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Abstract.  In this paper, we compute the Sombor index, modified Sombor index and their 
corresponding exponentials, first and second (a, b)-KA indices and their polynomials of 
certain dendrimer nanostars.  
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1. Introduction 
A molecular graph is a graph such that its vertices correspond to the atoms and the edges 
to the bonds. Chemical Graph Theory is a branch of Mathematical Chemistry, which has 
an important effect on the development of the Chemical Sciences. A topological index is 
a numerical parameter mathematically derived from the graph structure. Several such 
topological indices have been considered in Theoretical Chemistry and have found some 
applications, especially in QSPR/QSAR study see [1, 2]. 
 Let G = (V(G), E(G)) be a finite, simple connected graph. Let dG(u) be the degree 
of a vertex u in G. We refer [3] for undefined notations and terminologies. 
             The Sombor index was introduced by Gutman in [4], defined it as 

( ) ( ) ( )2 2
.G GSO G d u d v= +  

Recently, some Sombor indices were studied in [5, 6, 7].
             The Sombor exponential of a graph G was defined by Kulli in [8] as 

( ) ( ) ( )

( )

2 2

, .G Gd u d v

uv E G

SO G x x +

∈
= 

 
             In [9], Kulli et al. introduced the modified Sombor index of a graph G and it is 
defined as 

( )
( ) ( )( ) 2 2

1m

uv E G
G G

SO G
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=
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            We define the modified Sombor exponential of a graph G as 

( ) ( ) ( )

( )

2 2

1

, .G Gd u d vm

uv E G

SO G x x +

∈
= 

 



V.R.Kulli 

22 
 

           The first and second (a, b)-KA indices of a molecular graph G were defined by 
Kulli in [10] as 

( ) ( ) ( )
( )

1
, ,

ba a

a b G G
uv E G

KA G d u d v
∈

 = + 
                 

( ) ( ) ( )
( )
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, .
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a b G G
uv E G

KA G d u d v
∈

 = ⋅ 
 

 Considering the first and second (a, b)-KA indices, we define the first and second (a, 
b)-KA polynomials of a graph G as 

( ) ( ) ( )

( )
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Recently, some (a,b)-KA indices were studied, for example, see [ 11, 12, 13, 14, 15, 16]. 
In this paper, we determine the Sombor index, modified Sombor index, Sombor 
exponential, modified Sombor exponential, (a,b)-KA indices and their corresponding 
polynomials of certain dendrimer nanostars. 

 
2. Results for dendrimer nanostars D1[n]  

In this section, we consider a family of dendrimer nanostar with n growth stages, denoted 
by D1[n]. The molecular graph of D1[4] is shown in Figure 1. 

 

 
Figure 1: The molecular graph of D1[4] 

 
Let G be the molecular graph of D1[n]. Clearly, the vertices of a dendrimer nanostar 
D1[n] are either of degree 1, 2 or 3, see Figure 1. By calculation, we obtain that G has 2n+4 

– 9 vertices and 18 × 2n  – 11 edges. We partition the edge set of D1[n] into three sets as 
follows:  
 E13 = {uv ∈ E(G) | dG(u)=1, dG(v)=3},  |E13| = 1. 
 E22 = {uv ∈ E(G) | dG(u) = dG(v)=2},  |E22| = 6×2n – 2. 
 E23 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3},  |E23| = 12×2n – 10.  

 
Theorem 1. The first (a, b)-KA index of D1[n] is 

( ) ( ) ( ) ( ) ( ) ( )1
, 1[ ] 1 3 2 2 6 2 2 2 3 12 2 10 .

b bba a a n a a n
a bKA D n = + + × × − + + × −  
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Proof: By definition and cardinalities of the edge partitions of D1[n], we have 

( ) ( ) ( )
( )

1
, 1[ ]

ba a

a b G G
uv E G

KA D n d u d v
∈

 = +   

                    ( ) ( ) ( ) ( ) ( )1 3 2 2 6 2 2 2 3 12 2 10
b bba a a a n a a n= + + + × − + + × −     

                     ( ) ( ) ( ) ( ) ( )1 3 2 2 6 2 2 2 3 12 2 10 .
b bba a a n a a n= + + × × − + + × −  

From Theorem 1, we obtain the following results. 
 
Corollary 1.1. The Sombor index of D1[n] is 

( ) ( ) ( )
1[ ] 12 2 12 3 2 10 4 2 10 13 .nSO D n = + + − −  

 
Corollary 1.2. The modified Sombor index of D1[n] is 

( )1

3 12 1 1 10
[ ] 2 .

2 13 10 2 13
m nSO D n

   = + + − −   
   

 

 
Theorem 2. The second (a, b)-KA index of D1[n] is 

( ) ( ) ( )2 2
, 1[ ] 3 2 6 2 2 6 12 2 10 .

bab ab n ab n
a bKA D n = + × − + × −  

Proof: From definition and by cardinalities of the edge partitions of D1[n], we have 

 ( ) ( ) ( )
( )

2
, 1[ ]

ba a

a b G G
uv E G

KA D n d u d v
∈

 = ⋅   

                    ( ) ( ) ( ) ( ) ( )1 3 2 2 6 2 2 2 3 12 2 10
b b b ba a a a n a a n= × + × × − + × × −  

                    ( ) ( )23 2 6 2 2 6 12 2 10 .
bab ab n ab n= + × − + × −  

 
Theorem 3. The first (a, b)-KA polynomial of D1[n] is 

( ) ( ) ( ) ( ) ( ) ( )1 1 3 2 2 2 3
, 1[ ], 6 2 2 12 2 10 .

bb ba a a a a an n
a bKA D n x x x x+ + += + × − + × −  

Proof: By definition and cardinalities of the edge partitions of D1[n], we have 

( ) ( ) ( )

( )

1
, 1[ ]

ba a
G Gd u d v

a b
uv E G

KA D n x
 + 

∈

=   

                   ( ) ( ) ( ) ( ) ( )1 3 2 2 2 36 2 2 12 2 10 .
bb ba a a a a an nx x x+ + += + × − + × −  

From Theorem 3, we obtain the following results. 
 
Corollary 3.1. The Sombor exponential of D1[n] is 

( ) ( ) ( )10 2 2 13
1[ ], 6 2 2 12 2 10 .n nSO D n x x x x= + × − + × −  

 
Corollary 3.2. The modified Sombor exponential of D1[n] is 

( ) ( ) ( )
1 11

10 132 2
1[ ], 6 2 2 12 2 10 .m n nSO D n x x x x= + × − + × −  

 
Theorem 4. The second (a, b)-KA polynomial of D1[n] is 

( ) ( ) ( )22 3 2 6
, 1[ ], 6 2 2 12 2 10 .

ab ab abn n
a bKA D n x x x x= + × − + × −

 
Proof: By definition and cardinalities of the edge partitions of  D1[n], we have 
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( ) ( ) ( )

( )

2
, 1[ ]

ba a
G Gd u d v

a b
uv E G

KA D n x
 
 

∈

= 
 

                   ( ) ( ) ( ) ( ) ( )1 3 2 2 2 36 2 2 12 2 10
bb ba a a a a an nx x x× × ×= + × − + × −  

                   ( ) ( )23 2 66 2 2 12 2 10 .
ab ab abn nx x x= + × − + × −  

 
3. Results for dendrimer nanostars D3[n] 
In this section, we consider a family of dendrimer nanostars with n growth stages, 
denoted by D3[n]. The molecular structure of D3[n] with 3 growth stages is presented in 
Figure 2. 

 
Figure 2: The molecular structure of D3[3] 

 
            Let H be the graph of a dendrimer nanostar D3[n]. Clearly, the vertices of a 
dendrimer nanostar D3[n] are either of degree 1, 2 or 3. By calculation, we obtain that H 
has 24 × 2n – 20 vertices and 24 × 2n+1 – 24 edges. By calculation, we obtain that the edge 
set of D3[n] can be divided into four partitions as follows: 
 E13 = {uv ∈ E(H) | dH(u)=1, dH(v)=3},  |E13| = 3×2n. 
 E22 = {uv ∈ E(H) | dH(u) = dH(v)=2},  |E22| = 12×2n – 6. 
 E23 = {uv ∈ E(H) | dH(u) = 2, dH(v) = 3},  |E23| = 24×2n – 12. 
 E33 = {uv ∈ E(H) | dH(u) = dH(v) = 3},  |E33| = 9×2n – 6. 
 
Theorem 5. The first (a, b)-KA index of D3[n] is 

      ( ) ( ) ( ) ( ) ( ) ( )1
, 3[ ] 1 3 3 2 2 2 12 2 6 2 3 24 2 12

b bba a n a a n a a n
a bKA D n = + × + + × − + + × −

 

                                         
( ) ( )3 3 9 2 6 .

ba a n+ + × −
 Proof: By definition and cardinalities of the edge partitions of D3[n], we have 

( ) ( ) ( )
( )

1
, 3[ ]

ba a

a b G G
uv E G

KA D n d u d v
∈

 = + 
 

                   ( ) ( ) ( ) ( ) ( )1 3 3 2 2 2 12 2 6 2 3 24 2 12
b bba a n a a n a a n= + × + + × − + + × −  

                  ( ) ( )3 3 9 2 6 .
ba a n+ + × −  
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 From Theorem 5, we obtain the following results. 
 
Corollary 5.1. The Sombor index of D3[n] is 

( ) ( ) ( )
3[ ] 3 10 51 2 24 13 2 30 2 12 13 .nSO D n = + + − +  

 
Corollary 5.2. The modified Sombor index of D3[n] is 

( )3

3 9 24 5 12
[ ] 2 .

10 2 13 2 13
m nSO D n    = + + − +   

   
 

 
Theorem 6. The second (a, b)-KA index of D3[n] is 

( ) ( ) ( ) ( )2 2 2
, 3[ ] 3 3 2 2 12 2 6 6 24 2 12 3 9 2 6 .

bab n ab n ab n ab n
a bKA D n = × + × − + × − + × −  

Proof: From definition and by cardinalities of the edge partitions of D3[n], we have 

 ( ) ( ) ( )
( )

2
, 1[ ]

ba a

a b G G
uv E G

KA D n d u d v
∈

 = ⋅   

                    ( ) ( ) ( ) ( ) ( )1 3 3 2 2 2 12 2 6 2 3 24 2 12
b b b ba a n a a n a a n= × × + × × − + × × −  

                    ( ) ( )3 3 9 2 6
ba a n+ × × −  

                    ( ) ( ) ( )2 23 3 2 2 12 2 6 6 24 2 12 3 9 2 6 .
bab n ab n ab n ab n= × + × − + × − + × −  

 
Theorem 7. The first (a, b)-KA polynomial of D3[n] is 

( )1
, 3[ ]a bKA D n  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 3 2 2 2 3 3 33 2 12 2 6 24 2 12 9 2 6
bb b ba a a a a a a an n n nx x x x+ + + += × + × − + × − + × −  

Proof: By definition and cardinalities of the edge partitions of  D3[n], we have 
( ) ( ) ( )

( )

1
, 3[ ]

ba a
G Gd u d v

a b
uv E G

KA D n x
 + 

∈

= 
 

            ( ) ( ) ( ) ( ) ( ) ( ) ( )1 3 2 2 2 3 3 33 2 12 2 6 24 2 12 9 2 6 .
bb b ba a a a a a a an n n nx x x x+ + + += × + × − + × − + × −  

 From Theorem 7, we obtain the following results. 
 
Corollary 7.1. The Sombor exponential of D3[n] is 

( ) ( ) ( ) ( )10 2 2 13 3 2
3[ ], 3 2 12 2 6 24 2 12 9 2 6 .n n n nSO D n x x x x x= × + × − + × − + × −  

Corollary 7.2.The modified Sombor exponential of D3[n] is 

( ) ( ) ( ) ( )
1 11 1

10 132 2 3 2
1[ ], 3 2 12 2 6 24 2 12 9 2 6 .m n n n nSO D n x x x x x= × + × − + × − + × −  

 
Theorem 8. The second (a, b)-KA polynomial of D3[n] is 

( ) ( ) ( ) ( )2 22 3 2 6 3
, 3[ ], 3 2 12 2 6 24 2 12 9 2 6 .

ab ab ab abn n n n
a bKA D n x x x x x= × + × − + × − + × −

 
Proof: By definition and cardinalities of the edge partitions of D3[n], we have 

( ) ( ) ( )

( )

2
, 3[ ]

ba a
G Gd u d v

a b
uv E G

KA D n x
 
 

∈

= 
 

    

( ) ( ) ( ) ( ) ( ) ( ) ( )1 3 2 2 2 3 3 33 2 12 2 6 24 2 12 9 2 6
bb b ba a a a a a a an n n nx x x x× × × ×= × + × − + × − + × −

      ( ) ( ) ( )2 23 2 6 33 2 12 2 6 24 2 12 9 2 6
ab ab ab abn n n nx x x x= × + × − + × − + × −   
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4. Conclusion  
In this study, we have determined the Sombor index, modified Sombor index, Sombor 
exponential, modified Sombor exponential of two families of dendrimer nanostars. 
Acknowledgement: The author is thankful to the referee for useful comments. 
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