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Abstract. In this work, we prove that the exponential Diopiraa equation
(p+2)"+(5p+6)’ = Z has no solution whemp, p+2and5p+6 are primes, and
X, Y, Z are non-negative integers.
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1. Introduction
Over a decade, Exponential Diophantine equationbegsn a famous topic in number

theory. After, Catalan presented Catalan’s conjectoat isa* —b* =1 and Mihailescu
proved its solution [4, 12]. There are many agsalising Catalan’s conjecture to find and
prove solution of the equation in general form

P+’ =7,
wherep, g, X, y and zare non-negative integers [8, 10-11, 13-15]. InQkhe equation
p* +( p+1)y = Z where X,y and z are non-negative integers arulis Mersenne

prime was presented and proved the solutiondri3he proof, Catalan’s conjecture was
applied. The result indicates that there are twolutems including

(p.xy,2=(7,0,1,3and(p, % y,2=(3,2,2,5. In 2018, Burshtein presented both
the Exponential Diophantine equatiops +( p+4)y = Z when p>3, p+ 4 are prime

and p*+(p+6)" = Z when p, p+6are primes [1, 2]. He proved that the first
equation has no solution and the other has sevetioss for X+ y =2, 3, 4. In the same

year, the equatiop” +( p+8)y = Z when p>3and p+8are primes was studied by
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Oliveira [7]. He proved that the equation has nlutsmn. Next year, a research group
proved thatp* +( p+12)” = Z has no solution [9]. In 2020, Burshtein [3] provibdt

the Diophantine equatiop” +( p+ 5)y = Z has no solution whep+5= 2" anduis

a positive integer. Recently, the Diophantine eiquap” +( p+ 20)y = Z when pand

p+ 20 are primes was proved that it has no solution [6].
In this paper, we studied the Exponential Diopiment equation

(p+2)"+(5p+6)’ = Z when p, p+2and5p+6 are primes, anc, y, z are non-
negative integers.

2. Preliminaries
In this section, we introduce basic knowledge apglyn the proof.

Lemma2.1. If X is odd thenx =1(mod4or x=-1(mod4.
Proof: Let xbe odd. There existg[][] wherex=4q+1lor x=4q+3. If x=4q+1
then we haved | x-1lor x=1(mod4). If x=4q+3then we havex=4(q+1)-1.

This yields4 | x+ lor x=-1(mod4. O

Lemma2.2. If X is even therx’ =0(mod 4) .

Proof: Let Xbe even. We can writ = 2mwherem € Z*. Then, we obtaink® = 4nY
which implies that4 | x*or x* =0(mod 4) .0

Lemma 2.3. (Catalan’s conjecture) [12] The Diophantine ecqua@* — b’ =1 has only
one solution that is(a,b, X y)=(3,2,2,3 where a,b,x and y are integers and

min{a,b, x, }} > 1.

Lemma 2.4. The Diophantine equatioch+ p* = Z where p=>5is prime andx, zare

non-negative integers has no solution.
Proof: Let Xxand zbe non-negative integers such that

1+ p* =27 1)
where pis prime andp=5. We consider in 3 cases includixg 0, Xx=1 and x> 2.

For x=0, (1) becomes® = 2 which is impossible. Fot=1, (1) becomes
1+ p=2Z. This implies thatz” =260rz=3, and we also obtairp =(z-1)( z+1)
which is impossible. Fox> 2, we havez’ - p* =1. By Lemma 2.3, the equation has
only one solution that iz, p,X) =(3,2,3 . This is impossible because @=5.
Therefore, (1) has no solutionl
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3. Main results
Theorem 3.1. If p, p+2 and5p+6 are primesthen the Exponential Diophantine

equation( p+2)" +(5p+ 6)” = Z has no solution in non-negative integegsy andz .
Proof: Let X, yand zare non-negative integers according to

(p+2)" +(5p+6) = Z. )
We consider in 3 cases as following.
Case 1:x=0, (2) becomed+(5p+6)’ = Z. Since5p+ 6is prime and5p+ 62 5.
By Lemma 2.4, the equation has no solution.
Case 2:y=0, (2) becomed+(p+2)" = Z. Becausep+2is prime, it implies that
p+2=5. By Lemma 2.4, the equation has no solution.
Case 3:x>0and y>0, sincepand p+2 are primes, we obtaip # 2and p is odd.
Therefore, we consider in two cases includipg1(mod4 and p=-1(mod4.

For p=1(mod4, we can see that (2) becomes
2?2 =(-1)"+(-1)"(mod}. (3)
From (1),z is even and we obtairf =0(mod4) by Lemma 2.2. From (3)xand y

are consider in two cases. One isiS even andy is odd”. The other is Xis odd andy
is even”.
For “Xis even andy is odd”, we havex = 2k wherek € Z*. From (2), we obtain

(5p+6) =7 -(p+ 2™ =[ 2-( 2] #( # 2]
Hence, there arer, 300 such thatz—( p+ 2)k =(5p+6)" and
z+( p+2)" =(5p+ 6) whereO<sa < Banda+B=y.
Then, we have

2(p+2) =(5p+ 8" -(5p+ §" =( 50+ §"(( 50+ ¥ )

It easy to check thatr =0. So we have
2(p+2)"=(5p+ § - 1= g p+ J{( o+ ¥4 ( B+ F (B B )
Thus, we haves|p+ 2. This implies thapp+2=5, thenp=3. We obtain that

5p+6=5(3)+ 6= 2.which is not a prime. This is a contradiction.
For “Xis odd andy is even”, lety = 2k, wherek € Z*. From (2), we obtain

(p+2) =7 -(5p+ 6" =( 2 (5p ") #(5 ¢').
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We leta, SO0 whereO<a < fand @+ 8 =x. We havez—-(5p+6)  =( p+2)°
and z+(5 p+ 6)k =(p+ 2. It's easy to see that

2(5p+6) =(p+2° (( p+ 77 - :y
It implies thata =0, then we obtain
2(sp+ 8 =(p+ 2 -1=(p+ Y(p+ 3+ (pr P Per L @
There existn € Z* — {1} such thatp+1=2m, since p+1>4 and p+1 are even.
From (4), we obtain

(5p+6) =m(( p+ "7 +( pr 9+t 9. ©)
There exist a primg where isq | m. From (5), we obtaiq | (5p+ 6)k. We can see that
q|(5p+6), but5p+6 is prime. Hence, we hage=5p+6 . This is contradiction
becauseg < p+1<5p+ 6.
Forp=-1(mod4), we obtainp+2=1(mod4 and5p+6=1 mod4. From (2), we
have
z2=2(mod 4.

This is contradiction becauzéEO,l( modl). This completes the proof of

theorem 3.10J

4. Conclusion
In this work, we prove that the Exponential Dioptia® equation

(p+2)"+(5p+6)’ = Z when p, p+2and 5p+6 are primes, and, y, z are non-
negative integers. In the proof, we separate iases including case=0, casey =0

and casex >0andy > 0. The Catalan’s conjecture and principles in nuntbeory are
applied. The results reveals that the equatiombasolution.
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