Annals of Pure and Applied Mathematics Vol. 23, No. 2, 2021, 117-121 ISSN: 2279-087X (P), 2279-0888(online) Published on 30 June 2021 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v23n2a09830

Annals of Pure and Applied Mathematics

On the Non-Linear Diophantine Equation $p^{x} + (p + 4^{n})^{y} = z^{2}$ where p and $p + 4^{n}$ are Primes

Vipawadee Moonchaisook

Department of Mathematics Faculty of Science and Technology Surindra Rajabhat University, Surin, Thailand Email: <u>mathmodern@gmail.com</u>

Received 15 May 2021; accepted 29 June 2021

Abstract. In this paper, we consider the non-linear Diophantine equation $p^x + (p + 4^n)^y = z^2$, where p > 3, $p + 4^n$ are primes, x, y and z are nonnegative integers and n is a natural number. It is shown that this non-linear Diophantine equation has no solution.

Keywords: Diophantine equations, exponential equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

Many studies claim that the Diophantine equation is one of the classic problems in elementary number theory and algebraic number theory. In 1844, Catalan [6] proved that a conjecture (a, b, x, y) = (3, 2, 2, 3) is a unique solution of the Diophantine equation $a^x - b^y = 1$ where a, b, x and y are integers with min{a, b, x, y} > 1.

Later in 2014, Suvarnamani [12] proved that the equation $p^x + (p + 1)^y = z^2$ is the unique solution (p, x, y, z) = (3, 1, 0, 2) when p is an odd prime and x, y, z are non-negative integers.

In 2017, Burshtein [2] examined the Diophantine equation $p^3 + q^2 = z^4$ when p is Prime has no solution in positive integers.

In 2018, Burshtein [3] studied solutions to the Diophantine equation $M^x + (M+6)^y = z^2$ when M = 6N + 5 and M, M + 6 are primes has no solutions.

Additionally in 2018, Kumar et al. [9,10] showed that on the non-linear Diophantine equation $p^x + (p + 6)^y = z^2$, when p and p+6 both are primes with p = 6n+1 has no solution, where x, y, and z are non-negative integer and n is a natural number on the non-linear Diophantine equation, $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$.

Moreover, Fernando [8] also showed that the Diophantine equation $p^{x} + (p+8)^{y} = z^{2}$ when p > 3 and p + 8 are primes has no solution (x, y, z) in positive integers.

Kumar et al. [11] proved that on the solution of exponential Diophantine equation $p^{x} + (p + 12)^{y} = z^{2}$ where x, y, z are non-negative integers and p, 2 are primes such that p is of the form 6n + 1, where n is a natural number. They proved that this Exponential Diophantine equation has no non-negative integral solution.

Vipawadee Moonchaisook

In 2020, Burshtein [4,5] showed that the Diophantine equation

 $p^{x} + (p+5)^{y} = z^{2}$ when p is prime where $p+5 = 2^{2u}$ has no solution (x, y, z) in positive integers and proved that on solution to the Diophantine equation $p^{x} + q^{y} = z^{3}$ when $p \ge 2$, q are primes. $1 \le x, y \le 2$ are integers.

Dokchan and Pakapongpun [7] put that on the Diophantine equation $p^{x} + (p + 20)^{y} = z^{2}$ where p and p + 20 are primes which has been proved that it has no solution.

Because of this open problem, the author is therefore interested in study the Diophantine equation; $p^{x} + (p + 4^{n})^{y} = z^{2}$ has no solutions. , where x, y, z are non-negative integers and p >3 and $p + 4^{n}$ are primes and n is natural number.

2. Preliminaries

Lemma 2.1. The Diophantine equation $1 + (p + 4^n)^y = z^2$ has no solutions where p > 3, $p + 4^n$ are primes and n is natural number y and z are non-negative integers.

Proof: Since $1 + (p + 4^n)^y = z^2$, z is even and so $z^2 \equiv 0 \pmod{4}$. Since p > 3 and $p + 4^n$ are primes, $p \equiv 1 \pmod{4}$ or $p \equiv -1 \equiv 3 \pmod{4}$.

Case I: For $p \equiv 1 \pmod{4}$, $1 + (p + 4^n)^y \equiv 2 \pmod{4}$ which is a contradiction since $z^2 \equiv 0 \pmod{4}$.

Case II: Suppose $p \equiv -1 \pmod{4}$.

If y = 2s, $s \ge 1$, then $1 + (p + 4^n)^y \equiv 2 \pmod{4}$. which is a contradiction since $z^2 \equiv 0 \pmod{4}$.

If y = 2s + 1, $s \ge 0$, then $1 + (p + 4^n)^y = z^2$ or equivalently

 $(p+4^n)^{2s+1} = (z-1)(z+1)$. Thus there exist non-negative integers α , β such that $(p+4^n)^{\alpha} = z + 1$ and $(p+4^n)^{\beta} = z - 1$, where $\alpha > \beta$ and $\alpha + \beta = 2s+1$. Therefore $(p+4^n)^{\beta}((p+4^n)^{\alpha-\beta}-1) = 2$ This implies that $\beta = 0$ and $(p+4^n)^{2s+1}-1 = 2$. Then $(p+4^n)^{2s+1} = 3$ which is impossible.

Hence the Diophantine equation $1 + (p + 4^n)^y = z^2$ has no solutions where p > 3, $p + 4^n$ are primes and n is natural number y and z are non-negative integers.

Lemma 2.2. The Diophantine equation $p^{x} + 1 = z^{2}$ has no solutions where p > 3, $p + 4^{n}$ are primes and n is natural number x and z are non-negative integers.

Proof: Since $p^x + 1 = z^2$, z is even and so $z^2 \equiv 0 \pmod{4}$.

Since p > 3, p is prime, $p \equiv 1 \pmod{4}$ or $p \equiv -1 \equiv 3 \pmod{4}$.

Case I: Suppose $p \equiv 1 \pmod{4}$.

then $p^{x} + 1 \equiv 2 \pmod{4}$ which is a contradiction since $z^{2} \equiv 0 \pmod{4}$.

Case II: Suppose $p \equiv -1 \pmod{4}$.

If x = 2k, $k \ge 1$, then $p^x + 1 \equiv 2 \pmod{4}$. which is a contradiction since $z^2 \equiv 0 \pmod{4}$.

If x = 2k + 1, $k \ge 0$, then $p^{2k+1} + 1 = z^2 = (z+1)(z-1)$. Thus there exist non-negative integers α , β such that $p^{\alpha} = z+1$ and $p^{\beta} = z-1$, where $\alpha > \beta$ and $\alpha+\beta = 2k+1$. Therefore, $p^{\beta}(p^{\alpha-\beta}-1) = 2$. This implies that $\beta = 0$ and $p^{2k+1}-1 = 2$. Then $p^{2k+1} = 3$ which is impossible. On the Non-Linear Diophantine Equation $p^{x} + (p + 4^{n})^{y} = z^{2}$ where p and $p + 4^{n}$ are Primes

Hence the Diophantine equation $p^{x} + 1 = z^{2}$ has no solutions where p > 3, $p + 4^{n}$ are primes and n is natural number y and z are non-negative integers.

3. Main theorem

Theorem 3.1. The Diophantine equation $p^x + (p + 4^n)^y = z^2$, where p > 3, $p + 4^n$ are primes and n is natural number y and z are non-negative integers. **Proof:** Since $p^x + (p + 4^n)^y = z^2$, z is even and so $z^2 \equiv 0 \pmod{4}$. Since p > 3, $p + 4^n$ are primes, $p \equiv 1 \pmod{4}$ or $p \equiv -1 \equiv 3 \pmod{4}$. Then we consider in 4 cases as follows;

Case 1. If x = 0, y=0, then $z^2 = 2$ which is impossible.

Case 2. If x = 0, $y \ge 1$, then $1 + (p + 4^n)^y = z^2$. which has no solution by Lemma 2.1.

Case 3. If y = 0, $x \ge 1$, then $p^x + 1 = z^2$ which has no solution by Lemma 2.2.

Case 4. If $x \ge 1$, $y \ge 1$, then $p^x + (p + 4^n)^y = z^2$ has no solutions.

We consider in 4 subcases as follow;

Subcase 1: If $x = 2k, k \ge 1$ and $y = 2s, s \ge 1$, then $p^{x} + (p + 4^{n})^{y} \equiv 2 \pmod{4}$. which is a contradiction since $z^{2} \equiv 0 \pmod{4}$.

Subcase 2: If x = 2k+1, $k \ge 0$, y = 2s + 1, $s \ge 0$, then $p^x + (p + 4^n)^y \equiv 2 \pmod{4}$. which is a contradiction since $z^2 \equiv 0 \pmod{4}$.

Subcase 3: If x = 2k+1, $k \ge 0$, y = 2s, $s \ge 1$, then $p^x + (p + 4^n)^y = z^2$. Thus there exist non-negative integers α , β such that

 $p^{\alpha} = z + (p+4^n)^s$ and $p^{\beta} = z - (p+4^n)^s$, where $\alpha > \beta$ and $\alpha + \beta = 2k+1$. Therefore $p^{\beta}(p^{\alpha-\beta}-1) = 2(p+4^n)^s$ This implies that $\beta = 0$ and $p^{2k+1}-1 = 2(p+4^n)^s$.

For k = 0, we obtain $p - 1 = 2(p + 4^n)^s$. Or $p = 2(p + 4^n)^s + 1$, which is impossible. For k ≥ 1 , we have $p^{2k+1} - 1 = 2(p + 4^n)^s = (p - 1)(p^{2k} + p^{2k-1} + \dots + p + 1)$. It

follows that p - 1 is an even positive divisor of $2(p + 4^n)^s$, that is $p-1 = 2(p + 4^n)^j$ where j is an integer such that $0 \le j \le s$. For j = 0, p = 3 which contradicts the fact that $p \ge 3$. For $1 \le j \le s$, we obtain $2(p + 4^n)^j = (p + 4) - 5$ or $2(p + 4^n)^j + 5 = p + 4$ which is impossible. Therefore, the Diophantine equation $p^x + (p + 4^n)^y = z^2$, where p > 3 and $p + 4^n$ are primes, has no solutions.

Subcase 4: If x = 2k, $k \ge 1$, y = 2s + 1, $s \ge 0$, then $p^x + (p + 4^n)^y = z^2$. Thus there exist non-negative integers α , β such that $(p + 4^n)^{\alpha} = z + p^k$ and

 $(p+4^n)^{\beta} = z - p^k$, where $\alpha > \beta$ and $\alpha + \beta = 2s+1$. Therefore $(p+4^n)^{\beta} ((p+4^n)^{\alpha-\beta}-1) = 2p^k$ This implies that $\beta = 0$ and $(p+4^n)^{\alpha}-1 = 2p^k$, $(p+4^n)^{2s+1}-1 = 2p^k$. For s = 0, $(p+4^n)-1 = 2p^k$. Or $(2p^{k-1}-1) = 4^n - 1 = 3 (4^{n-1} + 4^{n-2} + \dots + 1)$. which is impossible.

For $s \ge 1$, we have $(p + 4^n)^{2s+1} - 1 = 2p^k$, $2p^k = (p + 4^n - 1)((p + 4^n)^{2s} + (p + 4^n)^{2s-1} + \dots + (p + 4^n) + 1)$.

It follows that $p + 4^n - 1$ is an even positive divisor of $2p^k$, that is

Vipawadee Moonchaisook

 $p + 4^n - 1 = 2(p + 4^n)^j$, where j is an integer such that $0 \le j \le s$. For j = 0, $p + 4^n = 3$ which is impossible. For $1 \le j \le s$, we obtain $p + 4^n - 1 = 2(p + 4^n)^j$. Or $p + 4^n = 2(p + 4^n)^j + 1$ which is impossible. Therefore, the Diophantine equation $p^x + (p + 4^n)^y = z^2$. has no solutions, where p > 3 and $p + 4^n$ are primes, n is natural number, x, y and z are non – negative integers.

Corollary 3.1.1. The Diophantine equation $p^x + (p + 4^n)^y = u^{2n}$ has no solution., where u,x, y and z are non-negative integers and n is a natural number.

Proof: Let $u^n = z$ then $p^x + (p + 4^n)^y = u^{2n} = z^2$, which has no solution by Theorem 3.1.

Corollary 3.1.2. The Diophantine equation $p^x + (p + 4^n)^y = u^{2n+2}$ has no solution, where u,x, y and z are non-negative integers and n is a natural number.

Proof: Let $u^{n+1} = z$ then $p^x + (p+4^n)^y = u^{2n+2} = z^2$, which has no solution by Theorem 3.1.

Acknowledgement. The author would like to thank all members of editorial boards for putting valuable remarks and comments on this paper.

REFERENCES

- 1. N.Burshtein, On the infinitude of solutions to the diophantine equation $p^x + q^y = z^2$ when p = 2 and p = 3, Annals of Pure and Applied Mathematics, 13(2) (2017) 207–210.
- 2. N.Burshtein, A note on the Diophantine equation $p^3 + q^2 = z^4$ when p is prime, Annals of Pure and Applied Mathematics, 14(3) (2017) 509–511.
- 3. N.Burshtein, On solutions to the diophantine equation $M^x + (M + 6)^y = z^2$ when M = 6N + 5, Annals of Pure and Applied Mathematics, 18(2) (2018) 193–200.
- 4. N. Burshtein, On the Diophantine equation $p^{x} + (p + 5)^{y} = z^{2}$, when $p + 5 = 2^{2u}$, Annals of Pure and Applied Mathematics, 18(1) (2020) 41–44.
- 5. N.Burshtein, On the Diophantine equation $p^x + q^y = z^3$ when $p \ge 2$, q are primes and $1 \le x$, $y \le 2$ are integers, Annals of Pure and Applied Mathematics, 18(1) (2020) 13–19.
- 6. E.Catalan, Note extraite d'une lettre adress'ee `a l''editeur par Mr. E. Catalan, R'ep'etiteur `a l''ecole polytechnique de Paris, Journal f'ur die reine und angewandte Mathematik, 27 (1844) 192–192.
- 7. R.Dokchan and A.Pakapongpun, On the Diophantine equation $p^x + (p + 20)^y = z^2$ where p and p + 20 are primes, *International Journal of Mathematics and Computer Science*, 16(1) (2021) 179-183.
- 8. N.Fernando, On the solvability of the diophantine equation $p^x + (p+8)^y = z^2$, when p > 3 and p + 8 are primes, Annals of Pure and Applied Mathematics, 18(1) (2018) 9–13.
- 9. S.Kumar, S.Gupta and H.Kishan, On the non-linear diophantine equation $p^{x} + (p+6)^{y} = z^{2}$, Annals of Pure and Applied Mathematics, 18(1) (2018) 125–128.
- 10. S.Kumar, S.Gupta and H.Kishan, On the non-linear diophantine equation, $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$, Annals of Pure and Applied Mathematics, 18(1) (2018) 94-94.

On the Non-Linear Diophantine Equation $p^{x} + (p + 4^{n})^{y} = z^{2}$ where p and $p + 4^{n}$ are Primes

- 11. S.Kumar, S.Gupta and H.Kishan, On the solution of exponential Diophantine equation $p^{x} + (p + 12)^{y} = z^{2}$, International Journal of Mathematics and Computer Science, 11(1) (2019) 1-19.
- 12. A.Suvarnamani, On the diophantine equation $p^{x} + (p+1)^{y} = z^{2}$, International Journal of Pure and Applied Mathematics, 94(5) (2014) 689 692.