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Abstract. Topological indices are applied to measure the chemical characteristics of 

chemical compounds. This study computes the reduced (a, b)-KA indices of benzenoid 

systems. Also, we obtain some other reduced graph indices directly as special values of a 

and b. 
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1. Introduction 

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The 

degree dG(v) of a vertex v is the number of vertices adjacent to v. We refer [1], for other 

undefined notations and terminologies. 

A molecular graph is a graph such that its vertices correspond to the atoms and 

edges to the bonds. Chemical Graph Theory is a branch of mathematical chemistry, 

which has an important effect on the development of Chemical Sciences. Several 

topological indices have been considered in Theoretical Chemistry and have found some 

applications. 

The reduced first Zagreb index [2] of a graph G is defined as  
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In [3], Furtula et al. proposed the reduced second Zagreb index, defined as  
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 In [4], Milicevic et al. introduced the reduced first hyper Zagreb index(or 

reformulated  first Zagreb index) of a graph G, defined it as 
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In [5], Kulli introduced the K-edge index of a graph G, defined as 
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In [6], Kulli introduced the reduced second hyper-Zagreb index of a graph G, 

defined as, 
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We now define the reduced modified first Zagreb and reduced sum connectivity 

indices of a graph G as 
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 The reduced modified first Zagreb and reduced product connectivity indices of a 

graph G were introduced by Kulli in [7] and they are defined as 
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We define the reciprocal reduced product connectivity index of G as 
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In [8], Kulli defined the general reduced Zagreb index of G as 
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The general reduced second Zagreb index was defined by Kulli in [9] as 
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We now define the reduced F-index of G as 
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We now define the general reduced Zagreb index of G as 
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       In [10], Gutman introduced the reduced Sombor index of a graph G, defined as 
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Recently, some Sombor indices were studied in [11,12,13,14,15,16,17,18,19,20]. 

The reduced modified Sombor index was introduced by Kulli et al. in [21] and it 

is defined as 
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            In [21], Kulli et al. introduced the first and second reduced (a, b)-KA indices of a 

graph G, defined as 
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where a,  b are real numbers.  

We easily see that  

 (1)    1
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Furthermore, we also see that 
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            Clearly, we obtain some other reduced graph indices directly as a special case of 

reduced (a, b)-KA indices for some special values of a and b. 

 In this paper, we compute the first and second reduced (a, b)-KA indices for 

benzenoid systems. For benzenoid systems, see [22]. 

 

2. Results for benzenoid systems 
We focus on the chemical graph structure of a jagged rectangle benzenoid system, 

denoted by Bm, n for all m, n, in N. Three chemical graphs of a jagged rectangle benzenoid 

system are depicted in Figure 1. 

 
Figure 1: Jagged rectangle benzenoid system 

 

         Let H = Bm, n. Clearly the vertices of H are either of degree 2 or 3, see Figure 1. By 

calculation, we obtain that H has 4mn + 4m + m – 2 vertices and 6mn + 5m + n – 4 edges. 
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In H, there are three types of edges based on the degree of end vertices of each edge as 

given in Table 1. 

 

dH(u) dH(v)\uv E(H) (2,2) (2,3)) (3, 3) 

Number of edges 2n+4 4m+4n – 4 6mn + m – 5n – 4 

Table 1: Edge partition of Bm, n 

In the following theorem, we determine the first reduced (a, b)-KA index of Bm, n. 

Theorem 1. Let Bm, n be the family of a jagged rectangle benzenoid system. Then 

       1
, , 2 2 4 1 2 4 4 4

b
b a a

a b m nKA B n m n       

          2 2 6 5 4 .
b

a a mn m n      

Proof: Let G = HC5C7[p,q]. By using equation (7) and Table 1, we deduce 

      
 (    )  ∑ [     )   )  (    )   )

 
      

      )

 

                          [    )      )        ) 

                                [    )      )           )      

 [     )      )               ) 
 

After simplification, we get the desired result. 

We establish the following results by using Theorem 1. 

 
Corollary 1.1. Let G = Bm, n be the family of a jagged rectangle benzenoid system. Then  

(1)    1
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(7)    1
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In the next theorem, we determine the second reduced (a, b)-KA index of Bm, n. 

 

Theorem 2. Let Bm, n be the family of a jagged rectangle benzenoid system. Then 

     1 2
, , 2 4 2 4 4 4 2 (6 5 4).ab ab
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Proof: Let G = Bm, n . By definition and Table 1, we deduce 

      
 (    )  ∑ [     )   )       )   )       

      )

 

                          [    )      )        ) 

                                [    )      )           )      

 [     )      )               ) 
After simplification, we get the desired result. 

We establish the following results by using Theorem 2. 

Corollary 2.1. Let G = Bm, n be the family of a jagged rectangle benzenoid system. Then  

(1)    2
2 1,1 24 12 10 20.RM G RKA G mn m n      

(2)    2
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2 1,
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            2 2 26 2 4 2 2 2 4 2 5 2 4 4 2 4 2a a a a a a amn m n                          (4)

   2
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1.
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(5)      2
1
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1 1
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2 2
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(6)      2
1

1,
2

12 (4 2 2) 4 2 8 (4 4 2).RRP G RKA G mn m n           

3. Conclusion 

In this paper, we have introduced the reduced modified first Zagreb index, reduced sum 

connectivity index, reciprocal reduced product connectivity index, reduced F-index, 

general reduced Zagreb index of a graph. We have determined the first and second 

reduced (a, b)-KA indices of benzenoid systems. Furthermore, for some particular values 

of a and b, we have computed some other reduced topological indices directly as a 

special case of reduced (a, b)-KA indices. 
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