Annals of Pure and Applied Mathematics

Vol. 24, No. 1, 2021, 77-81

ISSN: 2279-087X (P), 2279-0888(online)

Published on 19 September 2021 www.researchmathsci.org

DOI: http://dx.doi.org/10.22457/apam.v24n1a09835

Strongly Proximinal Subspaces in Orlicz Function Space

G. Ghawadrah*

Department of Mathematics, Faculty of Science, An-Najah National University Nablus, Palestine. E-mail: g.ghawadrah@najah.edu

Received 2 August 2021; accepted 5 September 2021

Abstract. In this paper, we prove that if Y is a separable proximinal subspace of X, then Y is strongly proximinal in X if and only if $L^{\phi}(\mu, Y)$ is strongly proximinal in $L^{\phi}(\mu, X)$. where $L^{\phi}(\mu, X)$ is an Orlicz function space with Luxemburg norm.

Keywords: Strong proximinality, Orlicz function space

AMS Mathematics Subject Classification (2010): 46E30

1. Introduction

Let $(X, \|.\|_X)$ be a normed linear space and G be a subset of X. For $x \in X$, let $d(x, G) = \inf\{\|x - g\|_X : g \in G\}$ and let $P_G(x) = \{g \in G : \|x - g\|_X = d(x, G)\}$. If G is a subspace of X, an element $g_0 \in G$ is called a best approximant of x in G if $g_0 \in P_G(x)$. Moreover, If for each $x \in X$, $P_G(x) \neq \emptyset$, then G is said to be proximinal in X, for more see [5] and [6]. We recall the following definition of stronger version of approximation:

Definition 1.1. [4] A closed convex subset C of a Banach space X is said to be strongly proximinal if it is proximinal and for a given $x \in X \setminus C$ and $\varepsilon > 0$ there exists $\delta > 0$ such that $P_C(x,\delta) \subseteq P_C(x) + \varepsilon B_X$, where $P_C(x,\delta) = \{z \in C : ||x-z||_X \le d(x,C) + \delta\}$.

From the definition of strong proximinality, it is clear that if Y is a strongly proximinal subspace of X, then the metric projection $P_Y: X \to 2^Y$ is upper Hausdorff semi-continuous, abbreviated uHsc, for more see [3].

Let ϕ be an Orlicz function on $[0,\infty)$ (i.e. a continuous, strictly increasing, convex function satisfying $\phi(0)=0$ and $\lim_{t\to\infty}\phi(t)=\infty$). Let (Ω,Σ,μ) be a measure space. An Orlicz space $L^{\phi}(\mu)$ is a space of all measurable functions $f\colon\Omega\to\mathbb{R}$ such that $\int_{\Omega}\phi(c^{-1}|f(t)|)\,d\mu(t)<\infty$, for some c>0, with norm

$$\|f\|_\phi=\inf\Bigl\{c>0:\int_\Omega\;\phi(c^{-1}|f(t)|)\;d\mu(t)\leq 1\,\Bigr\}.$$

Let M^{ϕ} be a subspace of $L^{\phi}(\mu)$ such that for all c>0, $\int_{\Omega} \phi(c^{-1}|f(t)|) \ d\mu(t)<\infty$.

For a real Banach space $(X, \|.\|_X)$, The Orlicz space $L^{\overline{\phi}}(\mu, X)$ is a space of all strongly measurable functions $f: \Omega \to X$ such that $\int_{\Omega} \phi(c^{-1} \|f(t)\|_X) d\mu(t) < \infty$, for some c > 0. Define a Luxemburg norm on $L^{\phi}(\mu, X)$ by

G. Ghawadrah

$$||f||_{\phi} = \inf \{c > 0: \int_{\Omega} \phi(c^{-1}||f(t)||_{X}) d\mu(t) \le 1 \},$$

the subspace $M^{\phi}(X)$ contains all strongly measurable functions $f: \Omega \to X$ such that for all c>0, $\int_{\Omega}\phi(c^{-1}\|f(t)\|_X)\,d\mu(t)<\infty$. The function ϕ is said to satisfy Δ_2 – condition, denoted $\phi\in\Delta_2$ if $\phi(2t)\leq K\phi(t), t\geq t_0\geq 0$, for some absolute constant K > 0, also we say ϕ is Δ_2 - regular if $\phi \in \Delta_2$. It is known that if ϕ is Δ_2 - regular, then $M^{\phi}(X) = L^{\phi}(\mu, X)$, $M^{\phi} = L^{\phi}(\mu)$, for more about Orlicz function spaces see [2]. There are many results about best approximation in Orlicz function space, reader is referred to [1,7,8,9,10]. In [3], Paul investigated the strong proximinality and ball proximinality in $L^p(\mu, X)$, $1 \le p \le \infty$.

In this paper, we will prove that if Y is a separable proximinal subspace of X, then Y is strongly proximinal in X if and only if $L^{\phi}(\mu, Y)$ is strongly proximinal in $L^{\phi}(\mu, X)$.

2. Main results

Throughout this paper we suppose μ is a Lebesgue measure on $\Omega = [0,1]$, ϕ is Δ_2 -regular $(\phi \in \Delta_2), \phi(1) = 1$ and X is a real Banach space.

Theorem 2.1. Let Y be a separable proximinal subspace of X such that P_Y is uHsc. Then for $f \in L^{\phi}(\mu, Y)$, $g \in L^{\phi}(\mu, X)$:

$$d(f, P_{L^{\phi}(\mu, Y)}(g)) = ||d(f(.), P_{Y}(g(.)))||_{\phi}$$

Proof: From [1, Corollary 2.1] it implies that $h \in P_{L^{\phi}(\mu,Y)}(g)$ if and only if $h(t) \in$ $P_{Y}(g(t))$ a.e.

Thus, for every $h \in P_{L^{\phi}(\mu,Y)}(g)$, $||f(t) - h(t)|| \ge d(f(t), P_Y(g(t)))$ a.e. Since ϕ is strictly increasing, then for every positive constant c we have

$$\phi(c^{-1}||f(t) - h(t)||) \ge \phi(c^{-1}d(f(t), P_Y(g(t))))$$

Hence, for every $h \in P_{L^{\phi}(\mu,Y)}(g)$, $||f - h||_{\phi} \ge ||d(f(.), P_Y(g(.)))||_{\phi}$.

Therefore,
$$d(f, P_{L^{\phi}(\mu, Y)}(g)) = \inf_{h \in P_{L^{\phi}(\mu, Y)}(g)} ||f - h||_{\phi} \ge ||d(f(.), P_{Y}(g(.)))||_{\phi}.$$

From [3, Lemma 3.3] there is a sequence of measurable selections $\{h_n\}_{n=1}^{\infty}$ where for all $t, h_n(t) \in P_{P_Y(g(t))}(f(t), \frac{1}{n})$, which leads to the inequality:

$$d(f(t), P_Y(g(t))) \le ||f(t) - h_n(t)||_X \le d(f(t), P_Y(g(t))) + \frac{1}{n}$$

Hence, $\lim_{n\to\infty} \|f(t)-h_n(t)\|_X = d(f(t),P_Y(g(t))).$ Let $R_n(t) = \|f(t)-h_n(t)\|_X$ and $K(t) = d(f(t),P_Y(g(t))), t \in [0,1],$ then $K,R_n \in \mathbb{R}$ $L^{\phi}(\mu) (= M^{\phi}).$

Hence, for any fixed c>0, $\lim_{n\to\infty}\phi\left(\frac{R_n(t)-K(t)}{c}\right)=0$ and $\phi\left(\frac{R_n(t)-K(t)}{c}\right)\leq\phi(\frac{1}{c})$, $t\in$ [0,1].

Therefore, $\lim_{n\to\infty}\int_0^1\phi\left(\frac{R_n(t)-K(t)}{c}\right)d\mu(t)=0$ by dominated convergence theorem, so [Lemma 1, p. 157] in [2] implies $\lim_{n\to\infty} ||R_n-K||_\phi = 0$ in $L^\phi(\mu)$. Hence,

Strongly Proximinal Subspaces in Orlicz Function Space

 $\lim_{n\to\infty} \|R_n\|_{\phi} = \|K\|_{\phi}$ in $L^{\phi}(\mu)$. Thus, $\lim_{n\to\infty} \|f-h_n\|_{\phi} = \|d(f(.), P_Y(g(.)))\|_{\phi}$ in $L^{\phi}(\mu, X)$.

For all \in [0,1], $h_n(t) \in P_Y(g(t))$, so [1, Corollary 2.1] implies $h_n \in P_{L^{\phi}(\mu,Y)}(g)$. Therefore, $d(f, P_{L^{\phi}(\mu, Y)}(g)) \le \lim_{n \to \infty} ||f - h_n||_{\phi} = ||d(f(.), P_Y(g(.)))||_{\phi}$ Thus, $d(f, P_{L^{\phi}(u,Y)}(g)) = ||d(f(.), P_{Y}(g(.)))||_{\phi}$.

Theorem 2.2. Let Y be a separable proximinal subspace of X. Y is strongly proximinal in X if and only if $L^{\phi}(\mu, Y)$ is strongly proximinal in $L^{\phi}(\mu, X)$.

Proof: (\Rightarrow) Let Y be strongly proximinal in X and $L^{\phi}(\mu, Y)$ be not strongly proximinal in $L^{\phi}(\mu, X)$.

Hence, $\exists f \in L^{\phi}(\mu, X) \setminus L^{\phi}(\mu, Y)$ and $\exists \varepsilon > 0$ such that $\forall n \in \mathbb{N}, \exists g_n \in P_{L^{\phi}(\mu, Y)}(f, \frac{1}{n})$ and $d(g_n, P_{L^{\phi}(u,Y)}(f)) \ge \varepsilon.$

Thus, $0 < d(f, L^{\phi}(\mu, Y)) \le ||f - g_n||_{\phi} \le d(f, L^{\phi}(\mu, Y)) + \frac{1}{n}$ (1)

so it is clear that $\lim_{n\to\infty} \|f-g_n\|_{\phi} = d(f, L^{\phi}(\mu, Y)) = \|d(f(.), Y)\|_{\phi}$. Since for all $t \in [0,1]$, $d(f(t), Y) \le \|f(t)\|_X$, then inequality (1) implies that

 $\frac{d(f(t),Y)}{\beta_n} \le \frac{\|f(t)\|_X}{\alpha} \quad \text{where } \alpha = d(f,L^{\phi}(\mu,Y)), \text{ and } \beta_n = \|f-g_n\|_{\phi}. \text{ Since } \phi \text{ is}$

$$\lim_{n\to\infty} \int_0^1 \phi\left(\frac{d(f(t),Y)}{\beta_n}\right) d\mu(t) = \int_0^1 \phi\left(\frac{d(f(t),Y)}{\alpha}\right) d\mu(t).$$

increasing and Δ_2 - regular, then $\phi\left(\frac{d(f(t),Y)}{\beta_n}\right) \leq \phi\left(\frac{\|f(t)\|_X}{\alpha}\right)$, $\int_0^1 \phi\left(\frac{\|f(t)\|_X}{\alpha}\right) d\mu\left(t\right) < \infty$, (i.e. $\phi\left(\frac{\|f(t)\|_X}{\alpha}\right) \in L^1(\mu)$) and $\lim_{n \to \infty} \phi\left(\frac{d(f(t),Y)}{\beta_n}\right) = \phi\left(\frac{d(f(t),Y)}{\alpha}\right)$ for all $t \in [0,1]$. Therefore, dominated convergence theorem in $L^1(\mu)$ implies that $\lim_{n \to \infty} \int_0^1 \phi\left(\frac{d(f(t),Y)}{\beta_n}\right) d\mu(t) = \int_0^1 \phi\left(\frac{d(f(t),Y)}{\alpha}\right) d\mu(t).$ Lemma 2.2 and Remark 2.1in [1] (or by [Proposition 6, p. 77] in [2]) imply that $\int_0^1 \phi\left(\frac{d(f(t),Y)}{\alpha}\right) d\mu(t) = 1 \text{ and } \forall n, \int_0^1 \phi\left(\frac{\|f(t)-g_n(t)\|_X}{\beta_n}\right) d\mu(t) = 1. \text{ Hence, we have the following}$

$$\lim_{n\to\infty} \int_0^1 \phi\left(\frac{\|f(t)-g_n(t)\|_X}{\beta_n}\right) d\mu(t) = \int_0^1 \phi\left(\frac{d(f(t),Y)}{\alpha}\right) d\mu(t),$$

$$\Rightarrow \lim_{n\to\infty} \int_0^1 \left(\phi\left(\frac{\|f(t) - g_n(t)\|_X}{\beta_n} \right) - \phi\left(\frac{d(f(t), Y)}{\beta_n} \right) \right) d\mu(t) = 0.$$

$$\Rightarrow \lim_{n\to\infty} \int_0^1 \left| \phi\left(\frac{\|f(t)-g_n(t)\|_X}{\beta_n}\right) - \phi\left(\frac{d(f(t),Y)}{\beta_n}\right) \right| d\mu(t) = 0.$$

Then there exists a subsequence $\left\{\phi\left(\frac{\left\|f(t)-g_{n_i}(t)\right\|_X}{\beta_{n_i}}\right)-\phi\left(\frac{d(f(t),Y)}{\beta_{n_i}}\right)\right\}$ converges to 0 a.e.

and hence $\lim_{i \to \infty} \phi\left(\frac{\left\|f(t) - g_{n_i}(t)\right\|_X}{\beta_{n_i}}\right) = \phi\left(\frac{d(f(t), Y)}{\alpha}\right)$. Since ϕ is continuous and strictly

increasing, then ϕ^{-1} is a continuous function, so we get that $\lim_{t\to\infty}\frac{\|f(t)-g_{n_i}(t)\|_X}{\beta_{n_i}}=$ $\frac{d(f(t),Y)}{\alpha}$ a.e.

G. Ghawadrah

Hence, $\lim_{i\to\infty} \|f(t)-g_{n_i}(t)\|_X = d(f(t),Y)$ a.e. because $\lim_{i\to\infty} \beta_{n_i} = \alpha$. Now, since Y is strongly proximinal, then we have that $\lim_{i\to\infty} d\left(g_{n_i}(t), P_Y(f(t))\right) = 0$.

Since
$$\forall c>0$$
, $\phi\left(\frac{d\left(g_{n_i}(t),P_Y(f(t))\right)}{c}\right)\leq \phi\left(\frac{2\|f(t)\|_X}{c}\right)$ a.e. and $\int_0^1\phi\left(\frac{2\|f(t)\|_X}{\alpha}\right)d\mu\left(t\right)<\infty$, (i.e. $\phi\left(\frac{2\|f(t)\|_X}{\alpha}\right)\in L^1(\mu)$), then dominated convergence theorem in $L^1(\mu)$ implies that $\lim_{i\to\infty}\int_0^1\phi\left(\frac{d\left(g_{n_i}(t),P_Y(f(t))\right)}{c}\right)d\mu\left(t\right)=0$. Therefore, by [Lemma 1, p.157] in [2] we have that $\lim_{i\to\infty}d\left(g_{n_i},P_{L^\phi(\mu,Y)}(f)\right)=\lim_{i\to\infty}\left\|d\left(g_{n_i}(t),P_Y(f(t))\right)\right\|_\phi=0$, which contradicts our assumption on $\{g_n\}_{n=1}^\infty$.

 (\Leftarrow) Let $L^{\phi}(\mu, Y)$ be strongly proximinal in $L^{\phi}(\mu, X)$ and Y be not strongly proximinal in X.

Hence, $\exists x \in X \ Y$ and $\exists \varepsilon > 0$ such that $\forall \delta > 0$, $\exists y_\delta \in P_Y(x,\delta)$ and $d(y_\delta,P_Y(x)) > \varepsilon$. Consider f(t) = x and $g_\delta(t) = y_\delta$ for all $t \in [0,1]$, so $f \in L^\phi(\mu,X)$ and $\forall \delta, g_\delta \in L^\phi(\mu,Y)$. Since $d(f,L^\phi(\mu,Y)) = d(x,Y)$ and $d(g_\delta,P_{L^\phi(\mu,Y)}(f)) = d(y_\delta,P_Y(x))$ by Theorem 2.1, then $g_\delta \in P_{L^\phi(\mu,Y)}(f,\delta)$ and $d(g_\delta,P_{L^\phi(\mu,Y)}(f)) > \varepsilon$ and hence $L^\phi(\mu,Y)$ is not strongly proximinal, which is a contradiction.

3. Conclusion

We conclude that if Y is a separable proximinal subspace of X, then Y is strongly proximinal in X if and only if $L^{\phi}(\mu, Y)$ is strongly proximinal in $L^{\phi}(\mu, X)$.

Acknowledgement. The author would like to thank the referee for his/her suggestions.

Conflict of interest. The authors declare that they have no conflict of interest.

Authors' Contributions. All the authors contribute equally to this work.

REFERENCES

- 1. H.Al-Minawi and S.Ayesh, Best approximation in Orlicz spaces, *International Journal of Mathematics and Mathematical Sciences*, 14(2) (1991) 245-252.
- 2. M.M.Rao, Z.D.Ren, *Theory of Orlicz Spaces*, New York, M. Dekker, (1991).
- 3. T.Paul, Various notions of best approximation property in spaces of Bochner integrable functions, *Advances in Operator Theory*, 2(1) (2017) 59-77
- 4. G.Godefroy and V.Indumathi, Strong proximinality and polyhedral spaces, *Rev. Mat. Complut.*, 14(1) (2001) 105-125.
- 5. I.Singer, Best Approximation In Normed Linear Spaces By Elements of Linear Subspaces, springer -verlay, NewYork.
- 6. W.Light, W.Cheney, *Approximation Theory in Tensor Product Spaces*, Lecture Notes in Math. 1169, Springer–Verlag Berlin, 9–155. 1985.
- 7. A.A.Hakawati and S.A.Dwaik, On best approximation in $L^1(\mu, X)$ and $L^{\phi}(\mu, X)$, Annals of Pure and Applied Mathematics, 12(1) (2016) 1-8.

Strongly Proximinal Subspaces in Orlicz Function Space

- 8. A.A.Hakawati and S.A.Dwaik, On best approximation in $L^p(\mu, X)$ and $L^{\phi}(\mu, X)$, $1 \le p < \infty$, *Journal of Mathematics and Informatics*, 6 (2016) 31-39.
- 9. A.A.Hakawati and G.Ghawadrah, Proximinally additive Chebychev spaces in $L^{\phi}(\mu, X)$ and $L^{p}(\mu, X)$, $1 \le p < \infty$, Progress in Nonlinear Dynamics and Chaos, 4(2) (2016) 103-110.
- 10. J.Xu, Proximinality in Banach space valued Musielak-Orlicz spaces, *Journal of Inequalities and Applications*, 2014(1) (2014) 146.