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Abstract. In the present article, we use the Laplace-Adomian decomposition method to 
investigate the approximate analytical solution of linear and non-linear time-fractional 
Klien-Gordon equations with appropriate initial conditions. The derivatives considered 
herein, are taken in Caputo’s sense. Analytical results obtained by the proposed method 
are in series form and numerical computation indicates that the procedure of the 
suggested technique is very simple and straightforward.    
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1. Introduction  
In recent years, fractional calculus has grown in popularity due to its versatile use in a 
variety of scientific disciplines such as control engineering, electromagnetism, 
viscoelasticity, biology and signal processing, system identification, mathematical 
biology, statistics ,control theory, finance, chaos theory and fractional dynamics, and 
others [7, 8, 14, 20, 22], resulting in a large number of research papers devoted to the 
study of solutions of partial differential equations of fractional order. 
 Several analytical techniques for finding approximate analytical solutions for 
fractional partial differential equations and systems are introduced, including the 
Adomian Decomposition method (ADM) [9,18,24], the variational iteration  method 
(VIM) [17], the homotopy analysis method (HAM) [15], homotopy perturbation  method 
(HPM) [1], homotopy perturbation transform method (HPTM) [12,21], q-homotopy 
analysis transform method (q-HATM) [2], the iterative Laplace transform method 
(ILTM) [3,25], and others. 

In 2001, Khuri [13] introduced a novel approach, the Laplace Adomian 
Decomposition method (LADM) to seek an approximate solution to a class of nonlinear 
differential equations. By now, the LADM technique has been used to solve Volterra 
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integro-differential equations [27], Burger differential equations [19], Kundu Eckhaus 
differential equations [6] etc.  

Jafari et al. firstly used the LADM approach to find an approximate analytical 
solution of linear and nonlinear fractional diffusion-wave equations [10]. Most recently, 
the LADM has been used to solve fractional Telegraph Equations [11] and fractional 
Zakharov-Kuznetsov equations [23]. The LADM approach is rid of any small or large 
parameters and has advantages over other approximation approaches such as 
perturbation. Unlike other analytical methods, LADM does not need discretization or 
linearization. Therefore, the results achieved by LADM are more efficient and realistic.  

In this study, we examine the linear time-fractional Klien-Gordon equation of the 
following form   

    ( , ) ( , ) ( , ) ( , ) , 1 2 ,t xxD u x t u x t bu x t f x tα α− + = < ≤                                              (1)  

     1 2( ,0) ( ) , ( ,0) ( ) .tu x g x u x g x= =                                                                       (2)  

and the non-linear time-fractional Klien-Gordon equation of the form 

   ( , ) ( , ) ( , ) ( ( , )) ( , ) , 1 2,t xxD u x t u x t bu x t cg u x t f x tα α− + + = < ≤                            (3) 

    1 2( ,0) ( ) , ( ,0) ( ) ,tu x g x u x g x= =                                                                          (4)   

where b  and c  are real, ( )g u  is a non-linear function and f  is a known analytic 

function. The fractional derivatives are considered in the Caputo sense.             
 The main advantage of this study is to extend the work of the Laplace-Adomian 
decomposition method (LADM) to derive the approximate analytical solution of linear 
and non-linear time-fractional Klien-Gordon equations.  
    
2. Preliminaries  
Some fractional calculus definitions and notation needed in the course of this work are 
discussed in this section. 
(a)  The fractional derivative of ( , )u x t in the Caputo sense is defined as [16, 20] 

         
1 ( )

0

1
( , ) ( ) ( , ) ,

( )

1 , ,

t
m m

tD u x t t u x d
m

m m m N

α αη η η
α

α

− −= −
Γ −

− < ≤ ∈


                                               

(5)        
 

(b)  The Laplace transform of a function ( ) , 0f x x >   is defined as [26] 

        
0

[ ( )] ( ) ( ) ,sxL f x F s e f x dx
∞

−= =                                                                            (6)                                                                     

        where s is real or complex number. 
 (c)   The Laplace transform of the Caputo fractional derivative is defined as [16, 20]                                    

             

[ ] ( )
1

1( , ) ( , ) ( ,0) ,

1 , ,

m
k k

t
k o

L D u x t s L u x t u x s

m m m N

α α α

α

−
− −

=

  = − 
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
                                       

(7) 

         where ( ) ( ,0)ku x  is the k-order derivative of ( , )u x t with respect to t  at 0.t =  
 



Analytical Solution of Time-Fractional Klien-Gordon Equation by using Laplace-
Adomian Decomposition Method 

29 
 

 

3.  Basic idea of Laplace-Adomian decomposition method  
To explain the basic idea of Laplace-Adomian Decomposition method [10], we take a 
general fractional partial differential equation may be written in an operator form as 

     ( ) ( ) ( ) ( ), , , , ,tD u x t Ru x t Nu x t g x tα + + =  1 , ,m m m Nα− < ≤ ∈                  (8)  

      ( ) ( ,0) ( ), 0,1,2,..., 1 ,k
ku x h x k m= = −                                                                (9)  

where ( , )tD u x tα  is the Caputo fractional derivative of order , 1m mα α− < ≤ , 

defined by equation (5),R  is a linear operator which might include other fractional 
derivatives of order less than α , N  is a non-linear operator which also might include 

other fractional derivatives of order less than α and ( ),g x t  is a known analytic 

function. 

Applying the Laplace transform to equation (8), we have  

  
( ) ( ) ( ) ( ), , , , .tL D u x t L Ru x t Nu x t L g x tα  + + =                                                 (10) 

 Using the equation (7), we get  
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1 1
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Applying inverse Laplace transform to the equation (11), we obtain 
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kk
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                                               (12) 

The ADM solution ( ),u x t  is represented by the following infinite series 

      
0

( , ) ( , ) ,n
n

u x t u x t
∞

=

=                                                                                                (13) 

and the non-linear term is decomposed as follows 

       
0

( , ) ,n
n

Nu x t A
∞

=

=                                                                                                 (14) 

where nA  are the Adomian polynomials given by  

        
0 0

1
, 0,1,2,....

!

n n
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n in
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d
A N u n

n d λ

λ
λ = =
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                                                 (15) 

Substituting equations (13) and (14) into equation (12), we get 
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Using the Adomian technique, we determine the formal recurrence relations in the 
elegant form as  
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 In general, the solutions in the above series converge rapidly. The classical 
approach to convergence of this type of series has been presented by Cherruault and 
Adomian [4] and Cherruault et al.  [5]. 

4.  Implementation of the method  
In this part, we use the above-mentioned reliable method to solve linear and non-linear 
time-fractional Klien-Gordon equations with initial conditions. 
 
Example 1. In this example we consider the following linear time-fractional Klien-
Gordon equation [24] 

        ( ), 0 , 1 2,t xxD u x t u uα α− + = < ≤                                               (18) 

with the initial conditions 

        ( ) ( ),0 0 and ,0 .tu x u x x= =                                                                             (19)             

 Taking the Laplace transform of the equation (18), we have       

        ( )
2

2

( , )
, ( , ) 0.t

u x t
L D u x t L u x t

x
α  ∂

  − + =   ∂ 
                                                       (20) 

Using the fractional derivative property of the Laplace transform, we get 

     

( )
22 1

1
2

0

1 1 ( , )
[ ( , )] ( ,0) ( , ) .kk

k

u x t
L u x t s u x L u x t

s s x
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−
− −

=

 ∂= − + ∂ 
                            (21) 

Applying inverse Laplace transform to the equation (21), we get 

         

22 1
1

2
0

( , ) 1 ( , )
( , ) ( , ) .

!

k k

k
k

u x t t u x t
u x t L L u x t
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−
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=

    ∂ ∂= − +    ∂ ∂    
                          (22)  

Substituting the results from equations (13) and (14) in the equation (22) and applying the 
equation (17), we determine the components of the LADM solution as follows 

          
2 1

0
0 0

( , )
( , ) ,

!

k k

k
k t

u x t t
u x t xt

t k

−

= =

 ∂= = ∂ 


                                                                 

(23) 
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u x t L L u x t
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α

α α

+
−   ∂= − + = −  ∂ Γ +  

                          (24) 
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u x t xt
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2 3 1

1 32
3 22

( , )1
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α

α α

+
−   ∂= − + = −  ∂ Γ +  

                   (26) 

and so on. The other components may be obtained accordingly. 
Thus, the solution in the series form is given by  
      0 1 2 3( , ) ( , ) ( , ) ( , ) ( , ) ...u x t u x t u x t u x t u x t= + + + +  

     
1 2 1 3 1

... .
( 2) (2 2) (3 2)

t t t
x t

α α α

α α α

+ + + 
= − + − + Γ + Γ + Γ + 

                                     (27) 

The same result was obtained by Sharma and Bairwa [24] using ADM.  
If we put 2 ,α = in Eq. (27), we have 

      ( , ) sin ,u x t x t=                                                                                                        (28) 
which is the exactly the same solution obtained by earlier Mohyud-Din et al. [17] using 
VIM method.  

Example 2. We consider the following linear time-fractional Klien-Gordon equation [24] 

        2sin , 1 2,t xxD u u u xα α− + = < ≤                                                            (29) 

with the initial conditions 

        ( ) ( ),0 sin and ,0 1 .tu x x u x= =                                                                       (30)        

Taking the Laplace transform of the equation (29), we have    

        

( )
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( , )
, ( , ) 2sin 0.t

u x t
L D u x t L u x t x

x
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  − − + =   ∂                                          

(31)    

Using the fractional derivative property of the Laplace transform, we get 
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Applying inverse Laplace transform to the equation (32), we get 
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1

2
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( , ) ( , ) 2sin .
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k k
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u x t t u x t
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                 (33) 

Substituting the results from equations (13) and (14) in the equation (33) and applying the 
equation (17), we determine the components of the LADM solution as follows 
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                 sin 2sin ,
( 1)

t
x t x

α

α
= + +

Γ +
                                                                      (34) 
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Γ + Γ + Γ +

                             (37) 

and so on. The other components may be derived likewise. 
Thus, the solution in the series form is given by  
       0 1 2 3( , ) ( , ) ( , ) ( , ) ( , ) ...u x t u x t u x t u x t u x t= + + + +  

       
1 2 1 3 1

sin ... .
( 2) (2 2) (3 2)

t t t
x t

α α α

α α α

+ + + 
= + − + − + Γ + Γ + Γ +                           

(38) 

The same result was obtained by Sharma and Bairwa [24] using ADM.  
If we put 2 ,α = in Eq. (38), we have 

    ( , ) sin sin ,u x t x t= +                                                                                                 (39) 
which is the exactly the same solution obtained by earlier Wazwaz [28] using ADM 
technique.  

Example 3.  Finally, we consider the following non-linear time-fractional Klien-Gordon 
equation [24] 

     ( )2 2 0 , 1 2,t xx xD u u u uα α− − − = < ≤                                                            (40) 

with the initial conditions 

        ( ) ( ),0 0 and ,0 .x
tu x u x e= =                                                                             (41)        

 Taking the Laplace transform of the equation (40), we have   

      ( )
22

2
2

, 0.t

u u
L D u x t L u

x x
α  ∂ ∂   − + + =    ∂ ∂   

                                                         (42)    

Using the fractional derivative property of the Laplace transform, we get 
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−
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                           (43) 

Applying inverse Laplace transform to the equation (43), we get 

     

222 1
1 2

2
0

( , ) 1
( , ) .

!

k k

k
k

u x t t u u
u x t L L u

t k s x xα

−
−

=

   ∂ ∂ ∂ = + + +      ∂ ∂ ∂      
                              (44) 

Substituting the results from equations (13) and (14) in the equation (44) and applying the 
equation (17), we determine the components of the LADM solution as follows 

     
2 1

0
0 0

( , )
( , ) ,

!

k k
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k t

u x t t
u x t e t

t k

−

= =
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                                                                     (45)  
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2
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u x t L L A n
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+
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                                  (46) 

where nA are the Adomian polynomials for the non-linear terms 
2

2 .
u

Nu u
x

∂ = + ∂ 
 

Now, for 0,1,2,...,n = and using equations (15) and (46), we have  

     0 0 ,A =                                                                                                                      (47) 

     
1

1( , ) ,
( 2)

xe t
u x t

α

α

+

=
Γ +

                                                                                                 (48) 

     1 0 ,A =                                                                                                                      (49) 

     
2 1

2( , ) ,
(2 2)

xe t
u x t

α

α

+

=
Γ +

                                                                                             (50) 

     2 0 ,A =                                                                                                                      (51) 

     
3 1

3( , ) ,
(3 2)

xe t
u x t

α

α

+

=
Γ +

                                                                                              (52) 

and so on. The other components can be obtained accordingly. 
Thus, the solution in the series form is given by  
 0 1 2 3( , ) ( , ) ( , ) ( , ) ( , ) ...u x t u x t u x t u x t u x t= + + + +  

 
1 2 1 3 1

... .
( 2) (2 2) (3 2)

x t t t
e t

α α α

α α α

+ + + 
= + + + + Γ + Γ + Γ + 

                                       (53) 

The same result was obtained by Sharma and Bairwa [24] using ADM.  
If we put 2 ,α = in Eq. (53), we have an elegant result as 

    ( , ) sinh ,xu x t e t=                                                                                                      (54) 
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5. Concluding remarks  
The Laplace Adomian decomposition technique (LADM) has been successfully used to 
provide an approximate analytical solution to the time-fractional Klien-Gordon equation 
with initial conditions. The analytical results have been presented in the form of a power 
series with easily computed terms. It is worth mentioning that the method is capable of 
decreasing the volume of computational effort when compared to classical methods while 
keeping the high accuracy of the numerical result; the size reduction amounts to an 
improvement of the performance of the approach. 
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