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Abstract. Singular boundary value problems (SBVPs) occur Uesgjy in various
branches of applied mathematics, mechanics, andiathheory and chemical sciences.
In this paper, we proposed the numerical solutib8BVPs by Hermite wavelet based
Galerkin method (HWMG). Here, Hermite wavelets ased as weight functions and
these are assumed bases elements which allowalain the numerical solutions of the
singular boundary value problems. The obtainedarigal results using this method are
compared with the exact solution and existing mggh@-DM, LWGM). Some of the
problems are taken to demonstrate the applicabitity validity of the proposed method.
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1. Introduction

In recent years, strenuous action and interest baea investigating singular boundary
value problems (SBVPs) and a number of methods baem proposed. The singular
boundary value problems arise frequently in marmgnbhes of applied mathematics,
mechanics, and nuclear physics, atomic theory dameimical sciences. Hence, the
singular boundary value problems have attracted hmattention and have been
investigated by many researchers [1,2]. Somaarhtare Parametric spline method [3],
Chebyshev polynomial and B-spline method [4], LagrueWNavelet based Galerkin
Method (LWGM) [5], a new numerical approach [6f.et

Wavelet analysis is newly developed mathematical &md have been applied
extensively in many engineering filed. This hasrbeszeived a much interest because of
the comprehensive mathematical power and the gpplication potential of wavelets in
science and engineering problems. Special intér@stoeen devoted to the construction
of compactly supported smooth wavelet bases. Adaue noted earlier that, spectral
bases are infinitely differentiable but have glolsabport. On the other side, basis
functions used in finite-element methods have som@mthpact support but poor continuity
properties. Already we know that, spectral methioalge good spectral localization but
poor spatial localization, while finite element imeds have good spatial localization, but
poor spectral localization. Wavelet bases perfoontdambine the advantages of both
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spectral and finite element bases. We can expeoencal methods based on wavelet
bases to be able to attain good spatial and spees@utions [7]. An approach to study
differential equations, is the use of wavelet fimttases in place of other conventional
piecewise polynomial trial functions in finite elemt type methods. Because of its
implementation and simplicity, the Galerkin methsdonsidered the most widely used
in applied mathematics [8].

The benefit of wavelet-Galerkin method over findiéference or finite element
method has lead to remarkable applications in seieand engineering. To a certain
extent, the wavelet technique is a strong competitahe finite element method. Even
though the wavelet based method provides an efficiternative technique for solving
singular boundary value problems numerically [5].

In this paper, we developed Hermite wavelet basater@n method for the
numerical solution of singular boundary value peois. This method is based on
expanding the solution by Hermite wavelets with nmkn coefficients. The properties
of Hermite wavelets together with the Galerkin noethare utilized to evaluate the
unknown coefficients and then a numerical solutainthe singular boundary value
problems is obtained.

The organization of the paper is as follows. riglaries and properties of
Hermite wavelets are given section 2. Section &lsdavith Hermite wavelet based
Galerkin method for the solution of the singulaubdary value problems. Numerical
implementation is given in section 4. Finally, clusions of the proposed work are
discussed in section 5.

2. Preliminaries and properties of Hermite wavelets
Wavelets form a family of functions which are geaied from dilation and translation of

a single function which is called as mother waveletx) . If the dialation parameted

and translation parametdy varies continuously, we have the following famibf
continuous wavelets [9 , 10]:

-1 _
Wao(¥) = |a|4w(xabj, Da,b0R,a# 0

If we restrict the parametersa and b to discrete values as
a =a* b = nbafa,>1,
b, > 0. We have the following family of discrete wavelets
W (x) = |al“21p(a('§ X — nbo), Oa,b0OR,a # 0
wherey, , form a wavelet basis fot”(R). In particular, wherg, = 2 andh, = 1
stheny, , forms an orthonormal basis. Hermite wavelets afened as

k
22 .k n-1 n
_ £ - 2.1
Y, W(X) = \/;Hm(Z X—2n+1), K1 < x < K1 (2.1)
0 , otherwise
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where ':|m = \/%Hm(x) (2.2)
where m = 0,1,... , M -1 In Eq. (2.2) the -coefficients are used for

orthonormality. HereH _(X) are the second Hermite polynomials of degree th wi

respect to weight functiodV(x) = v1- x* on the real lineR and satisfies the following
reccurence formuldd ,(x) =1, H,(x) = 2x,

Hpto(x) = 2xH 4 (%) - 2(m+ )H,(x), wherem = 0,1,... (2.3)
Fork=1andh=1 in Eqg. (2.1) and (2.2), then the Hermite waxele given by
2
X) = —,
lﬂl,o( ) \/7—7_
2
X) = ——=(4x-2),
W, \/l—T( )

‘//1,2()() =% (16X2 -16x + 2],

@y 5(%) =2 (645 - 96x° + 36— 2.

Jr
W, ,(X) -2 (256x* - 5123+ 32%* - 6%+ 2, and so on.
| NG

Function approximation:
We would like to bring a solution function y(x) under Hermite space by

approximatingy( X) by elements of Hermite wavelet bases as follows,

y(x) = 22 G #hn(¥) (2.4)

where ¢, . (x) is given in Eq. (2.1).
We approximatey( X) by truncating the series represented in Eq. &4)

2k-1 M -1
y(x) = XX Cnthn(¥) (2.5)
n=1m=0
where ¢, and ¢ are 271 M x 1 matrix

Conver gence of Hermite wavelets
Theorem 2.1. If a continuous functiony(x) O L?(R) defined on [0,1) be

bounded, i.ey(x) < K, then the Hermite wavelets expansionydfx ) converges
uniformly to it [11].
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3. Method of solution
Consider the singular boundary value problem ithefform,

2
S+ 4 p()y = q(x) (3.2)
With boundary conditions y(0) =a,y(1) =b (3.2

where p(x) and g(x) are analytic inx 0 [0,1) and a,b anda are finite constants.
In Eg. (3.1) has singularity at the initial poirt = 0. We note that the main difficulty
arises in the singularity of the equation xat= 0 .

Write the Eq. (3.1) as

RG) =224+ 224 poy — () (33)

whereR(x) is the residual of the Eq. (3.1). Whefx) = o0 for the exact solution,
y(x) only which will satisfy the boundary conditions.

Consider the trail series solution of the Eq. (3.)x) defined over[o , 1) can be

expanded as a modified Hermite wavelet, satisftfreggiven boundary conditions which
is involving unknown parameter as follows,
2k—1 M

oo = Tx 2 aw(x) (3.4)

where ¢ ;'s are unknown coefficients to be determined.
Accuracy in the solution is increased by choosiiglér degree Hermite wavelet

polynomials.
Differentiating Eq. (3.4) twice with respect t& and substitute the values of
d’ d . . . :
TZ’ ay , y inEg. (3.3). To flndcij 's we choose weight functions as assumed
X

bases elements and integrate on boundary valueth&rgwith the residual to zero [12].
1
ie. jt//lj(x)R(x)dx = 0,j =0,1,2, ... n
o7t

then we obtain a system of linear equations, owirsplthis system, we get unknown
parameters. Then substitute these unknowns inr#lilesblution, numerical solution of
Eq. (3.1) is obtained.

4. Numerical implementation

In this section, we applied Hermite wavelet basedefkin method for the numerical
solution singular boundary value problems and sylsetly presented the efficiency of
the method in the form of tables and figures. Timereanalysis is considered as

l.e. Absoluteerror = E_, = m4><ye A

wherey, and y, are exact and approximate solutions respectively.
Problem 4.1 Consider the singular boundary value problem [13],

dzy 2 dy 2

+ - = - Sy = 4, 0 < x =1 (4.2)

dx’ X dx X
With boundary conditions: y(o) = o, y(1) = o 4.2)
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The implementation of the Eq. (4.1) as per the o@#xplained in section 3 is as
follows:

Now rewrite the Eq. (4.1) as

d’y _ dy
2 — 2
| | 'x W+2xa—2y—4x
and its residual can be written as:
— 298 9 _ o 42
R(x)=x P 2x T 2y — 4x (4.3)
Now, choosing the weight functicm( x) = x(1- x) for Hermite wavelet bases

(fork =1andm = 3 to satisfy the given boundary conditions Eq. (4i.2)
u(x) = w(x)xw(x)
2
IJJ1,0(X) = Y o(X)*x(L-x) = ﬁx(l_x) ,

(%) = @ ()xX(AL-X) = % (4% 2)x (1-x )

Uy o(X) = ¢, (X)X x(1-X) = 2 (16x*—16x+ 2)X (Ex
S N
Assuming the trail solution of (4.1) fok =1 andm = 3 is given by
Y(X) = Colio(X) + Cigy{X) + ¢y {X) (4.4)

Then the Eq. (4.4) becomes

y(x) - ol’o%x(l—x) . C1Y1%(4x—2)x(1—x) .

5 (4.5)
—— (16x*-16x + 2)X (1- X
°1,2\/7—T( X ( )
. - . _ d d?y .
Differentiating Eq. (4.5) twice w.r.t.x, substitute the values ofy , d_ , d—2 in
X X

Eqg. (4.3), we get the residual of Eq. (4.1).
The “weight functions” are the same as the basestibns. Then by the weighted
Galerkin method, we consider the following:

iwlyj(x)R(x)dx = o0, | = 0,12 (4.6)
For j = 0,1, 2inEq. (4.6),
i.e. in,o(X)R(X)dX = 0 iwlyl(x)R(x)dx = 0, iwlyz(x)R(x)dx = o (47

From Eq. (4.7), we have system of algebraic eqoatigith unknown coefficients i.e.
Clgs G q@ndc ,. Solving this by Gauss elimination method, weaobthe values of

C,=-0.894f ¢, =0.0047andc ,=-0.004€.  Substituting these values in  Eq.
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(4.5), we get the numerical solution; the absokrters are presented in table 1 and
comparison with exact solution of Eq. (4.1)¥§x) = x* - x in figure 1.

Table 1. Comparison of numerical solution with exact saatand absolute errors of the
Problem 4.1

Numerical solution Exact Absolute error

X FDM LVE/SC];M HWGM solution FDM LV\[ISC];M HWGM
0.1 | -0.01121 -0.08668 -0.09186 -0.09000 7.88€-02326303 1.90e-03
0.2 | -0.02727 -0.15682 -0.16204 -0.16000 1.33€-0218€303 2.00e-03
0.3 | -0.04425 -0.20842 -0.21136 -0.21000 1.66€-0258€103 1.40e-03
0.4 | -0.06055 -0.24013 -0.24045 -0.24000 1.79€-0230€t04 4.60e-04
0.5 | -0.07470 -0.25119 -0.24973 -0.25000 1.75€-0219€t03 2.60e-04
0.6 | -0.08470 -0.24133 -0.23943 -0.24000 1.55e-0233€t03 5.60e-04
0.7 | -0.08765 -0.21070 -0.20958 -0.21000 1.22€-0200€704 4.10e-04
0.8 | -0.07921 -0.15977 -0.16001 -0.16000 8.08e-0230e204 1.00e-05
0.9 | -0.05306 -0.08924 -0.09033 -0.09000 3.69€-0260€704 3.40e-04

O[O N[O|O[N[O[N]OT

0 T T T
Exact solution
*  HWGM
-0.05 - q
01 1
>

-0.15 - d
02 J
_025 1 1 1 1 - 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1
X
Figure 1. Comparison of numerical solution and exact sotutibthe problem 4.1

Problem 4.2 Consider, another singular boundary value probtefh [

d? 1d
—32/ + 29 +y = ¥-x*-9x+4, 0< x <1 (4.8)
dx X dx

With boundary conditions: y(0) = o, y(1) = o (4.9)
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By applying the method explained in the sectiomd8 as in the previous example, we
obtained the we obtain the valuescpf = 0.4429, ¢;; = 0.2217andc;, = —0.0001.

Substituting these values in Eq. (4.5), we getrthemerical solution; the absolute errors

are presented in table 2 and comparison with exattion of Eq. (4.8) is

y(x) = x*- x’infigure 2.

Table 2. Comparison of numerical solution with exact saatand absolute errors of the

Problem 4.2
Numerical solution Exact Absolute error
X FDM LV}/ES]BM HWGM solution FDM LVE/SC]BM HWGM
0.1 -0.014709| 0.010673 0.008949 0.009000 2.37e-0267e103| 5.10e-05
0.2 -0.013726| 0.03315p 0.031941 0.032000 4.57¢-0216e103 | 5.90e-05
0.3 -0.002584| 0.06329p 0.06295¢ 0.063000 6.56e-0200e204 | 4.60e-05
0.4 0.015387 | 0.095881  0.09597)7 0.096000 8.06e-0219e104 | 2.30e-05
0.5 0.036564 | 0.125034 0.124996 0.125000 8.84e-0240e305| 4.00e-06
0.6 0.056572 | 0.144429 0.144008 0.144000 8.74e-029e404 | 8.00e-06
0.7 0.070066 | 0.147623 0.147009 0.147000 7.69e-023e604 | 9.00e-06
0.8 0.070568 | 0.128350 0.128008 0.128000 5.74e-050e304 | 3.00e-06
0.9 0.050294 | 0.080816 0.080996 0.081000 3.07e-028B4e104 | 4.-00e-04
0.15 : : :
Exact solution
%  HWGM
01 F 1
>
0.05 - 1
0 1 1 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1
X
Figure 2. Comparison of numerical and exact solution ofrablem 4.2.

Problem 4.3 Finally, consider singular boundary value probldr][
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&’y , 8dy
d x? x d X
With boundary conditions:y(0) = 0, y(3) = 0 (4.11)
By applying the method explained in the sectiom8 as in the previous examples, we
obtained the values ofc, = -0.3324, ¢, = -0.2216 and ¢, = -0.0554 .

Substituting these values in Eq. (4.5), we getrthemerical solution; the absolute errors
are presented in table 3 and comparison with  tesatution of Eq. (4.10) is

y(x) = =x* + x* in figure 3.
Table 3. Comparison of numerical solution with exact saatand absolute errors of the

+ Xy = xX-x'+44x*-30x, 0<x< 1(4.10)

problem 4.3
Numerical solution Exact Absolute error
X oM | twem s | TWOM | qiution | FDM LV}’ES];M HWGM
0.1 0.024647 -0.000823 -0.000900 -0.000900 2.55e-0270e-05 0
0.2 0.024538 -0.004844 -0.006401  -0.006400 3.09e¢-0256e-03| 1.00e-06
0.3 0.016024 -0.016861 -0.018904 -0.018900 3.40e-@204e-03| 4.00e-06
0.4 -0.000072 -0.037304 -0.0384Q7 -0.038400 3.88e-0.10e-03| 7.00e-04
0.5 -0.022021 -0.062986 -0.062512 -0.062500 4.05e-1.86e-04| 1.20e-04
0.6 -0.045926 -0.087854 -0.086417 -0.086400 4.05e-0.45e-03| 1.70e-04
0.7 -0.065532 -0.103744 -0.102920 -0.102900 3. e-B.44e-04| 2.00e-01
0.8 -0.072190 -0.101131 -0.102420 -0.102400 3.®2e-0.27e-03| 2.00e-01
0.9 -0.054840 -0.069880 -0.072914  -0.072900 1.21e-B.02e-03| 1.40e-01
0 T T T T T T T T
Exact solution
* HWGM

-0.02 B

-0.04 B

> -0.06 [ B

-0.08 - B

012 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
Figure 3: Comparison of numerical solution and exact sotutibthe problem 4.3.

5. Conclusion
In this paper, we proposed thiermite wavelet based Galerkin method for the nicakr
solution of singular boundary value problems (SBVP$rom the above tables and
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figures, we observed that the numerical solutidoiioed by the proposed method are
better than FDM, Laguerre wavelet based Galerkithote (LWGM) and nearer to the
exact solution. Hence, the Laguerre wavelet baSaterkin method (LWGM) is
effective for solving singular boundary value perbk.
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