On the Non-Linear Diophantine Equation

 $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$ where p and $p+4^{n}$ are PrimesVipawadee Moonchaisook

Department of Mathematics
Faculty of Science and Technology
Surindra Rajabhat University, Surin, Thailand
Email: mathmodern@gmail.com

Received 15 May 2021; accepted 29 June 2021

Abstract

In this paper, we consider the non-linear Diophantine equation $p^{x}+$ $\left(p+4^{n}\right)^{y}=z^{2}$, where $p>3, p+4^{n}$ are primes, x, y and z are nonnegative integers and n is a natural number. It is shown that this non-linear Diophantine equation has no solution.

Keywords: Diophantine equations, exponential equations
AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

Many studies claim that the Diophantine equation is one of the classic problems in elementary number theory and algebraic number theory. In 1844, Catalan [6] proved that a conjecture $(a, b, x, y)=(3,2,2,3)$ is a unique solution of the Diophantine equation $a^{x}-b^{y}=1$ where $\mathrm{a}, \mathrm{b}, \mathrm{x}$ and y are integers with $\min \{\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}\}>1$.

Later in 2014, Suvarnamani [12] proved that the equation $p^{x}+(p+1)^{y}=z^{2}$ is the unique solution $(\mathrm{p}, \mathrm{x}, \mathrm{y}, \mathrm{z})=(3,1,0,2)$ when p is an odd prime and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are nonnegative integers.

In 2017, Burshtein [2] examined the Diophantine equation $p^{3}+q^{2}=z^{4}$ when p is Prime has no solution in positive integers.

In 2018, Burshtein [3] studied solutions to the Diophantine equation $M^{x}+$ $(M+6)^{y}=z^{2}$ when $M=6 N+5$ and $M, M+6$ are primes has no solutions.

Additionally in 2018, Kumar et al. [9,10] showed that on the non-linear Diophantine equation $p^{x}+(p+6)^{y}=z^{2}$, when p and $\mathrm{p}+6$ both are primes with $\mathrm{p}=6 \mathrm{n}+1$ has no solution, where x, y, and z are non-negative integer and n is a natural number on the non-linear Diophantine equation, $61^{x}+67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$.

Moreover, Fernando [8] also showed that the Diophantine equation $p^{x}+(p+8)^{y}=z^{2}$ when $\mathrm{p}>3$ and $\mathrm{p}+8$ are primes has no solution $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in positive integers.

Kumar et al. [11] proved that on the solution of exponential Diophantine equation $p^{x}+(p+12)^{y}=z^{2}$ where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are non-negative integers and $\mathrm{p}, 2$ are primes such that p is of the form $6 \mathrm{n}+1$, where n is a natural number. They proved that this Exponential Diophantine equation has no non-negative integral solution.

Vipawadee Moonchaisook

In 2020, Burshtein $[4,5]$ showed that the Diophantine equation $p^{x}+(p+5)^{y}=z^{2}$ when p is prime where $p+5=2^{2 u}$ has no solution $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in positive integers and proved that on solution to the Diophantine equation $p^{x}+q^{y}=z^{3}$ when $p \geq 2, q$ are primes. $1 \leq x, y \leq 2$ are integers.

Dokchan and Pakapongpun [7] put that on the Diophantine equation
$p^{x}+(p+20)^{y}=z^{2}$ where p and $\mathrm{p}+20$ are primes which has been proved that it has no solution.

Because of this open problem, the author is therefore interested in study the Diophantine equation; $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$ has no solutions., where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are nonnegative integers and $\mathrm{p}>3$ and $p+4^{n}$ are primes and n is natural number.

2. Preliminaries

Lemma 2.1. The Diophantine equation $1+\left(p+4^{n}\right)^{y}=z^{2}$ has no solutions where $\mathrm{p}>3, p+4^{n}$ are primes and n is natural number y and z are non-negative integers.
Proof: Since $1+\left(p+4^{n}\right)^{y}=z^{2}$, z is even and so $z^{2} \equiv 0(\bmod 4)$. Since $p>3$ and $p+4^{n}$ are primes, $p \equiv 1(\bmod 4)$ or $p \equiv-1 \equiv 3(\bmod 4)$.

Case I: For $p \equiv 1(\bmod 4), 1+\left(p+4^{n}\right)^{y} \equiv 2(\bmod 4)$ which is a contradiction since $z^{2} \equiv 0(\bmod 4)$.

Case II: Suppose $p \equiv-1(\bmod 4)$.
If $\mathrm{y}=2 \mathrm{~s}, \mathrm{~s} \geq 1$, then $1+\left(p+4^{n}\right)^{y} \equiv 2(\bmod 4)$. which is a contradiction since $z^{2} \equiv 0(\bmod 4)$.

If $\mathrm{y}=2 \mathrm{~s}+1, \mathrm{~s} \geq 0$, then $1+\left(p+4^{n}\right)^{y}=z^{2}$ or equivalently
$\left(p+4^{n}\right)^{2 s+1}=(z-1)(z+1)$. Thus there exist non-negative integers α, β such that $\left(p+4^{n}\right)^{\alpha}=z+1$ and $\left(p+4^{n}\right)^{\beta}=z-1$, where $\alpha>\beta$ and $\alpha+\beta=2 \mathrm{~s}+1$. Therefore $\left(p+4^{n}\right)^{\beta}\left(\left(p+4^{n}\right)^{\alpha-\beta}-1\right)=2$ This implies that $\beta=0$ and $\left(p+4^{n}\right)^{2 s+1}-1=2$. Then $\left(p+4^{n}\right)^{2 s+1}=3$. which is impossible.

Hence the Diophantine equation $1+\left(p+4^{n}\right)^{y}=z^{2}$ has no solutions where $\mathrm{p}>$ $3, p+4^{n}$ are primes and n is natural number y and z are non-negative integers.

Lemma 2.2. The Diophantine equation $\mathrm{p}^{\mathrm{x}}+1=\mathrm{z}^{2}$ has no solutions where $\mathrm{p}>3, p+4^{n}$ are primes and n is natural number x and z are non-negative integers.
Proof: Since $p^{x}+1=z^{2}, z$ is even and so $z^{2} \equiv 0(\bmod 4)$.
Since $p>3, p$ is prime, $p \equiv 1(\bmod 4)$ or $p \equiv-1 \equiv 3(\bmod 4)$.
Case I: Suppose $p \equiv 1(\bmod 4)$.
then $\mathrm{p}^{\mathrm{x}}+1 \equiv 2(\bmod 4)$ which is a contradiction since $\mathrm{z}^{2} \equiv 0(\bmod 4)$.
Case II: Suppose $p \equiv-1(\bmod 4)$.
If $x=2 k, k \geq 1$, then $\mathrm{p}^{\mathrm{x}}+1 \equiv 2(\bmod 4)$. which is a contradiction since $\mathrm{z}^{2} \equiv 0(\bmod 4)$.

If $x=2 k+1, k \geq 0$, then $p^{2 k+1}+1=z^{2}=(z+1)(z-1)$. Thus there exist non-negative integers α, β such that $p^{\alpha}=z+1$ and $p^{\beta}=z-1$, where $\alpha>\beta$ and $\alpha+\beta=2 \mathrm{k}+1$. Therefore, $\mathrm{p}^{\beta}\left(\mathrm{p}^{\alpha-\beta}-1\right)=2$. This implies that $\beta=0$ and $\mathrm{p}^{2 \mathrm{k}+1}-1=2$. Then $\mathrm{p}^{2 \mathrm{k}+1}=3$ which is impossible.

On the Non-Linear Diophantine Equation $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$ where p and $p+4^{n}$ are Primes
Hence the Diophantine equation $\mathrm{p}^{\mathrm{x}}+1=\mathrm{z}^{2}$ has no solutions where $\mathrm{p}>3, p+4^{n}$ are primes and n is natural number y and z are non-negative integers.

3. Main theorem

Theorem 3.1. The Diophantine equation $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$, where $\mathrm{p}>3, p+4^{n}$ are primes and n is natural number y and z are non-negative integers.
Proof: Since $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}, \mathrm{z}$ is even and so $z^{2} \equiv 0(\bmod 4)$.
Since $\mathrm{p}>3, p+4^{n}$ are primes, $\mathrm{p} \equiv 1(\bmod 4)$ or $\mathrm{p} \equiv-1 \equiv 3(\bmod 4)$.
Then we consider in 4 cases as follows;
Case 1. If $x=0, y=0$, then $z^{2}=2$ which is impossible.
Case 2. If $\mathrm{x}=0, y \geq 1$, then $1+\left(p+4^{n}\right)^{y}=z^{2}$. which has no solution by Lemma 2.1.
Case 3. If $y=0, x \geq 1$, then $p^{x}+1=z^{2}$ which has no solution by Lemma 2.2.
Case 4. If $\mathrm{x} \geq 1, \mathrm{y} \geq 1$, then $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$ has no solutions.
We consider in 4 subcases as follow;
Subcase 1: If $\mathrm{x}=2 \mathrm{k}, \mathrm{k} \geq 1$ and $y=2 s, s \geq 1$, then $p^{x}+\left(p+4^{n}\right)^{y} \equiv 2(\bmod 4)$. which is a contradiction since $z^{2} \equiv 0(\bmod 4)$.

Subcase 2: If $\mathrm{x}=2 \mathrm{k}+1, \mathrm{k} \geq 0, y=2 s+1, s \geq 0$, then $p^{x}+\left(p+4^{n}\right)^{y} \equiv 2(\bmod 4)$. which is a contradiction since $z^{2} \equiv 0(\bmod 4)$.
Subcase 3: If $\mathrm{x}=2 \mathrm{k}+1, \mathrm{k} \geq 0, y=2 s, s \geq 1$, then $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$. Thus there exist non-negative integers α, β such that
$p^{\alpha}=z+\left(p+4^{n}\right)^{s}$ and $p^{\beta}=z-\left(p+4^{n}\right)^{s}$, where $\alpha>\beta$ and $\alpha+\beta=2 \mathrm{k}+1$. Therefore $p^{\beta}\left(p^{\alpha-\beta}-1\right)=2\left(p+4^{n}\right)^{s}$ This implies that $\beta=0$ and $p^{2 k+1}-1=2\left(p+4^{n}\right)^{s}$.

For k=0, we obtain $p-1=2\left(p+4^{n}\right)^{s}$. Or $p=2\left(p+4^{n}\right)^{s}+1$, which is impossible.
For $\mathrm{k} \geq 1$, we have $p^{2 k+1}-1=2\left(p+4^{n}\right)^{s}=(p-1)\left(p^{2 k}+p^{2 k-1}+\cdots+p+1\right)$. It follows that $\mathrm{p}-1$ is an even positive divisor of $2\left(p+4^{n}\right)^{s}$, that is $\mathrm{p}-1=2\left(p+4^{n}\right)^{j}$ where j is an integer such that $0 \leq j<s$. For $j=0, p=3$ which contradicts the fact that $\mathrm{p}>3$. For $1 \leq \mathrm{j}<\mathrm{s}$, we obtain $2\left(p+4^{n}\right)^{j}=(\mathrm{p}+4)-5$ or $2\left(p+4^{n}\right)^{j}+5=\mathrm{p}+4$ which is impossible. Therefore, the Diophantine equation $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$, where $\mathrm{p}>3$ and $p+4^{n}$ are primes, has no solutions.

Subcase 4: If $\mathrm{x}=2 \mathrm{k}, \mathrm{k} \geq 1, y=2 s+1, s \geq 0$, then $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$. Thus there exist non-negative integers α, β such that $\left(p+4^{n}\right)^{\alpha}=z+p^{k}$ and $\left(p+4^{n}\right)^{\beta}=z-p^{k}$, where $\alpha>\beta$ and $\alpha+\beta=2 \mathrm{~s}+1$. Therefore $\left(p+4^{n}\right)^{\beta}((p+$ $\left.\left.4^{n}\right)^{\alpha-\beta}-1\right)=2 p^{k}$ This implies that $\beta=0$ and $\left(p+4^{n}\right)^{\alpha}-1=2 p^{k},\left(p+4^{n}\right)^{2 s+1}-$ $1=2 p^{k}$. For $\mathrm{s}=0,\left(p+4^{n}\right)-1=2 p^{k}$. Or $\left(2 p^{k-1}-1\right)=4^{n}-1=3\left(4^{n-1}+4^{n-2}+\right.$ $\cdots+1)$. which is impossible.

For $s \geq 1$, we have $\left(p+4^{n}\right)^{2 s+1}-1=2 p^{k}, 2 p^{k}=\left(p+4^{n}-1\right)\left(\left(p+4^{n}\right)^{2 s}+\right.$ $\left.\left(p+4^{n}\right)^{2 s-1}+\cdots+\left(p+4^{n}\right)+1\right)$.
It follows that $p+4^{n}-1$ is an even positive divisor of $2 p^{k}$, that is

Vipawadee Moonchaisook

$p+4^{n}-1=2\left(p+4^{n}\right)^{j}$. where j is an integer such that $0 \leq \mathrm{j}<\mathrm{s}$. For $\mathrm{j}=0, p+4^{n}=3$ which is impossible. For $1 \leq \mathrm{j}<\mathrm{s}$, we obtain $p+4^{n}-1=2\left(p+4^{n}\right)^{j}$. Or $p+4^{n}=$ $2\left(p+4^{n}\right)^{j}+1$ which is impossible. Therefore, the Diophantine equation $p^{x}+(p+$ $\left.4^{n}\right)^{y}=z^{2}$. has no solutions, where $\mathrm{p}>3$ and $p+4^{n}$ are primes, n is natural number, x, y and z are non - negative integers.

Corollary 3.1.1. The Diophantine equation $p^{x}+\left(p+4^{n}\right)^{y}=u^{2 n}$ has no solution., where $\mathrm{u}, \mathrm{x}, \mathrm{y}$ and z are non-negative integers and n is a natural number.
Proof: Let $u^{n}=z$ then $p^{x}+\left(p+4^{n}\right)^{y}=u^{2 n}=z^{2}$, which has no solution by Theorem 3.1.

Corollary 3.1.2. The Diophantine equation $p^{x}+\left(p+4^{n}\right)^{y}=u^{2 n+2}$ has no solution, where $\mathrm{u}, \mathrm{x}, \mathrm{y}$ and z are non-negative integers and n is a natural number.
Proof: Let $u^{n+1}=z$ then $p^{x}+\left(p+4^{n}\right)^{y}=u^{2 n+2}=z^{2}$, which has no solution by Theorem 3.1.

Acknowledgement. The author would like to thank all members of editorial boards for putting valuable remarks and comments on this paper.

REFERENCES

1. N.Burshtein, On the infinitude of solutions to the diophantine equation $p^{x}+q^{y}=z^{2}$ when $p=2$ and $p=3$, Annals of Pure and Applied Mathematics, 13(2) (2017) 207210.
2. N.Burshtein, A note on the Diophantine equation $p^{3}+q^{2}=z^{4}$ when p is prime, Annals of Pure and Applied Mathematics, 14(3) (2017) 509-511.
3. N.Burshtein, On solutions to the diophantine equation $M^{x}+(M+6)^{y}=z^{2}$ when M $=6 \mathrm{~N}+5$, Annals of Pure and Applied Mathematics, 18(2) (2018) 193-200.
4. N. Burshtein, On the Diophantine equation $p^{x}+(p+5)^{y}=z^{2}$, when $p+5=2^{2 u}$, Annals of Pure and Applied Mathematics, 18(1) (2020) 41-44.
5. N.Burshtein, On the Diophantine equation $p^{x}+q^{y}=z^{3}$ when $p \geq 2$, q are primes and $1 \leq x, y \leq 2$ are integers, Annals of Pure and Applied Mathematics, 18(1) (2020) 13-19.
6. E.Catalan, Note extraite d'une lettre adress'ee `a l'editeur par Mr. E. Catalan, R'ep'etiteur 'a l''ecole polytechnique de Paris, Journal f'ur die reine und angewandte Mathematik, 27 (1844) 192-192.
7. R.Dokchan and A.Pakapongpun, On the Diophantine equation $p^{x}+(p+20)^{y}=z^{2}$ where p and $\mathrm{p}+20$ are primes, International Journal of Mathematics and Computer Science, 16(1) (2021) 179-183.
8. N.Fernando, On the solvability of the diophantine equation $p^{x}+(p+8)^{y}=z^{2}$, when p > 3 and p+8 are primes, Annals of Pure and Applied Mathematics, 18(1) (2018) 9-13.
9. S.Kumar, S.Gupta and H.Kishan, On the non-linear diophantine equation $p^{x}+$ $(p+6)^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(1) (2018) 125-128.
10. S.Kumar, S.Gupta and H.Kishan, On the non-linear diophantine equation, $61^{x}+$ $67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(1) (2018) 94-94.

On the Non-Linear Diophantine Equation $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$ where p and $p+4^{n}$ are Primes
11. S.Kumar, S.Gupta and H.Kishan, On the solution of exponential Diophantine equation $p^{x}+(p+12)^{y}=z^{2}$, International Journal of Mathematics and Computer Science, 11(1) (2019) 1-19.
12. A.Suvarnamani, On the diophantine equation $p^{x}+(p+1)^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 94(5) (2014) 689-692.

