$\overline{\text { Annals of }}$

 Pure and Applied

 Pure and Applied

 Mathematics

 Mathematics}
www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/apam.v24n1a03831

Sombor Indices of Two Families of Dendrimer Nanostars

V.R.Kulli
Department of Mathematics
Gulbarga University, Gulbarga 585 106, India
E-mail: vrkulli@gmail.com

Received 8 June 2021; accepted 19 July 2021

Abstract

In this paper, we compute the Sombor index, modified Sombor index and their corresponding exponentials, first and second (a, b) - $K A$ indices and their polynomials of certain dendrimer nanostars.

Keywords: Sombor index, modified Sombor index, (a, b)-KA indices, dendrimer
AMS Mathematics Subject Classification (2010): 05C05, 05C07, 05C09

1. Introduction

A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. Chemical Graph Theory is a branch of Mathematical Chemistry, which has an important effect on the development of the Chemical Sciences. A topological index is a numerical parameter mathematically derived from the graph structure. Several such topological indices have been considered in Theoretical Chemistry and have found some applications, especially in QSPR/QSAR study see [1, 2].

Let $G=(V(G), E(G))$ be a finite, simple connected graph. Let $d_{G}(u)$ be the degree of a vertex u in G. We refer [3] for undefined notations and terminologies.

The Sombor index was introduced by Gutman in [4], defined it as

$$
S O(G)=\sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}
$$

Recently, some Sombor indices were studied in [5, 6, 7].
The Sombor exponential of a graph G was defined by Kulli in [8] as

$$
S O(G, x)=\sum_{u v \in E(G)} x^{\sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}}
$$

In [9], Kulli et al. introduced the modified Sombor index of a graph G and it is defined as

$$
{ }^{m} S O(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}}
$$

We define the modified Sombor exponential of a graph G as

$$
{ }^{m} S O(G, x)=\sum_{u v \in E(G)} x^{\frac{1}{\sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}}}
$$

V.R.Kulli

The first and second $(a, b)-K A$ indices of a molecular graph G were defined by Kulli in [10] as

$$
K A_{a, b}^{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)^{a}+d_{G}(v)^{a}\right]^{b}, \quad K A_{a, b}^{2}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)^{a} \cdot d_{G}(v)^{a}\right]^{b} .
$$

Considering the first and second $(a, b)-K A$ indices, we define the first and second $(a$, $b)-K A$ polynomials of a graph G as

$$
K A_{a, b}^{1}(G, x)=\sum_{u \cup \in E(G)} x^{\left[d_{G}(u)^{a}+d_{G}(v)^{a}\right]^{b}}, \quad K A_{a, b}^{2}(G, x)=\sum_{u v \in E(G)} x^{\left[d_{G}(u)^{a} d_{G}(v)^{a}\right]^{b}} .
$$

Recently, some (a, b)-KA indices were studied, for example, see [$11,12,13,14,15,16]$. In this paper, we determine the Sombor index, modified Sombor index, Sombor exponential, modified Sombor exponential, $(a, b)-K A$ indices and their corresponding polynomials of certain dendrimer nanostars.

2. Results for dendrimer nanostars $D_{1}[n]$

In this section, we consider a family of dendrimer nanostar with n growth stages, denoted by $D_{1}[n]$. The molecular graph of $D_{1}[4]$ is shown in Figure 1.

Figure 1: The molecular graph of $D_{1}[4]$
Let G be the molecular graph of $D_{1}[n]$. Clearly, the vertices of a dendrimer nanostar $D_{1}[n]$ are either of degree 1,2 or 3 , see Figure 1. By calculation, we obtain that G has 2^{n+4} -9 vertices and $18 \times 2^{n}-11$ edges. We partition the edge set of $D_{1}[n]$ into three sets as follows:

$$
\begin{array}{ll}
E_{13}=\left\{u v \in E(G) \mid d_{G}(u)=1, d_{G}(v)=3\right\}, & \left|E_{13}\right|=1 . \\
E_{22}=\left\{u v \in E(G) \mid d_{G}(u)=d_{G}(v)=2\right\}, & \left|E_{22}\right|=6 \times 2^{n}-2 . \\
E_{23}=\left\{u v \in E(G) \mid d_{G}(u)=2, d_{G}(v)=3\right\}, & \left|E_{23}\right|=12 \times 2^{n}-10
\end{array}
$$

Theorem 1. The first (a, b) - $K A$ index of $D_{1}[n]$ is
$K A_{a, b}^{1}\left(D_{1}[n]\right)=\left(1^{a}+3^{a}\right)^{b}+\left(2 \times 2^{a}\right)^{b}\left(6 \times 2^{n}-2\right)+\left(2^{a}+3^{a}\right)^{b}\left(12 \times 2^{n}-10\right)$.

Proof: By definition and cardinalities of the edge partitions of $D_{1}[n]$, we have

$$
\begin{aligned}
K A_{a, b}^{1}\left(D_{1}[n]\right) & =\sum_{u v \in E(G)}\left[d_{G}(u)^{a}+d_{G}(v)^{a}\right]^{b} \\
& =\left(1^{a}+3^{a}\right)^{b}+\left(2^{a}+2^{a}\right)^{b}\left(6 \times 2^{n}-2\right)+\left(2^{a}+3^{a}\right)^{b}\left(12 \times 2^{n}-10\right) \\
& =\left(1^{a}+3^{a}\right)^{b}+\left(2 \times 2^{a}\right)^{b}\left(6 \times 2^{n}-2\right)+\left(2^{a}+3^{a}\right)^{b}\left(12 \times 2^{n}-10\right) .
\end{aligned}
$$

From Theorem 1, we obtain the following results.
Corollary 1.1. The Sombor index of $D_{1}[n]$ is

$$
S O\left(D_{1}[n]\right)=(12 \sqrt{2}+12 \sqrt{3}) 2^{n}+(\sqrt{10}-4 \sqrt{2}-10 \sqrt{13})
$$

Corollary 1.2. The modified Sombor index of $D_{1}[n]$ is

$$
{ }^{m} S O\left(D_{1}[n]\right)=\left(\frac{3}{\sqrt{2}}+\frac{12}{\sqrt{13}}\right) 2^{n}+\left(\frac{1}{\sqrt{10}}-\frac{1}{\sqrt{2}}-\frac{10}{\sqrt{13}}\right)
$$

Theorem 2. The second $(a, b)-K A$ index of $D_{1}[n]$ is

$$
K A_{a, b}^{2}\left(D_{1}[n]\right)=3^{a b}+2^{2 a b}\left(6 \times 2^{n}-2\right)^{b}+6^{a b}\left(12 \times 2^{n}-10\right)
$$

Proof: From definition and by cardinalities of the edge partitions of $D_{1}[n]$, we have

$$
\begin{aligned}
K A_{a, b}^{2}\left(D_{1}[n]\right) & =\sum_{u v \in E(G)}\left[d_{G}(u)^{a} \cdot d_{G}(v)^{a}\right]^{b} \\
& =\left(1^{a} \times 3^{a}\right)^{b}+\left(2^{a} \times 2^{a}\right)^{b}\left(6 \times 2^{n}-2\right)^{b}+\left(2^{a} \times 3^{a}\right)^{b}\left(12 \times 2^{n}-10\right) \\
& =3^{a b}+2^{2 a b}\left(6 \times 2^{n}-2\right)^{b}+6^{a b}\left(12 \times 2^{n}-10\right) .
\end{aligned}
$$

Theorem 3. The first (a, b) - $K A$ polynomial of $D_{1}[n]$ is

$$
K A_{a, b}^{1}\left(D_{1}[n], x\right)=x^{\left(1^{a}+3^{a}\right)^{b}}+\left(6 \times 2^{n}-2\right) x^{\left(2^{a}+2^{a}\right)^{b}}+\left(12 \times 2^{n}-10\right) x^{\left(2^{a}+3^{a}\right)^{b}} .
$$

Proof: By definition and cardinalities of the edge partitions of $D_{1}[n]$, we have

$$
\begin{aligned}
K A_{a, b}^{1}\left(D_{1}[n]\right) & =\sum_{u v \in E(G)} x^{\left[d_{G}(u)^{a}+d_{G}(v)^{a}\right]^{b}} \\
& =x^{\left(a^{a}+3^{a}\right)^{b}}+\left(6 \times 2^{n}-2\right) x^{\left(2^{a}+2^{a}\right)^{b}}+\left(12 \times 2^{n}-10\right) x^{\left(2^{a}+3^{a}\right)^{b}} .
\end{aligned}
$$

From Theorem 3, we obtain the following results.

Corollary 3.1. The Sombor exponential of $D_{1}[n]$ is

$$
S O\left(D_{1}[n], x\right)=x^{\sqrt{10}}+\left(6 \times 2^{n}-2\right) x^{2 \sqrt{2}}+\left(12 \times 2^{n}-10\right) x^{\sqrt{13}} .
$$

Corollary 3.2. The modified Sombor exponential of $D_{1}[n]$ is

$$
{ }^{m} S O\left(D_{1}[n], x\right)=x^{\frac{1}{\sqrt{10}}}+\left(6 \times 2^{n}-2\right) x^{\frac{1}{2 \sqrt{2}}}+\left(12 \times 2^{n}-10\right) x^{\frac{1}{\sqrt{13}}} .
$$

Theorem 4. The second $(a, b)-K A$ polynomial of $D_{1}[n]$ is

$$
K A_{a, b}^{2}\left(D_{1}[n], x\right)=x^{3^{a b}}+\left(6 \times 2^{n}-2\right) x^{2^{2 a b}}+\left(12 \times 2^{n}-10\right) x^{G^{a b}} .
$$

Proof: By definition and cardinalities of the edge partitions of $D_{1}[n]$, we have

$$
\begin{aligned}
K A_{a, b}^{2}\left(D_{1}[n]\right) & =\sum_{u v \in E(G)} x^{\left[d_{G}(u)^{a} d_{G}(v)^{a}\right]^{b}} \\
& =x^{\left(1^{a} \times x^{a}\right)^{b}}+\left(6 \times 2^{n}-2\right) x^{\left(2^{a} \times 2^{a}\right)^{b}}+\left(12 \times 2^{n}-10\right) x^{\left(2^{a} \times \times^{a}\right)^{b}} \\
& =x^{3^{a b}}+\left(6 \times 2^{n}-2\right) x^{2^{2 a b}}+\left(12 \times 2^{n}-10\right) x^{a^{a b}} .
\end{aligned}
$$

3. Results for dendrimer nanostars $D_{3}[n]$

In this section, we consider a family of dendrimer nanostars with n growth stages, denoted by $D_{3}[n]$. The molecular structure of $D_{3}[n]$ with 3 growth stages is presented in Figure 2.

Figure 2: The molecular structure of $D_{3}[3]$
Let H be the graph of a dendrimer nanostar $D_{3}[n]$. Clearly, the vertices of a dendrimer nanostar $D_{3}[n]$ are either of degree 1,2 or 3 . By calculation, we obtain that H has $24 \times 2^{n}-20$ vertices and $24 \times 2^{n+1}-24$ edges. By calculation, we obtain that the edge set of $D_{3}[n]$ can be divided into four partitions as follows:

$$
\begin{array}{ll}
E_{13}=\left\{u v \in E(H) \mid d_{H}(u)=1, d_{H}(v)=3\right\}, & \\
E_{22}=\left\{u v \in E(H)\left|E_{H}\right|=3 \times 2^{n} .\right. \\
E_{23}=\left\{u v \in E(H) \mid d_{H}(u)=2, d_{H}(v)=2\right\}, & \\
E_{33}=\{u v \in 3\}, & \left|E_{22}\right|=12 \times 2^{n}-6 . \\
=24 \times 2^{n}-12 \\
\hline
\end{array}
$$

Theorem 5. The first (a, b)-KA index of $D_{3}[n]$ is

$$
\begin{aligned}
K A_{a, b}^{1}\left(D_{3}[n]\right) & =\left(1^{a}+3^{a}\right)^{b} 3 \times 2^{n}+\left(2^{a}+2^{a}\right)^{b}\left(12 \times 2^{n}-6\right)+\left(2^{a}+3^{a}\right)^{b}\left(24 \times 2^{n}-12\right) \\
& +\left(3^{a}+3^{a}\right)^{b}\left(9 \times 2^{n}-6\right) .
\end{aligned}
$$

Proof: By definition and cardinalities of the edge partitions of $D_{3}[n]$, we have

$$
\begin{aligned}
K A_{a, b}^{1}\left(D_{3}[n]\right) & =\sum_{u v \in E(G)}\left[d_{G}(u)^{a}+d_{G}(v)^{a}\right]^{b} \\
& =\left(1^{a}+3^{a}\right)^{b} 3 \times 2^{n}+\left(2^{a}+2^{a}\right)^{b}\left(12 \times 2^{n}-6\right)+\left(2^{a}+3^{a}\right)^{b}\left(24 \times 2^{n}-12\right) \\
& +\left(3^{a}+3^{a}\right)^{b}\left(9 \times 2^{n}-6\right) .
\end{aligned}
$$

From Theorem 5, we obtain the following results.
Corollary 5.1. The Sombor index of $D_{3}[n]$ is

$$
S O\left(D_{3}[n]\right)=(3 \sqrt{10}+51 \sqrt{2}+24 \sqrt{13}) 2^{n}-(30 \sqrt{2}+12 \sqrt{13}) .
$$

Corollary 5.2. The modified Sombor index of $D_{3}[n]$ is

$$
{ }^{m} S O\left(D_{3}[n]\right)=\left(\frac{3}{\sqrt{10}}+\frac{9}{\sqrt{2}}+\frac{24}{\sqrt{13}}\right) 2^{n}-\left(\frac{5}{\sqrt{2}}+\frac{12}{\sqrt{13}}\right) .
$$

Theorem 6. The second $(a, b)-K A$ index of $D_{3}[n]$ is

$$
K A_{a, b}^{2}\left(D_{3}[n]\right)=3^{a b} 3 \times 2^{n}+2^{2 a b}\left(12 \times 2^{n}-6\right)^{b}+6^{a b}\left(24 \times 2^{n}-12\right)+3^{2 a b}\left(9 \times 2^{n}-6\right) .
$$

Proof: From definition and by cardinalities of the edge partitions of $D_{3}[n]$, we have

$$
\begin{aligned}
K A_{a, b}^{2}\left(D_{1}[n]\right) & =\sum_{u v \in E(G)}\left[d_{G}(u)^{a} \cdot d_{G}(v)^{a}\right]^{b} \\
& =\left(1^{a} \times 3^{a}\right)^{b} 3 \times 2^{n}+\left(2^{a} \times 2^{a}\right)^{b}\left(12 \times 2^{n}-6\right)^{b}+\left(2^{a} \times 3^{a}\right)^{b}\left(24 \times 2^{n}-12\right) \\
& +\left(3^{a} \times 3^{a}\right)^{b}\left(9 \times 2^{n}-6\right) \\
& =3^{a b} 3 \times 2^{n}+2^{2 a b}\left(12 \times 2^{n}-6\right)^{b}+6^{a b}\left(24 \times 2^{n}-12\right)+3^{2 a b}\left(9 \times 2^{n}-6\right) .
\end{aligned}
$$

Theorem 7. The first (a, b) - $K A$ polynomial of $D_{3}[n]$ is
$K A_{a, b}^{1}\left(D_{3}[n]\right)$
$=3 \times 2^{n} x^{\left(1^{a}+3^{a}\right)^{b}}+\left(12 \times 2^{n}-6\right) x^{\left(2^{a}+2^{a}\right)^{b}}+\left(24 \times 2^{n}-12\right) x^{\left(2^{a}+3^{a}\right)^{b}}+\left(9 \times 2^{n}-6\right) x^{\left(3^{a}+3^{a}\right)^{b}}$
Proof: By definition and cardinalities of the edge partitions of $D_{3}[n]$, we have

$$
\begin{aligned}
& K A_{a, b}^{1}\left(D_{3}[n]\right)=\sum_{u v E(G)} x^{\left[d_{G}(u)^{a}+d_{G}(v)^{a}\right]^{b}} \\
& \quad=3 \times 2^{n} x^{\left(a^{a}+3^{a}\right)^{b}}+\left(12 \times 2^{n}-6\right) x^{\left(2^{a}+2^{a}\right)^{b}}+\left(24 \times 2^{n}-12\right) x^{\left(2^{a}+3^{a}\right)^{b}}+\left(9 \times 2^{n}-6\right) x^{\left(3^{a}+3^{a}\right)^{b}} .
\end{aligned}
$$

From Theorem 7, we obtain the following results.
Corollary 7.1. The Sombor exponential of $D_{3}[n]$ is

$$
S O\left(D_{3}[n], x\right)=3 \times 2^{n} x^{\sqrt{10}}+\left(12 \times 2^{n}-6\right) x^{2 \sqrt{2}}+\left(24 \times 2^{n}-12\right) x^{\sqrt{13}}+\left(9 \times 2^{n}-6\right) x^{3 \sqrt{2}} .
$$

Corollary 7.2.The modified Sombor exponential of $D_{3}[n]$ is

$$
{ }^{m} S O\left(D_{1}[n], x\right)=3 \times 2^{n} x^{\frac{1}{\sqrt{10}}}+\left(12 \times 2^{n}-6\right) x^{\frac{1}{2 \sqrt{2}}}+\left(24 \times 2^{n}-12\right)^{\frac{1}{\sqrt{13}}}+\left(9 \times 2^{n}-6\right) x^{\frac{1}{3 \sqrt{2}}}
$$

Theorem 8. The second $(a, b)-K A$ polynomial of $D_{3}[n]$ is

$$
K A_{a, b}^{2}\left(D_{3}[n], x\right)=3 \times 2^{n} x^{3^{a b}}+\left(12 \times 2^{n}-6\right) x^{2^{2 a b}}+\left(24 \times 2^{n}-12\right) x^{6^{a b}}+\left(9 \times 2^{n}-6\right) x^{3^{2 a b}} .
$$

Proof: By definition and cardinalities of the edge partitions of $D_{3}[n]$, we have

$$
\begin{aligned}
& K A_{a, b}^{2}\left(D_{3}[n]\right)=\sum_{u v E E(G)} x^{\left[d_{G}(u)^{a} d_{G}\left(v^{a}\right]^{b}\right.} \\
& \quad=3 \times 2^{n} x^{\left(1^{a} \times 3^{a}\right)^{b}}+\left(12 \times 2^{n}-6\right) x^{\left(2^{a} \times 2^{a}\right)^{b}}+\left(24 \times 2^{n}-12\right) x^{\left(2^{a} \times x^{a}\right)^{b}}+\left(9 \times 2^{n}-6\right) x^{\left(3^{a} \times 3^{a}\right)^{b}} \\
& \quad=3 \times 2^{n} x^{3^{a b}}+\left(12 \times 2^{n}-6\right) x^{2^{a b b}}+\left(24 \times 2^{n}-12\right) x^{G^{a b}}+\left(9 \times 2^{n}-6\right) x^{3^{a b b}}
\end{aligned}
$$

V.R.Kulli

4. Conclusion

In this study, we have determined the Sombor index, modified Sombor index, Sombor exponential, modified Sombor exponential of two families of dendrimer nanostars. Acknowledgement: The author is thankful to the referee for useful comments.

REFERENCES

1. V.R.Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing, (2018).
2. I.Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
3. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, (2012).
4. I.Gutman, Geometric approach to degree based topological indices: Sombor indices MATCH Common, Math. Comput. Chem. 86(2021) 11-16.
5. V.RKulli, δ-Sombor index and its exponential for certain nanotubes, Annals of Pure and Applied Mathematics, 23(1) (20210 37-42.
6. V.R.Kulli, On Banhatti-Sombor indices, SSRG International Journal of Applied Chemistry, 8(1) (2021) 20-25.
7. V.R.Kulli, Computation of Multiplicative Banhatti-Sombor indices of certain benzenoid systems, International Journal of Mathematical Archive, 12(4) (2021) 2430.
8. V.R.Kulli, On second Banhatti-Sombor indices, International Journal of Mathematical Archive, 12(5) (2021) 11-16.
9. V.R.Kulli, Multiplicative Sombor indices of certain nanotubes, International Journal of Mathematical Archive, 12(3) (2021) 1-5.
10. V.R.Kulli, Sombor indices of certain graph operators, International Journal of Engineering Sciences and Research Technology, 10(1) (2021) 127-134.
11. V.R.Kulli and I. Gutman, Computation of Sombor indices of certain networks, SSRG International Journal of Applied Chemistry, 8(1) (2021) 1-5.
12. V.R.Kulli, The (a, b)-KA indices of polycyclic aromatic hydrocarbons and benzenoid systems, International Journal of Mathematical Trends and Technology 65 (2019) 115-120.
13. V.R.Kulli, The (a, b)-temperature index of H-Naphtalenic nanotubes, Annals of Pure and Applied Mathematics, 20(2) (2019) 85-90.
14. V V.R.Kulli, The (a, b)-status index of graphs, Annals of Pure and Applied Mathematics, 21(2) (2020) 113-118.
15. V.R.Kulli, The (a, b)-temperature indices of tetrameric 1,3-adamantane, International Journal of Recent Scientific Research, 12(2) (2021) 40929-40933.
16. V.R.Kulli, The (a, b)-status neighborhood Dakshayani index, International Journal of Mathematics Trends and Technology, 67(1) (2021) 79-87.
17. V.R.Kulli, B.Chaluvaraju and T.Vidya, Computation of Adriatic (a, b)-KA index of some nanostructures, International Journal of Mathematics Trends and Technology, 67(4) (2021) 79-87.
18. V.R.Kulli and I.Gutman, $(a, b)-K A$ indices of benzenoid systems and phenylenes: The general case, International Journal of Mathematics Trends and Technology, 67(1) (2021) 17-20.
