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Abstract. In this paper, we consider the non-linear Diophantine equation 𝑝𝑥 +
(𝑝 + 4𝑛)𝑦 = 𝑧2, where 𝑝 > 3, 𝑝 + 4𝑛 are primes, x, y and z are nonnegative integers and 

n is a natural number. It is shown that this non-linear Diophantine equation has no solution. 
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1. Introduction 

Many studies claim that the Diophantine equation is one of the classic problems in 

elementary number theory and algebraic number theory. In 1844, Catalan [6] proved that 

a conjecture (a, b, x, y) = (3, 2, 2, 3) is a unique solution of the Diophantine equation 

 𝑎𝑥 − 𝑏𝑦 = 1 where a, b, x and y are integers with min{a, b, x, y} > 1. 

Later in 2014, Suvarnamani [12] proved that the equation  𝑝𝑥 + (𝑝 + 1)𝑦 = 𝑧2 is 

the unique solution (p, x, y, z) = (3, 1, 0, 2) when p is an odd prime and x, y, z are non-

negative integers. 

In 2017, Burshtein [2] examined the Diophantine equation 𝑝3 + 𝑞2 = 𝑧4 when p 

is Prime has no solution in positive integers. 

In 2018, Burshtein [3] studied solutions to the Diophantine equation 𝑀𝑥 +
(𝑀 + 6)𝑦 = 𝑧2 when M = 6N + 5 and M, M + 6 are primes has no solutions. 

Additionally in 2018, Kumar et al. [9,10] showed that on the non-linear 

Diophantine equation 𝑝𝑥 + (𝑝 + 6)𝑦 = 𝑧2, when p and p+6 both are primes with p = 6n+1 

has no solution, where x, y, and z are non-negative integer and n is a natural number on the 

non-linear Diophantine equation, 61𝑥 + 67𝑦 = 𝑧2 and 67𝑥 + 73𝑦 = 𝑧2. 

 Moreover, Fernando [8] also showed that the Diophantine equation 

 𝑝𝑥 + (𝑝 + 8)𝑦 = 𝑧2 when p > 3 and p + 8 are primes has no solution (x, y, z) in positive 

integers. 

 Kumar et al. [11] proved that on the solution of exponential Diophantine equation 

𝑝𝑥 + (𝑝 + 12)𝑦 = 𝑧2 where x, y, z are non-negative integers and p, 2 are primes such 

that p is of the form 6n + 1, where n is a natural number. They proved that this 

Exponential Diophantine equation has no non-negative integral solution. 

http://www.researchmathsci.org/
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 In 2020, Burshtein [4,5] showed that the Diophantine equation 

 𝑝𝑥 + (𝑝 + 5)𝑦 = 𝑧2  when p is prime where  𝑝 + 5 = 22𝑢 has no solution (x, y, z) in 

positive integers and  proved that on solution to the Diophantine equation 𝑝𝑥 + 𝑞𝑦 = 𝑧3 

when  𝑝 ≥ 2, 𝑞 are primes. 1 ≤ 𝑥, 𝑦 ≤ 2 are integers. 
Dokchan and Pakapongpun [7] put that on the Diophantine equation 

𝑝𝑥 + (𝑝 + 20)𝑦 = 𝑧2 where p and p + 20 are primes which has been proved that it has no 

solution. 

Because of this open problem, the author is therefore interested in study the 

Diophantine equation; 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑧2  has no solutions.  , where x, y, z are non-

negative integers and p >3 and 𝑝 + 4𝑛are primes and n is natural number. 

 

2. Preliminaries 

Lemma 2.1. The Diophantine equation 1 + (𝑝 + 4𝑛)𝑦 = 𝑧2  has no solutions where 

 p > 3, 𝑝 + 4𝑛 are primes and n is natural number y and z are  

non-negative integers.  

Proof:  Since 1 + (𝑝 + 4𝑛)𝑦 = 𝑧2 , z is even and so 𝑧2 ≡ 0(𝑚𝑜𝑑 4). Since 𝑝 > 3 and  
𝑝 + 4𝑛 are primes, 𝑝 ≡ 1(𝑚𝑜𝑑 4) 𝑜𝑟 𝑝 ≡ −1 ≡ 3 (𝑚𝑜𝑑 4). 

Case I: For 𝑝 ≡ 1(𝑚𝑜𝑑 4), 1 + (𝑝 + 4𝑛)𝑦 ≡ 2(𝑚𝑜𝑑 4) which is a contradiction since 

𝑧2 ≡ 0(𝑚𝑜𝑑 4).  

Case II: Suppose p ≡ −1 (mod 4). 

If y = 2s, s ≥ 1, then 1 + (𝑝 + 4𝑛)𝑦 ≡ 2(𝑚𝑜𝑑 4). which is a contradiction since 

 𝑧2 ≡ 0(𝑚𝑜𝑑 4).  

If y = 2s +1, s ≥ 0, then   1 + (𝑝 + 4𝑛)𝑦 = 𝑧2or equivalently 

 (𝑝 + 4𝑛)2𝑠+1 = (𝑧 − 1)(𝑧 + 1). Thus there exist non-negative integers α, β such that   

 (𝑝 + 4𝑛)𝛼 = 𝑧 + 1and (𝑝 + 4𝑛)𝛽 = 𝑧 − 1, where  𝛼 > 𝛽 and α+β = 2s+1. Therefore  

 (𝑝 + 4𝑛)𝛽((𝑝 + 4𝑛)𝛼−𝛽 − 1) = 2 This implies that  𝛽 = 0 and (𝑝 + 4𝑛)2𝑠+1 − 1 = 2. 

Then  (𝑝 + 4𝑛)2𝑠+1 = 3. which is impossible. 

Hence the Diophantine equation 1 + (𝑝 + 4𝑛)𝑦 = 𝑧2  has no solutions where p > 

3, 𝑝 + 4𝑛 are primes and n is natural number y and z are non-negative integers.  

 

Lemma 2.2. The Diophantine equation px +1 = z2 has no solutions where p > 3, 𝑝 + 4𝑛 are 

primes and n is natural number x and z are non-negative integers.  

Proof:  Since px +1 = z2 , z is even and so z2 ≡ 0 (mod 4).  

Since p > 3, p is prime, p ≡ 1 (mod 4) or p ≡ −1 ≡ 3 (mod 4).  

Case I: Suppose p ≡ 1 (mod 4). 

then px +1 ≡ 2 (mod 4) which is a contradiction since z2 ≡ 0 (mod 4).  

Case II: Suppose p ≡ −1 (mod 4). 

If x = 2k, k ≥ 1 , then px +1 ≡ 2 (mod 4). which is a contradiction since  

z2 ≡ 0 (mod 4).  

If x = 2k +1, k ≥ 0, then  p2k+1 +1 = z2 = (z+1)(z−1). Thus there exist  

non-negative integers α, β such that pα = z+1 and pβ = z−1, where  α > β and  

α+β = 2k+1. Therefore, pβ (pα-β -1) = 2. This implies that  β = 0  and p2k+1 −1 =2.  Then  

p2k+1 = 3 which is impossible. 
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Hence the Diophantine equation px +1 = z2  has no solutions where p > 3, 𝑝 + 4𝑛 

are primes and n is natural number y and z are non-negative integers.  

 

3. Main theorem 

Theorem 3.1. The Diophantine equation 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑧2, where p > 3, 𝑝 + 4𝑛 are 

primes and n is natural number y and z are non-negative integers.  

Proof: Since 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑧2 , z is even and so 𝑧2 ≡ 0(𝑚𝑜𝑑 4).  

Since p > 3, 𝑝 + 4𝑛 are primes, p ≡ 1 (mod 4) or p ≡ −1 ≡ 3 (mod 4).  

Then we consider in 4 cases as follows; 

Case 1. If x = 0, y= 0, then 𝑧2 = 2  which is impossible. 

Case 2. If  x = 0 , 𝑦 ≥ 1, then 1 + (𝑝 + 4𝑛)𝑦 = 𝑧2. which has no solution by Lemma 2.1. 

Case 3. If y = 0 , x ≥ 1, then 𝑝𝑥 + 1 = 𝑧2 which has no solution by Lemma 2.2. 

Case 4. If x ≥ 1, y ≥ 1,then 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑧2 has no solutions.  

We consider in 4 subcases as follow; 

Subcase 1:  If x  = 2k, k ≥ 1 and 𝑦 = 2𝑠, 𝑠 ≥ 1,then 

 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 ≡ 2(𝑚𝑜𝑑 4). which is a contradiction since 𝑧2 ≡ 0(𝑚𝑜𝑑 4).  

Subcase 2:  If x  = 2k+1, k ≥ 0 , 𝑦 = 2𝑠 + 1, 𝑠 ≥ 0, then 

 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 ≡ 2 (𝑚𝑜𝑑 4). which is a contradiction since 𝑧2 ≡ 0(𝑚𝑜𝑑 4).  

Subcase 3:  If x  = 2k+1, k≥ 0 , 𝑦 = 2𝑠, 𝑠 ≥1, then 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑧2. Thus there exist 

non-negative integers α, β such that 

 𝑝𝛼 = 𝑧 + (𝑝 + 4𝑛)𝑠 and 𝑝𝛽 = 𝑧 − (𝑝 + 4𝑛)𝑠, where  𝛼 > 𝛽 and α+β = 2k+1. Therefore  

𝑝𝛽(𝑝𝛼−𝛽 − 1) = 2(𝑝 + 4𝑛)𝑠 This implies that  𝛽 = 0 and  𝑝2𝑘+1 − 1 = 2(𝑝 + 4𝑛)𝑠.  

      For k = 0, we obtain 𝑝 − 1 = 2(𝑝 + 4𝑛)𝑠.  Or 𝑝 = 2(𝑝 + 4𝑛)𝑠 +1, which is impossible. 

      For k ≥ 1, we have 𝑝2𝑘+1 − 1 = 2(𝑝 + 4𝑛)𝑠 = (𝑝 − 1)(𝑝2𝑘 + 𝑝2𝑘−1 + ⋯ + 𝑝 + 1). It 

follows that p − 1 is an even positive divisor of 2(𝑝 + 4𝑛)𝑠 , that is  p−1 = 2(𝑝 + 4𝑛)𝑗  

where j is an integer such that 0 ≤ j < s. For j = 0, p = 3 which contradicts the fact that 

 p > 3. For 1 ≤ j < s, we obtain 2(𝑝 + 4𝑛)𝑗 = (p + 4) − 5 or 2(𝑝 + 4𝑛)𝑗+ 5 = p + 4 which 

is impossible. Therefore, the Diophantine equation 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑧2, where p > 3 and 

𝑝 + 4𝑛 are primes, has no solutions. 

Subcase 4:  If x  = 2k, k ≥ 1 , 𝑦 = 2𝑠 + 1, 𝑠 ≥ 0, then  𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑧2. Thus there 

exist non-negative integers α, β such that (𝑝 + 4𝑛)𝛼 = 𝑧 + 𝑝𝑘and 

(𝑝 + 4𝑛)𝛽 = 𝑧 − 𝑝𝑘, where 𝛼 > 𝛽 and α+β = 2s+1. Therefore  (𝑝 + 4𝑛)𝛽((𝑝 +

4𝑛)𝛼−𝛽 − 1) = 2𝑝𝑘 This implies that  𝛽 = 0 and  (𝑝 + 4𝑛)𝛼 − 1 = 2𝑝𝑘 , (𝑝 + 4𝑛)2𝑠+1 −

1 = 2𝑝𝑘. For s = 0, (𝑝 + 4𝑛) − 1 = 2𝑝𝑘 . Or (2𝑝𝑘−1 − 1) = 4𝑛 − 1 = 3 (4𝑛−1 + 4𝑛−2 +

⋯ + 1). which is impossible. 

For s  ≥ 1, we have (𝑝 + 4𝑛)2𝑠+1 − 1 = 2𝑝𝑘 , 2𝑝𝑘= (𝑝 + 4𝑛 − 1)((𝑝 + 4𝑛)2𝑠 +
(𝑝 + 4𝑛)2𝑠−1 + ⋯ + (𝑝 + 4𝑛) + 1).  

It follows that 𝑝 + 4𝑛 − 1 is an even positive divisor of 2𝑝𝑘 , that is  
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 𝑝 + 4𝑛 − 1  = 2(𝑝 + 4𝑛)𝑗.  where j is an integer such that 0 ≤ j < s. For j = 0, 𝑝 + 4𝑛 = 3 

which is impossible. For 1 ≤ j < s, we obtain  𝑝 + 4𝑛 − 1  = 2(𝑝 + 4𝑛)𝑗.  Or  𝑝 + 4𝑛 =
2(𝑝 + 4𝑛)𝑗 + 1which is impossible. Therefore, the Diophantine equation 𝑝𝑥 + (𝑝 +
4𝑛)𝑦 = 𝑧2. has no solutions, where p > 3 and 𝑝 + 4𝑛 are primes , n is natural number, 𝑥,
𝑦 and 𝑧 are non − negative integers.    
 

Corollary 3.1.1.  The Diophantine equation  𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑢2𝑛  has no solution., 
where u,x, y and z are non-negative integers and n is a natural number. 

Proof: Let 𝑢𝑛 = 𝑧 then 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑢2𝑛 = 𝑧2 , which has no solution by Theorem 

3.1.  

 

Corollary 3.1.2.  The Diophantine equation  𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑢2𝑛+2  has no solution, 

where u,x, y and z are non-negative integers and n is a natural number. 

Proof: Let 𝑢𝑛+1 = 𝑧 then 𝑝𝑥 + (𝑝 + 4𝑛)𝑦 = 𝑢2𝑛+2  = 𝑧2, which has no solution by 

Theorem 3.1. 
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