Annals of Pure and Applied Mathematics Vol. 23, No. 2, 2021, 111-115 ISSN: 2279-087X (P), 2279-0888(online) Published on 29 June 2021 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v23n2a08827

On the Exponential Diophantine Equation $(p+2)^{x} + (5p+6)^{y} = z^{2}$ when p, p+2 and 5p+6 are Primes

Sutthiwat Thongnak¹, Theeradach Kaewong² and Wariam Chuayjan³

¹Department of Mathematics and Statistics, Thaksin University, Phatthalung 93210, Thailand. E-mail: <u>tsutthiwat@tsu.ac.th</u> ²Department of Mathematics and Statistics, Thaksin University, Phatthalung 93210, Thailand. E-mail: <u>theeradachkaewong@gmail.com</u> ³Department of Mathematics and Statistics, Thaksin University, Phatthalung 93210, Thailand. E-mail: <u>cwariam@tsu.ac.th</u>

Received 11 May 2021; accepted 23 June 2021

Abstract. In this work, we prove that the exponential Diophantine equation $(p+2)^{x} + (5p+6)^{y} = z^{2}$ has no solution when p, p+2 and 5p+6 are primes, and x, y, z are non-negative integers.

Keywords: Exponential Diophantine equation

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

Over a decade, Exponential Diophantine equation has been a famous topic in number theory. After, Catalan presented Catalan's conjecture that is $a^x - b^y = 1$ and Mihailescu proved its solution [4, 12]. There are many articles using Catalan's conjecture to find and prove solution of the equation in general form

$$p^x + q^y = z^2$$

where p, q, x, y and z are non-negative integers [8, 10-11, 13-15]. In 2013, the equation $p^{x} + (p+1)^{y} = z^{2}$ where x, y and z are non-negative integers and p is Mersenne prime was presented and proved the solutions [5]. In the proof, Catalan's conjecture was applied. The result indicates that there are two solutions including (p, x, y, z) = (7, 0, 1, 3) and (p, x, y, z) = (3, 2, 2, 5). In 2018, Burshtein presented both the Exponential Diophantine equations $p^{x} + (p+4)^{y} = z^{2}$ when p > 3, p+4 are prime and $p^{x} + (p+6)^{y} = z^{2}$ when p, p+6 are primes [1, 2]. He proved that the first equation has no solution and the other has seven solutions for x + y = 2, 3, 4. In the same year, the equation $p^{x} + (p+8)^{y} = z^{2}$ when p > 3 and p+8 are primes was studied by

Sutthiwat Thongnak, Theeradach Kaewong and Wariam Chuayjan

Oliveira [7]. He proved that the equation has no solution. Next year, a research group proved that $p^{x} + (p+12)^{y} = z^{2}$ has no solution [9]. In 2020, Burshtein [3] proved that the Diophantine equation $p^{x} + (p+5)^{y} = z^{2}$ has no solution when $p+5 = 2^{2u}$ and u is a positive integer. Recently, the Diophantine equation $p^{x} + (p+20)^{y} = z^{2}$ when p and p+20 are primes was proved that it has no solution [6].

In this paper, we studied the Exponential Diophantine equation $(p+2)^{x} + (5p+6)^{y} = z^{2}$ when p, p+2 and 5p+6 are primes, and x, y, z are non-negative integers.

2. Preliminaries

In this section, we introduce basic knowledge applying in the proof.

Lemma 2.1. If x is odd then $x \equiv 1 \pmod{4}$ or $x \equiv -1 \pmod{4}$. Proof: Let x be odd. There exists $q \in x \equiv 4q+1$ or $x \equiv 4q+3$. If $x \equiv 4q+1$ then we have 4 | x-1 or $x \equiv 1 \pmod{4}$. If x = 4q+3 then we have x = 4 (q+1)-1. This yields 4 | x+1 or $x \equiv -1 \pmod{4}$. \Box

Lemma 2.2. If x is even then $x^2 \equiv 0 \pmod{4}$.

Proof: Let *x* be even. We can write x = 2m where $m \in \mathbb{Z}^+$. Then, we obtain $x^2 = 4m^2$ which implies that $4 \mid x^2$ or $x^2 \equiv 0 \pmod{4}$. \Box

Lemma 2.3. (Catalan's conjecture) [12] The Diophantine equation $a^x - b^y = 1$ has only one solution that is (a,b,x,y) = (3,2,2,3) where a,b,x and y are integers and $\min\{a,b,x,y\} > 1$.

Lemma 2.4. The Diophantine equation $1 + p^x = z^2$ where $p \ge 5$ is prime and x, z are non-negative integers has no solution.

Proof: Let x and z be non-negative integers such that

$$1 + p^x = z^2 \tag{1}$$

where p is prime and $p \ge 5$. We consider in 3 cases including x = 0, x = 1 and $x \ge 2$.

For x = 0, (1) becomes $z^2 = 2$ which is impossible. For x = 1, (1) becomes $1 + p = z^2$. This implies that $z^2 \ge 6$ or $z \ge 3$, and we also obtain p = (z-1)(z+1) which is impossible. For $x \ge 2$, we have $z^2 - p^x = 1$. By Lemma 2.3, the equation has only one solution that is (z, p, x) = (3, 2, 3). This is impossible because of $p \ge 5$. Therefore, (1) has no solution. \Box

On the Exponential Diophantine Equation $(p+2)^{x} + (5p+6)^{y} = z^{2}$ when p, p+2 and 5p+6 are Primes

3. Main results

Theorem 3.1. If p, p+2 and 5p+6 are primes then the Exponential Diophantine equation $(p+2)^x + (5p+6)^y = z^2$ has no solution in non-negative integers. x, y and z. **Proof:** Let x, y and z are non-negative integers according to

$$(p+2)^{x} + (5p+6)^{y} = z^{2}.$$
 (2)

We consider in 3 cases as following.

Case 1: x = 0, (2) becomes $1 + (5p+6)^y = z^2$. Since 5p+6 is prime and $5p+6 \ge 5$. By Lemma 2.4, the equation has no solution.

Case 2: y = 0, (2) becomes $1 + (p+2)^x = z^2$. Because p+2 is prime, it implies that $p+2 \ge 5$. By Lemma 2.4, the equation has no solution.

Case 3: x > 0 and y > 0, since p and p+2 are primes, we obtain $p \neq 2$ and p is odd. Therefore, we consider in two cases including $p \equiv 1 \pmod{4}$ and $p \equiv -1 \pmod{4}$.

For $p \equiv 1 \pmod{4}$, we can see that (2) becomes

$$z^{2} = (-1)^{x} + (-1)^{y} \pmod{4}.$$
 (3)

From (1), z is even and we obtain $z^2 \equiv 0 \pmod{4}$ by Lemma 2.2. From (3), x and y are consider in two cases. One is "x is even and y is odd". The other is "x is odd and y is even".

For "*x* is even and *y* is odd", we have x = 2k where $k \in \mathbb{Z}^+$. From (2), we obtain

$$(5p+6)^{y} = z^{2} - (p+2)^{2k} = \left[z - (p+2)^{k}\right] \left[z + (p+2)^{k}\right].$$

Hence, there are $\alpha, \beta \in$ such that $z - (p+2)^k = (5p+6)^{\alpha}$ and $z + (p+2)^k = (5p+6)^{\beta}$ where $0 \le \alpha < \beta$ and $\alpha + \beta = y$. Then, we have

$$2(p+2)^{k} = (5p+6)^{\beta} - (5p+6)^{\alpha} = (5p+6)^{\alpha} ((5p+6)^{\beta-\alpha} - 1).$$

It easy to check that $\alpha = 0$. So we have

$$2(p+2)^{k} = (5p+6)^{\beta} - 1 = 5(p+1)((5p+6)^{\beta-1} + (5p+6)^{\beta-2} + \dots + (5p+6) + 1).$$

Thus, we have 5 | p+2. This implies that p+2=5, then p=3. We obtain that 5p+6=5(3)+6=21 which is not a prime. This is a contradiction.

For "x is odd and y is even", let y = 2k, where $k \in \mathbb{Z}^+$. From (2), we obtain

$$(p+2)^{x} = z^{2} - (5p+6)^{2k} = (z - (5p+6)^{k})(z + (5p+6)^{k})$$

Sutthiwat Thongnak, Theeradach Kaewong and Wariam Chuayjan

We let $\alpha, \beta \in \omega < \beta$ and $\alpha + \beta = x$. We have $z - (5p+6)^k = (p+2)^{\alpha}$ and $z + (5p+6)^k = (p+2)^{\beta}$. It's easy to see that

$$2(5p+6)^{k} = (p+2)^{\alpha} ((p+2)^{\beta-\alpha} - 1).$$

It implies that $\alpha = 0$, then we obtain

$$2(5p+6)^{k} = (p+2)^{\beta} - 1 = (p+1)((p+2)^{\beta-1} + (p+2)^{\beta-2} + \dots + 1).$$
(4)

There exist $m \in \mathbb{Z}^+ - \{1\}$ such that p+1 = 2m, since $p+1 \ge 4$ and p+1 are even. From (4), we obtain

$$(5p+6)^{k} = m((p+2)^{\beta-1} + (p+2)^{\beta-2} + \dots + 1).$$
(5)

There exist a prime q where is $q \mid m$. From (5), we obtain $q \mid (5p+6)^k$. We can see that $q \mid (5p+6)$, but 5p+6 is prime. Hence, we have q = 5p+6. This is contradiction because $q \le p+1 < 5p+6$.

For $p \equiv -1 \pmod{4}$, we obtain $p+2 \equiv 1 \pmod{4}$ and $5p+6 \equiv 1 \pmod{4}$. From (2), we have

$$z^2 \equiv 2 \pmod{4}.$$

This is contradiction because $z^2 \equiv 0, 1 \pmod{4}$. This completes the proof of theorem 3.1. \Box

4. Conclusion

In this work, we prove that the Exponential Diophantine equation $(p+2)^{x} + (5p+6)^{y} = z^{2}$ when p, p+2 and 5p+6 are primes, and x, y, z are non-negative integers. In the proof, we separate in 3 cases including case x = 0, case y = 0 and case x > 0 and y > 0. The Catalan's conjecture and principles in number theory are applied. The results reveals that the equation has no solution.

Acknowledgements. We would like to thank reviewers for careful reading of our manuscript and the useful comments.

REFERENCES

- 1. N.Burshtein, The Diophantine equation $p^{x} + (p+4)^{y} = z^{2}$ when p > 3, p+4 are primes is insolvable in positive integers x, y, z, Annals of Pure and Applied Mathematics, 16 (2) (2018) 283-286.
- 2. N.Burshtein, Solutions of the Diophantine equation $p^{x} + (p+6)^{y} = z^{2}$ when p, (p+6) are primes and x + y = 2, 3, 4, Annals of Pure and Applied Mathematics, 17 (1) (2018) 101-106.

On the Exponential Diophantine Equation $(p+2)^{x} + (5p+6)^{y} = z^{2}$ when p, p+2 and 5p+6 are Primes

- 3. N.Burshtein, On the Diophantine equation $p^{x} + (p+5)^{y} = z^{2}$ when $p+5 = 2^{2u}$, Annals of Pure and Applied Mathematics, 21(1) (2020) 41-45.
- 4. E.Catalan, Note extraite d'une lettre adressée à l'éditeur par Mr. E. Catalan, Répétiteur à l'école polytechnique de Paris, *Journal für die reine und angewandte Mathematik*, 27 (1844) 192-192.
- 5. S.Chotchaisthit, On the diophantine equation $p^{x} + (p+1)^{y} = z^{2}$ where p is a mersenne prime, *International Journal of Pure and Applied Mathematics*, 88 (2) (2013) 169-172.
- 6. R.Dokchan and A.Pakapongpun, On the Diophantine equation $p^{x} + (p+20)^{y} = z^{2}$ where *p* and *p* + 20 are primes, *International Journal of Mathematics and Computer Science*, 16 (1) (2021) 179-183.
- 7. N.Fernando, On the solvability of Diophantine equation $p^{x} + (p+8)^{y} = z^{2}$ when p > 3 and p+8 are primes, *Annals of Pure and Applied Mathematics*, 18 (1) (2018) 9-13.
- 8. S.Kumar, S.Gupta and H.Kishan, On the Non-Linear Diophantine equation $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$, Annals of Pure and Applied Mathematics, 18 (1) (2018) 94-94.
- 9. S.Kumar, D.Gupta and H.Kishan, On the solutions of exponential Diophantine equation $p^{x} + (p+12)^{y} = z^{2}$, International Transaction in Mathematical Sciences and Computers, 11 (1) (2019) 01-19.
- 10. K.Laipaporn, S.Wananiyakul and P.Khachorncharoenkul, On the Diophantine equation $3^{x} + p5^{y} = z^{2}$, *Walailak Journal of Science and Technology*, 16 (9) (2019) 647-653.
- 11. N.Makate, K.Srimud, A.Warong and W.Supjaroen, On the Diophantine equation $8^x + 61^y = z^2$ and $8^x + 67^y = z^2$, Mathematical Journal by the Mathematical Association of Thailand Under The Patronage of His Majesty the King, 64 (697) 24-29.
- 12. P.Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004) 167-195.
- 13. B.Sroysang, On the Diophantine equation $23^x + 32^y = z^2$, International Journal of *Pure and Applied Mathematics*, 84 (2013) 231-234.
- 14. B.Sroysang, On the Diophantine equation $8^x + 13^y = z^2$, International Journal of *Pure and Applied Mathematics*, 90 (2014) 69-72.
- 15. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential Diophantine equation $2^x 3^y = z^2$, *Southeast Asian Journal of Science*, 7 (1) (2019) 1-4.