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Abstract. In this paper, we compute the Sombor index, mediBombor index and their
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1. Introduction
A molecular graph is a graph such that its vertammsespond to the atoms and the edges
to the bonds. Chemical Graph Theory is a brandidathematical Chemistry, which has
an important effect on the development of the Chahfciences. A topological index is
a numerical parameter mathematically derived frtwm graph structure. Several such
topological indices have been considered in Thaae€Chemistry and have found some
applications, especially in QSPR/QSAR study se@]1,

Let G = (V(G), E(G)) be a finite, simple connected graph. Hefu) be the degree
of a vertexu in G. We refer [3] for undefined notations and termagiés.

The Sombor index was introduced byn@art in [4], defined it as

SO(G) =/dg (u) +d, (V).
Recently, some Sombor indices were studied in,[3].6
The Sombor exponential of a gré&ptvas defined by Kulli in [8] as
D(G,x)= 3 xleW e’
wiE(G)

In [9], Kulli et al. introduced the wified Sombor index of a grap@ and it is
defined as

1

um%(e),/de (W) +dg (v)?

We define the modified Sombor exporadrdf a graplG as
1

"S0(G) =

mSO(G X): z X dG(u)2+dG(v)2_

wlE(G)
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The first and second, (0)-KA indicesof a molecular graple were defined by
Kulli in [10] as

KA, (G)= 3 [do (W) +ds ()], ka2, (G)= 3 [de (w)* i, (v)° ]

wiE(G) wlE(G)

Considering the first and secord] If)-KA indices, we define the first and secoad (
b)-KA polynomials of a grapts as

KAi,b(G'X): z X[dG(u)a+dG(v)aJ, KAf,b(G'X): Z X[de(u)ade(v)ﬂ'

WwiE(G) wiIE(G)

Recently, somea(b)-KA indices were studied, for example, see [ 11, 1214315, 16].
In this paper, we determine the Sombor index, nedlifSombor index, Sombor
exponential, modified Sombor exponentia,bf-KA indices and their corresponding
polynomials of certain dendrimer nanostars.

2. Resultsfor dendrimer nanostars D,[n]

In this section, we consider a family of dendrimanostar witm growth stages, denoted
by D4[n]. The molecular graph d@,[4] is shown in Figure 1.
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Figure 1: The molecular graph @,[4]

Let G be the molecular graph &,[n]. Clearly, the vertices of a dendrimer nanostar
D4[n] are either of degree 1, 2 or 3, see Figure lc@gulation, we obtain th& has 2™

— 9 vertices and 18 X'2- 11 edges. We partition the edge sebdh] into three sets as
follows:

Eis = {uv O E(G) | dg(u)=1, ds(v)=3}, [E1sl = 1
E,, = {UV O E(G) |d(3(U) = dg(V)=2}, |E22| = 6x2 — 2.
E,s= {UV O E(G) |d(3(U) =2, dG(V) = 3}, E23| =12x2 - 10.

Theorem 1. The first @, b)-KA index ofD4[n] is
KA, (D) =@ +3°) +(2x2) (ex 2 - 3 +( 2+ 8)° (12 2- 1b .
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Proof: By definition and cardinalities of the edge péaotis ofD4[n], we have

KA, (D)= Y [dG (u)?* +d, (v)aJb

wiE(G)
=(1F+3) +(2+2) (ex 2- 2+( 2+ 3)°( 12 - 1x

= +3) +(2x2) (ex 2- 3+( 2+ 3)°( 12 2- 10
From Theorem 1, we obtain the following results.

Corollary 1.1. The Sombor index dd4[n] is
0(D,[n]) = (12v2+12/3) 2 +(JV10- 4 2 1¢ 1B

Corollary 1.2. The modified Sombor index &f,[n] is
o(D,[) = [ 12] [ 1 1 10
' V2 13 J1i0 V2 J13

Theorem 2. The secondd| b)-KA index ofD4[n] is
KAZ, (D)) =3% +2%* (6x 2 - 2" + 6° (1% 2~ 10
Proof: From definition and by cardinalities of the edgetitions ofD4[n], we have

KaZ, (D)= 3 [do (W) @, (v)* ]

wE(G)

—(x3) +(2x2) (ex 2- 2 +(2x 3)° (12 2= 1
=3+ 2% (6x 2 -+ & (1% 2- 1D

Theorem 3. The first @, b)-KA polynomial ofD[n] is

KAL, (D, ) = X3 +(6x2" ~2)x#+2)" +(12x¢ 2 - 10x 2+ ¥
Proof: By definition and cardinalities of the edge paotis ofD,[n], we have

[n] z X[ds(u) +dg (V]

wOE(G)

=X 4 (6x 2 - X2 (126 2 - 19x Y
From Theorem 3, we obtain the following results.

Corollary 3.1. The Sombor exponential 8f[n] is
SO(D,[r], x) = x10 +(6x2" - 2) x22 +(12x 2 - 10x'®

Corollary 3.2. The modified Sombor exponential Bf[n] is

1 1 L
"SO(D,[n], x) = x™ +(6x2" - 2)x>2 +(12x 2 - 10 x =

Theorem 4. The secondg, b)-KA polynomial ofD4[n] is
KAZ, (D[r], x) =x¥ +(6x2" - 2)x*” +(12x 2 - 10x*
Proof: By definition and cardinalities of the edge pastis of D4[n], we have
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KAZ (D)= > NEROENON
wlE(G)

= x4 (6x 2 - )22 £ (12¢ 2 - 10x 2
=x" +(6x 2 - 2)x*" +(12¢ 2 - 10x% .

3. Resultsfor dendrimer nanostars D3[n]
In this section, we consider a family of dendrinmemostars withn growth stages,

denoted byD3[n]. The molecular structure @;[n] with 3 growth stages is presented in
Figure 2.
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Figure2: The molecular structure €f;[3]

LetH be the graph of a dendrimer nanosiafn]. Clearly, the vertices of a
dendrimer nanostdd;[n] are either of degree 1, 2 or 3. By calculatior, abtain thaH
has 24 x 2— 20 vertices and 24 ¥*2— 24 edges. By calculation, we obtain that the edge
set ofD[n] can be divided into four partitions as follows:

E13 = {UV O E(H) |dH(U)=1, dH(V)=3}, |E13| = 3x2.

E22 = {UV O E(H) |dH(U) = dH(V)=2}, |E22| =12x2 — 6.
Exs = {uv O E(H) | dy(u) = 2,dx(v) = 3}, E.s| = 24x2 - 12.
E33 = {UV O E(H) |dH(U) = dH(V) = 3}, E33| = 9x2 — 6.

Theorem 5. The first @, b)-KA index ofD4[n] is
KAL, (Dyfn]) =02 +3°) 3x 2 +(2 + 2)"(12x 2- $+( 2+ 3)°( 24 2> 12

+(3+3) (x2-9.
Proof: By definition and cardinalities of the edge pé#otis ofD3[n], we have

KAL (D) = Y [de (W) +d, (]

wlE(G)
=(P+3) ' 3x2+(2+2) (1% 2- p+( 2+ (24 "2 9
+(3+3) (9x2-9 .
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From Theorem 5, we obtain the following results.

Corollary 5.1. The Sombor index db;[n] is

SO(D,[n) = (3310 + 51/ 2+ 24/13 2-( 3¢ 2 14 13

Corollary 5.2. The modified Sombor index &f;[n] is
24] n _( 5. 12

m _(_3 +i+— — 4+ =
(i) ={ o+ 5+ TP (5 7o

Theorem 6. The seconda, b)-KA index ofD3[n] is
KAib(Da[n])=3ab3><2“+223b(12>< -0+ &(24 2- 1>+ 2( 92 )6

Proof: From definition and by cardinalities of the edgetpions ofDs[n], we have
kaz, (D)= 3 [do (W), (0]

wlE(G)

—(12x3) 3 2 +(2x2) (1% 3- F+( 2x B°( 24 > §;

+(3a><3a)b(9><2‘—6)
=33x 2+ 20 (1% 2- ¢+ &( 24 - 1 2( 02 )e

Theorem 7. The first @, b)-KA polynomial ofD5[n] is

KAi,b (D3[n])
=3x 2nX(1a+3a)n +(12>< 2 _ éx(?Jrz"‘)b +( ok 2_ 1?)((2”3)[) +( N "2_ b((g* g)b
Proof: By definition and cardinalities of the edge p#otis of D;[n], we have

K/A;Lb(Dg[n]) — z X[de(u)a+ds(v)a]
wiE(G)
:3x21x(1a+3a)b +(12X - ex(?+?)b +( 24 - 1b((2"+§)b +( 9 M- b((3+ 3)b
From Theorem 7, we obtain the following results.
Corollary 7.1. The Sombor exponential 8f[n] is
O(D,[r], x) =3%x2"xP +(12x 2 - §x*?+ (24 2- 12x+( & 2- Bx¥?
Corollary 7.2.The modified Sombor exponentiabDgfn] is

1 1 L 1
"SO(D,[n], x) =3%2"x10 +(12x 2 - @x22 + (24 2- 1B +( § 2- P2

Theorem 8. The seconda, b)-KA polynomial ofD3[n] is
KAZ, (Difr], x) =3x2"x% +(12x 2 - §xZ” +( 24 2- 12x¥ +( 8 2- B*”
Proof: By definition and cardinalities of the edge pé#otis ofD3[n], we have
KA, (D)= 3 X
wiE(G)
=3x 2 x5 4 (12x 2 - @D 1 (24 2— T 4( @ o= (=Y
=3x 2% +(12¢ 2 - 957" +( 24 2- 1™ +( 8 2= B
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4. Conclusion

In this study, we have determined the Sombor indeodified Sombor index, Sombor
exponential, modified Sombor exponential of two f&a of dendrimer nanostars.
Acknowledgement: The author is thankful to the referee for usefuhotents.
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