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Abstract. In this paper, we prove thatlfis a separable proximinal subspace& pthen
Y is strongly proximinal irX if and only ifL?(u,Y) is strongly proximinal i (i, X).
whereL? (u, X) is an Orlicz function space with Luxemburg norm.
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1. Introduction

Let (X, ||.|lx) be a normed linear space a@cde a subset df. Forx € X, letd(x,G) =
inf{||[x — gllx: g € G} and letP;(x) = {g € G: ||x — gllx = d(x,G)}. If Gis a subspace
of X, an elemeny, € G is called a best approximantxfn G if g, € P;(x). Moreover,
If for eachx € X, P;(x) # @, thenG is said to be proximinal iX, for more see [5] and
[6]. We recall the following definition of strongegersion of approximation:

Definition 1.1. [4] A closed convex subsétof a Banach spacgis said to be strongly
proximinal if it is proximinal and for a given € X \ C ande > 0 there exist§ > 0
such thatP;(x,8) S Pc(x) + € By, whereP.(x,8) ={z € C: |[x —z||[xy < d(x,C) +
8}.

From the definition of strong proximiitg| it is clear that ifY is a strongly
proximinal subspace of, then the metric projectioB,: X — 2¥ is upper Hausdorff
semi-continuous, abbreviated uHsc, for more see [3]

Letp be an Orlicz function of0, =) (i.e. a continuous, strictly increasing, convex
function satisfyingp(0) = 0 andlim;_ ¢(t) = ). Let (Q,X, 1) be a measure space.
An Orlicz spacel?(u) is a space of all measurable functigh$) — R such that

Jo @CHF@®)D du(t) < oo, for somes > 0, with norm
Iflg = inffe > 0: f, p(c U IF N du®) < 1}

Let M? be a subspace bf (1) such that for allc > 0, [, ¢(c™|f(B)]) du(t) < co.
For a real Banach spa@g ||. ||x), The Orlicz spacé® (u, X) is a space of all strongly

measurable functiong: 2 — X such thatf, ¢(c™'lIf(O)llx) du(t) <oo, for some
¢ > 0. Define a Luxemburg norm di? (1, X) by
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Ifllg = inf{c > 0: [ (e FOllx) du(®) <1},
the subspack?(X) contains all strongly measurable functigh§ — X such that for
all c>0, [, #(c ' If(®)llx) du(t) <oo. The function ¢ is said to satisfir, —

condition, denoted € A, if ¢p(2t) < K¢(t),t = t, = 0, for some absolute constant
K >0, also we sayp isA, - regular if ¢ € A,. It is known that if ¢ isA, — regular,
then M®(X) = L®(u, X), M? = L?(u), for more about Orlicz function spaces see [2].
There are many results about best approximatio®@ricz function space, reader is
referred to [1,7,8,9,10]. In [3], Paul investigatdte strong proximinality and ball
proximinality inLP (u,X),1 < p < oo.

In this paper, we will prove thattifis a separable proximinal subspace& pthen
Y is strongly proximinal irX if and only ifL? (i, Y) is strongly proximinal ik® (i, X).

2. Main results
Throughout this paper we supp@ses a Lebesgue measure @n= [0,1], ¢ isA,-regular
(¢ € Ay), p(1) =1 andX is a real Banach space.

Theorem 2.1.LetY be a separable proximinal subspacé& sfich tha®y is uHsc. Then
for f € LP(w,Y), g € L?(uX):

d(f,PLoguyy (@) = 14(FC), Pr(g())llg

Proof: From [1, Corollary 2.1] it implies thdt € Pouyy(9) if and only ifh(t) €

Py(g(t)) a.e. _ .
Thus, for everyh € Procur(9), If (&) —h@®I| = d(f(t), Py(g(t))) a.e. Sincep is
strictly increasing, then for every positive comsta we have

PcHIfF @ = h®OID = d(c7d(f (), Pr(9(1))))
Hence, for everyt € Py o, 1y (9), If = Rllp = 14(F (), Py(g()))llg-
Therefored(f,P16,)(9)) = infrer, 4, @I = llp = 14O, Pr(g()ll:
From [3, Lemma 3.3] there is a sequence of meakusatectiongh, }»—, where for all
t, h,(t) € Ppy(g(t)) (f(t),%), which leads to the inequality:

d(f (), Py(9(©)) < llf (&) = haOllx = d(f (), Py(g())) +%
Hence, limy,_o ||l f (t) — hn (O)llx = d(f (), Py(9(D))).
Let R, (¢) = [If (t) — ha(Ollx andK(t) = d(f(¢), Py(g(t))), t € [0,1], thenK,R, €
LW (= M?).
Hence, for any fixed > 0, lim,,_, ¢ (w) =0and ¢ (w) < qb(%),t €
[0,1].

Thereforelim,,_,¢, fol ¢

(w) du(t) = 0 by dominated convergence theorem,

so [Lemma 1, p. 157] in [2] implieim, |R, — K|l =0 in L®(u) . Hence,
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limyellRullg = 1Kl in L?(u). Thus,lim, o |lf = hyllg = 1d(F(), Py(g())llg in
L?(u, X).
For alle [0,1], hn(t) € Py(g(t)), so [1, Corollary 2.1] implie, € P, s, y(9)-

Thereforepl(f, PL¢(ﬂ_Y)(g)) < limp_oeollf — Rallg = 1A(F (), Py(g()) )l
ThUS,d(f, PL¢(ﬂ,y)(g)) =1d(F (), Py(g( )l g- u

Theorem 2.2.LetY be a separable proximinal subspac&.df is strongly proximinal in
X ifand only if L®(u,Y) is strongly proximinal i® (i, X).

Proof: (=) LetY be strongly proximinal ix and L?(u,Y) be not strongly proximinal
inL?(u, X).

Hencedf € L?(u, X)\ L?(u,Y) and3s > 0 such thavn € N,3g, € PL¢(H_Y)(f,%) and

d(gnProgun () = &

Thus,0 < d(f,L?(wY) ) < IIf — gnllp < d(f, L2, Y) ) +% @
so itis clear thaim,, o |lf — gnlly = d(f,L? (1w, Y) ) = 1d(F (), V.

Since for allt € [0,1], d(f(t),Y) < [If (®)llx, then inequality (1) implies that

d(flgi;),y) < IIf(;)IIx wherea = d(f,L?(w,Y) ), andB, = |If — gully - Since ¢ is

increasing and,- regular, theng (@) <o (@) , fol ¢ (@) du (t) < oo,

e ¢ (LX) e 11(w)) and 1imn%o¢(%) = ¢ (9D) for all tef01].

Therefore, dominated convergence theoreiiit {n) implies that

limpoo fy ¢ (F522) du(®) = f; ¢ (FL27) du(o.
Lemma 2.2 and Remark 2.1in [1] (or by [Propositiénp. 77] in [2]) imply that
f01¢ (%M) du(t) = 1 andvn, f01¢ (M) du(t) = 1. Hence, we have the

B
following

. —9n d )

limy o f, & (LE=2O0) (o) = [} ¢ (“L22) du(e),
= limy, e, fy <¢ (Mognls) — g (L2 g?”)) du(t) = 0.
o i 2 [ (L200) _ g (40O ) — g,

(t)—9n,
Then there exists a subseque{w@e(”ft)[;g—.‘(t)'hﬁ —¢ (@)} converges to 0 a.e.
(”f(t)—gni(t)”X

and hencelim¢ 5

i—oo

)=¢(%ﬂ’y)). Since¢ is continuous and strictly

. . o . . _ ro-an o],
increasing, themp~! is a continuous function , so we get tthanﬁ—=

[—oo n;
WY o

1
a
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Hence, lim || £ (¢) — gni(t)”X = d(f(t),Y) a.e. becauséimp,, = a. Now, sinceY is
1—>0oo i—oo
strongly proximinal, then we have tr}ag d (gni(t),Py(f(t))) =0.

d(Qni(t),Py(f(t)))>

Sincevce > 0, ¢ <¢ (w) a.e. andf01¢ (w) du (t) < oo,

c

(i.e.qb(@) € L1(1)), then dominated convergence theorenili(u) implies that
d(gn,(O.PY(F©))

c

lim folqb( du (t) = 0. Therefore, by [Lemma 1, p.157] in [2] we have

i—oco
that}Lr?o d(gni,PLd,(ﬂ_Y)(f)) = l]gg ”d (9nz(t)'PY(f(t)))”¢ = 0, which contradicts our
assumption ofig, }pn=1-

(=)LetL? (i, Y) be strongly proximinal i (4, X) andY be not strongly proximinal in
X.

Hence,3x € XY and3e > 0 such thatvs > 0,3ys € Py(x,5) andd(ys, Py(x)) > «.
Considerf(t) = x andgs(t) = ys for all t € [0,1], so f € L?(u,X) andV$é, gs €

L#(u,Y). Sinced (f,L9(u,Y)) = d(x,Y) and d(gs,P,oguy () = d(vs, Py (x)) by
Theorem 2.1, thegs € P ¢, v\ (f, &) andd(g(g,Pqu(ﬂ’Y)(f)) > ¢ and hencé®(u,Y) is
not strongly proximinal, which is a contradiction. |

3. Conclusion
We conclude that it is a separable proximinal subspaceXofthenY is strongly
proximinal inX if and only if L?(u,Y) is strongly proximinal irh® (u, X).
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