x x x

π π

π

= + +− − −

− + −
                      (4.5) 

Differentiating Eq. (4.5) twice w.r.t.  x , substitute the values of  
2

2, ,
d y d y

y
d x d x

 in                

Eq. (4.3), we get the residual of Eq. (4.1). 
 The “weight functions” are the same as the bases functions. Then by the weighted 
Galerkin method, we consider the following: 

                    ( ) ( )1,

1
0

0
j x R x dx = ψ , 0 , 1, 2j =                                         (4.6) 

For 0 , 1, 2j =  in Eq. (4.6),  

 i.e.    ( ) ( )1,0

1
0

0
x R x dx = ψ ,  ( ) ( )1,1

1
0

0
x R x dx = ψ ,  ( ) ( )1,2

1
0

0
x R x dx = ψ    (4.7) 

From Eq. (4.7), we have system of algebraic equations with unknown coefficients i.e. 

1,0c , 1,1c and 1,2c .  Solving this by Gauss elimination method, we obtain the values of

1,0 0.8945c = − , 1,1 0.0047c =  and 1,2 0.0046c = − .    Substituting these values in   Eq. 
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(4.5), we get the numerical solution; the absolute errors are presented in table 1 and 

comparison with   exact solution of Eq. (4.1) is  2( )y x x x= −  in figure 1. 
 
Table 1. Comparison of numerical solution with exact solution and absolute errors of the 
Problem 4.1 

                   

 
Figure 1: Comparison of numerical solution and exact solution of the problem 4.1 

 
Problem 4.2 Consider, another singular boundary value problem [14]    

2
2 3

2

1
9 4 , 0 1

d y d y
y x x x x

d x x d x
+ + = − − + ≤ ≤                       (4.8) 

With boundary conditions:           ( ) ( )0 0 , 1 0y y= =                            (4.9) 

X 
Numerical solution 

Exact 
solution 

Absolute error 

FDM 
LWGM 

[5] 
HWGM 

FDM 
LWGM 

[5] 
HWGM 

0.1 -0.01121 -0.08668 -0.091865 -0.09000 7.88e-02 3.32e-03 1.90e-03 
0.2 -0.02727 -0.15682 -0.162047 -0.16000 1.33e-02 3.18e-03 2.00e-03 
0.3 -0.04425 -0.20842 -0.211369 -0.21000 1.66e-02 1.58e-03 1.40e-03 
0.4 -0.06055 -0.24013 -0.240457 -0.24000 1.79e-02 1.30e-04 4.60e-04 
0.5 -0.07470 -0.25119 -0.249739 -0.25000 1.75e-02 1.19e-03 2.60e-04 
0.6 -0.08470 -0.24133 -0.239439 -0.24000 1.55e-02 1.33e-03 5.60e-04 
0.7 -0.08765 -0.21070 -0.209587 -0.21000 1.22e-02 7.00e-04 4.10e-04 
0.8 -0.07921 -0.15977 -0.160010 -0.16000 8.08e-02 2.30e-04 1.00e-05 
0.9 -0.05306 -0.08924 -0.090338 -0.09000 3.69e-02 7.60e-04 3.40e-04 
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By applying the method explained in the section 3 and as in the previous example, we 
obtained the we obtain the values of 1,0 0.4429c = , 1,1 0.2217c =  and 1,2 0.0001c = − .  

Substituting these values in Eq. (4.5), we get the numerical solution; the absolute errors 
are presented in table 2 and comparison with exact solution of Eq. (4.8) is  

2 3( )y x x x= −  in figure 2. 
 
Table 2. Comparison of numerical solution with exact solution and absolute errors of the 

Problem 4.2 

 
Figure 2. Comparison of numerical and exact solution of the problem 4.2. 

 
Problem 4.3 Finally, consider singular boundary value problem [15]    

x 
Numerical solution 

Exact 
solution 

Absolute error 

FDM 
LWGM 

[5] HWGM FDM 
LWGM 

[5] HWGM 

0.1 -0.014709 0.010673 0.008949 0.009000 2.37e-02 1.67e-03 5.10e-05 
0.2 -0.013726 0.033159 0.031941 0.032000 4.57e-02 1.16e-03 5.90e-05 
0.3 -0.002584 0.063290 0.062954 0.063000 6.56e-02 2.90e-04 4.60e-05 
0.4 0.015387 0.095881 0.095977 0.096000 8.06e-02 1.19e-04 2.30e-05 
0.5 0.036564 0.125034 0.124996 0.125000 8.84e-02 3.40e-05 4.00e-06 
0.6 0.056572 0.144429 0.144008 0.144000 8.74e-02 4.29e-04 8.00e-06 
0.7 0.070066 0.147623 0.147009 0.147000 7.69e-02 6.23e-04 9.00e-06 
0.8 0.070568 0.128350 0.128003 0.128000 5.74e-02 3.50e-04 3.00e-06 
0.9 0.050294 0.080816 0.080996 0.081000 3.07e-02 1.84e-04 4.-00e-06 
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2
5 4 2

2

8
44 30 , 0 1

d y d y
x y x x x x x

d x x d x
+ + = − + − ≤ ≤

 
 (4.10) 

With boundary conditions:  ( ) ( )0 0 , 1 0y y= =                                        (4.11) 

By applying the method explained in the section 3 and as in the previous examples, we 
obtained the values of 1,0 0.3324c = − , 1,1 0.2216c = −  and 1,2 0.0554c = − .  

Substituting these values in Eq. (4.5), we get the numerical solution; the absolute errors 
are presented in table 3 and comparison with   exact solution of Eq. (4.10) is  

( ) 3 4y x x x= − +  in figure 3. 

Table 3. Comparison of numerical solution with exact solution and absolute errors of the 
problem 4.3 

x 
Numerical solution 

Exact 
solution 

Absolute error 

FDM LWGM [5] 
HWGM 

FDM 
LWGM 

[5] 
HWGM 

0.1 0.024647 -0.000823 -0.000900 -0.000900 2.55e-02 7.70e-05 0 
0.2 0.024538 -0.004844 -0.006401 -0.006400 3.09e-02 1.56e-03 1.00e-06 
0.3 0.016024 -0.016861 -0.018904 -0.018900 3.40e-02 2.04e-03 4.00e-06 
0.4 -0.000072 -0.037304 -0.038407 -0.038400 3.83e-02 1.10e-03 7.00e-06 
0.5 -0.022021 -0.062986 -0.062512 -0.062500 4.05e-02 4.86e-04 1.20e-05 
0.6 -0.045926 -0.087854 -0.086417 -0.086400 4.05e-02 1.45e-03 1.70e-05 
0.7 -0.065532 -0.103744 -0.102920 -0.102900 3.74e-02 8.44e-04 2.00e-05 
0.8 -0.072190 -0.101131 -0.102420 -0.102400 3.02e-02 1.27e-03 2.00e-05 
0.9 -0.054840 -0.069880 -0.072914 -0.072900 1.81e-02 3.02e-03 1.40e-05 

 
Figure 3: Comparison of numerical solution and exact solution of the problem 4.3. 

 
5. Conclusion  
In this paper, we proposed the Hermite wavelet based Galerkin method for the numerical 
solution of singular boundary value problems (SBVPs).  From the above tables and 
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figures, we observed that the numerical solutions obtained by the proposed method are 
better than FDM, Laguerre wavelet based Galerkin method (LWGM) and nearer to the 
exact solution.  Hence, the Laguerre wavelet based Galerkin method (LWGM) is 
effective for solving singular boundary value problems.  
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