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Abstract. In this work, we prove that the exponential Diophantine equation 

( ) ( ) 22 5 6
x y

p p z+ + + =  has no solution when , 2p p+ and 5 6p+  are primes, and 

, ,x y z are non-negative integers. 
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1. Introduction 
Over a decade, Exponential Diophantine equation has been a famous topic in number 

theory. After, Catalan presented Catalan’s conjecture that is 1x ya b− =  and Mihailescu 
proved its solution [4, 12].  There are many articles using Catalan’s conjecture to find and 
prove solution of the equation in general form 

       2x yp q z+ = , 
where , , ,p q x y and zare non-negative integers [8, 10-11, 13-15]. In 2013, the equation  

( ) 21
yxp p z+ + =  where ,x y  and z are non-negative integers and p is Mersenne 

prime was presented and proved the solutions [5]. In the proof, Catalan’s conjecture was 
applied. The result indicates that there are two solutions including 

( ) ( ), , , 7,0,1,3p x y z = and ( ) ( ), , , 3,2,2,5p x y z = . In 2018, Burshtein presented both 

the Exponential Diophantine equations ( ) 24
yxp p z+ + =  when 3, 4p p> +  are prime 

and ( ) 26
yxp p z+ + =  when , 6p p+ are primes [1, 2].  He proved that the first 

equation has no solution and the other has seven solutions for 2,3,4x y+ = . In the same 

year, the equation ( ) 28
yxp p z+ + =  when 3p > and 8p+ are primes was studied by 
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Oliveira [7]. He proved that the equation has no solution. Next year, a research group 

proved that ( ) 212
yxp p z+ + =  has no solution [9]. In 2020, Burshtein [3] proved that 

the Diophantine equation ( ) 25
yxp p z+ + =  has no solution when 25 2 up + =  and u is 

a positive integer. Recently, the Diophantine equation ( ) 220
yxp p z+ + =  when p and 

20p +  are primes was proved that it has no solution [6]. 
 In this paper, we studied the Exponential Diophantine equation 

( ) ( ) 22 5 6
x y

p p z+ + + =  when , 2p p+ and 5 6p +  are primes, and , ,x y z are non-

negative integers.  
  
2. Preliminaries  
In this section, we introduce basic knowledge applying in the proof. 
 

Lemma 2.1. If x  is odd then ( )1 mod 4x ≡ or ( )1 mod 4x ≡ − . 

Proof: Let xbe odd. There exists q∈� where 4 1x q= + or 4 3x q= + . If 4 1x q= +
then we have 4 | x 1− or ( )1 mod 4x ≡ . If 4 3x q= + then we have ( )4 1 1x q= + − . 

This yields 4 | x 1+ or ( )1 mod 4x ≡ − . □ 

 
Lemma 2.2. If x  is even then ( )2 0 mod 4x ≡ . 

Proof: Let xbe even. We can write 2x m= where � ∈ ℤ�. Then, we obtain 2 24x m=
which implies that 24 | x or ( )2 0 mod 4x ≡ .□ 

 

Lemma 2.3. (Catalan’s conjecture) [12] The Diophantine equation 1x ya b− =  has only 

one solution that is ( ) ( ), , , 3,2,2,3a b x y = where , ,a b x and y are integers and 

{ }min , , , 1a b x y > . 

 

Lemma 2.4. The Diophantine equation 21 xp z+ = where 5p ≥ is prime and ,x zare 
non-negative integers has no solution.  
Proof:  Let xand z be non-negative integers such that                                        

                                                                21 xp z+ =                                                         (1) 

where p is prime and 5p ≥ . We consider in 3 cases including 0x = , 1x =  and 2x ≥ .  

For 0x = , (1) becomes 2 2z =  which is impossible.  For 1x = , (1) becomes 
21 p z+ = . This implies that 2 6z ≥ or 3z ≥ , and we also obtain ( ) ( )1 1p z z= − +

which is impossible. For 2x ≥ , we have 2 1xz p− = . By Lemma 2.3, the equation has 

only one solution that is ( ) ( ), , 3,2,3z p x = . This is impossible because of 5p ≥ . 

Therefore, (1) has no solution. □ 
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3. Main results 
Theorem 3.1. If , 2p p+  and 5 6p +  are primes then the Exponential Diophantine 

equation ( ) ( ) 22 5 6
x y

p p z+ + + = has no solution in non-negative integers.,x y andz .  

Proof:  Let ,x yand zare non-negative integers according to  

             ( ) ( ) 22 5 6
x y

p p z+ + + = .                                            (2)  

We consider in 3 cases as following. 

Case 1: 0x = , (2) becomes ( ) 21 5 6
y

p z+ + = . Since 5 6p + is prime and 5 6 5p + ≥ . 

By Lemma 2.4, the equation has no solution. 

Case 2: 0y = , (2) becomes ( ) 21 2
x

p z+ + = . Because 2p + is prime, it implies that 

2 5p + ≥ . By Lemma 2.4, the equation has no solution. 

Case 3: 0x > and 0y > , since p and 2p+  are primes, we obtain 2p ≠ and p  is odd. 

Therefore, we consider in two cases including ( )1 mod 4p ≡  and ( )1 mod 4p ≡ − . 

For ( )1 mod 4p ≡ , we can see that (2) becomes 

         ( ) ( ) ( )2 1 1 mod 4
x y

z = − + − .                                           (3) 

From (1), z  is even and we obtain ( )2 0 mod 4z ≡  by Lemma 2.2. From (3), x and y  

are consider in two cases. One is “x is even and y is odd”. The other is “x is odd and y
is even”.  
For “ x is even and y is odd”, we have 2x k=  where � ∈ ℤ�. From (2), we obtain  

                  ( ) ( ) ( ) ( )225 6 2 2 2
y k k k

p z p z p z p   + = − + = − + + +
   

. 

Hence, there are ,α β ∈�  such that ( ) ( )2 5 6
k

z p p
α− + = +  and

 

( ) ( )2 5 6
k

z p p
β+ + = + where 0 α β≤ < and yα β+ = . 

Then, we have                                     
                    

                      ( ) ( ) ( ) ( ) ( )( )2 2 5 6 5 6 5 6 5 6 1
k

p p p p p
β α α β α−+ = + − + = + + − .

                                                     
It easy to check that 0α = . So we have 

                
( ) ( ) ( ) ( ) ( ) ( )( )1 2

2 2 5 6 1 5 1 5 6 5 6 5 6 1
k

p p p p p p
β β β− −+ = + − = + + + + + + + +L .              

     
Thus, we have 5 | 2p + . This implies that 2 5p + = , then 3p = . We obtain that 

5 6 5(3) 6 21+ = + =p which is not a prime. This is a contradiction. 

For “ x is odd andy is even”, let 2y k= , where � ∈ ℤ�. From (2), we obtain  

                 
   ( ) ( ) ( )( ) ( )( )222 5 6 5 6 5 6

x k k k
p z p z p z p+ = − + = − + + + . 
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We let ,α β ∈� where 0 α β≤ < and xα β+ = . We have ( ) ( )5 6 2
k

z p p
α− + = +  

and ( ) ( )5 6 2
k

z p p
β+ + = + .  It’s easy to see that  

   ( ) ( ) ( )( )2 5 6 2 2 1
k

p p p
α β α−+ = + + − . 

It implies that 0α = , then we obtain
              

               ( ) ( ) ( ) ( ) ( )( )1 2
2 5 6 2 1 1 2 2 1

k
p p p p p

β β β− −+ = + − = + + + + + +L .       (4)
                                                       

There exist � ∈ ℤ� − {1}
 
such that 1 2p m+ = , since 1 4p + ≥  and 1p +  are even. 

From (4), we obtain  

                                    
( ) ( ) ( )( )1 2
5 6 2 2 1

k
p m p p

β β− −+ = + + + + +L .                     (5) 

There exist a prime q  where is |q m. From (5), we obtain ( )| 5 6
k

q p+ . We can see that 

( )| 5 6q p+ , but 5 6p +  is prime. Hence, we have 5 6q p= +  . This is contradiction 

because 1 5 6q p p≤ + < + .   

For ( )1 mod 4p ≡ − , we obtain ( )2 1 mod 4p+ ≡ and ( )5 6 1 mod 4p+ ≡ . From (2), we 

have 
 

                                                          
( )2 2 mod 4z ≡ . 

This is contradiction because ( )2 0,1 mod 4z ≡ . This completes the proof of 

theorem 3.1. □ 
 
4. Conclusion  
In this work, we prove that the Exponential Diophantine equation 

( ) ( ) 22 5 6
x y

p p z+ + + =  when , 2p p+ and 5 6p +  are primes, and , ,x y z are non-

negative integers. In the proof, we separate in 3 cases including case 0x = , case 0y =
and case 0x > and 0y > . The Catalan’s conjecture and principles in number theory are 
applied. The results reveals that the equation has no solution.  
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