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Abstract. Using a given π� <  π� < ⋯ < π� ⋯, we define the nominal-prime, what is the 
relationship to prime? Related to this is homotopy property, and we introduce a number of 
new algebraic structure, which including great substitutions involving the element 
entanglements. We’ll take it as a pure algebraic application with new ideas to create a 
complete algebra solution, which is for the first time we have provided proof not only that 
the Goldbach conjecture of the form 2	 = (� + �) called a quasi-Goldbach conjecture, 
but also that if � is a prime, then there is always two primes between �� and (� + 1)�, 
congeneric or symmetric with between (� − 1)� and ��. As a corollary, we obtain that 
there are infinitely many intimate prime-pairs �� , ��� ; we also define the number of 
intimate prime-pairs π����, π���� �. Using right (left) interval theorem, we raises two 
problems and several conjectures for the sequence of prime numbers. 

Keywords: Goldbach conjecture, generalized primes, twin primes, infinite sets 

AMS Mathematics Subject Classification (2010): 11A41, 11N80, 11P32 

1. Introduction 
In 1742, Goldbach suggested roughly hypothesis to Euler (it raises a tricky arithmetical 
problem) that is provocative ancient yet modern-day conjecture:  
 
Conjecture 1.1. (Goldbach conjecture) Every even number greater than four is the sum 
of two primes. 

 
One of the most celebrated paper ― namely the Vinogradov [1] paper is that we know 

Goldbach’s theorem holds for almost all even integers. The prime estimation method for 
in the number theory (which is looking to acquire the �-results and �-results) it is to be 
workable (see [2, 3, 4, 5, 6, 7]). Erdös [8] asks if there are infinitely many primes p such 
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that every even number ≤ � − 3  can be expressed as the difference between two primes 
each ≤ �. On the Bertrand’s postulate [9], one could expect dramatic improvements. The 
gaps between consecutive primes have been of perennial interest; especially the twin 
primes (see [10, 11, 12, 13, 14]). It is interesting that the relation between Diophantine 
equation and Goldbach conjecture for a particular case of the equation (see [15, 16]). 
Because of the plausibility of the Goldbach conjecture, it seems likely that 5 is the only 
odd untouchable number (see [8, 17, 18]). After analysis it's algebra now. 

We can easily verify Goldbach identical equation. So our purpose in this paper just 
has to prove the case for 2	. We define the nominal-prime (denote π�, so named because 
the nominal-prime that be true of “couple of prime”, it is quite so solid number and they 
have the same characteristic in positive factor), where we take the prime pairs. We stipulate 
that the π  of cut with uncountable infinity of nominal-primes for the element 
entanglements in great substitutions, then one of the major applications of nominal-primes 
is for the quasi-Goldbach conjecture. On the prime gaps problem, we demonstrate that 
there is always two primes between �� and (� + 1)�, and continued in like manner give (� − 1)� < � < � < 	�. As a corollary, we define the intimate prime-pairs �� and the 
number of intimate prime-pairs π����, with � = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37, 41, 43, 47, 53, 61, 67. In closing, this does bring up several interesting problems 
and several conjectures. 
 
2. Nominal-primes 
We want to comprehend the irrational numbers form for the real numbers. Here the π is 
an important object, processes it, and we see it as prime.  
 
Model (Method of digit positional cuts). For π, cut with it and write π�, according to 
its digit positions, and such that π� < π� < ⋯ < π�  ⋯,                        (1) 
where μ = 1, 2, ⋯ , and π� ∈ $ , Then rational number ℚ  is a $  set provided that 
commutative ring from an ordered field &. 
 
Definition 2.1. (Prime sets) 	 is said to be prime set if � ∈ 	,  � > 1, it has no proper 
factor in natural numbers. 
 
Definition 2.2. (Nominal-primes) Let $ be an infinite set and let 	 be a prime set. 
Assume that for each π� ∈ $, � ∈ 	 and � ≥ 3, the map ): $ ⟶ 	, defined by )(π�) = �.                            (2) 
Then we say that π� is a cutting point of ). We call π� is a nominal-prime of prime. 
 

Starts with 
3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ⋯. 

 
    Sequences of form π�, π�, ⋯ , π�, ⋯. 
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Figure 1: The function of maps $ to 	. 

Figure 1 represents a function ) from $ to 	. 
 
Definition 2.3. If  	 and $ are non-countable sets (infinite sets), we write ∤ 	 ∤ > ℵ.  and  ∤ $ ∤ > ℵ..                      (3) 
 
Definition 2.4. Let prime set 	 is equipollent to the nominal-prime set $ if there exists 
a one-to-one function ) with domain 	 and range $. we write 	 ∼ $,                              (4) 
and we say that ) establishes the equipollence 	 and $. 
 
Theorem 2.5. (Cardinal numbers theorem) From Definition 2.3. Then ∤ 	 ∤=∤ $ ∤.                            (5) 
Proof: By Definition 2.2 and by Definition 2.4 we have ∤ 	 ∤= 3 =∤ $ ∤.           □ 
 
Definition 2.6. (The 1— 3 relation) Let $ and 	 be infinite sets if for each π� ∈ $ 
and � ∈ 	. Then ℜ = 5(π�, ��), (π�, ��), ⋯ , �π� , �6�, ⋯ 7,                  (6) 
is a binary relation from $ to 	. The ordered pairs in this binary relation are 
displayed both graphically and in tabular form in tabular form in Figure 2. Let  ), 8: π ⟶ �. 
We say that ) and 8 are homotopy, and we write ≅. 
 
Theorem 2.7. (Homotopy theorem) Let 	 be a prime set and let $ be a nominal-prime 
set. Then 	 ≅ $.                               (7) 
Proof: By Definition 2.2 and by Definition 2.6. For each � ∈ 	 and π� ∈ $ we have )�π�� = �.                                                             □ 
 
Theorem 2.8. (Decimal theorem) Let π� < :, and let ℏ be a decimal. Then 
 
 
 

                                                                    (8) 
 
Proof: Let �(<) be the proposition that this formula is correct for the integer n. 
 

= π� = <(π − ℏ)>

�∈ℕ�@�
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= π� 
 1
>

�∈ℕ
�@�


 �< 
 1��π � ℏ� 

 

 
Figure 2: Displaying the ordered pairs (left panel) in the relation ℜ (right panel). 

 
Basis step: ��1� and ��2� are true since 

3 
 3.1 � 0.1   and  3 
 3.1 
  2�3.14 � 0.09�.              (9) 
 

Inductive step: We must show that 	�< 
 1� is true when 	�<� is assumed to be 
true. That is, we need to show that 
  

 
                                               .              (10) 

 
 
 
This can be done since 
 

= πF 
 1
>

�∈ℕ
�@�


 = π� 
 �π � ℏ�
>

�∈ℕ
�@�

 

                                
 <�: � ℏ� 
 �: � ℏ�                  (11) 
                                
 �< 
 1��: � ℏ�. 
This finishes the inductive step, which completes the proof.                      □ 
 
Corollary 2.9. Let π�G � πHI � :, and let ℏ be a decimal. Then 

π�G 
 πHI 
 2�π � ℏ�.                        (12) 

 
3. Great substitutions 
We would prefer to simplify sign, π �πH: the meaning of this π, as seen in this Definition 
2.2. 
 
Definition 3.1. (Great substitutions) Let J be a substitution group defied on $ and let 
J� be a substitution group defied on 	. Assume that for each π ∈ $, define 

K: $ ⟶ 	  and  L: J ⟶ J�                     (13) 
given by 

�πℊ�N 
 �πN�OP
.                          (14) 

We say that J and J� are isomorphic to substitution (also called great substitution), and 
we write 
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J ≅Q J�,                             (15) 
if a substitution isomorphism between them exists. Let ℎ ∈ J and write 

ℎ = S :6:TGU,                             (16) 

the substitution of ℎ is ℎV  on L . Then 

ℎV =  W π6N(π6)OPX = Y π6N
�π6O�NZ.                    (17) 

 
Theorem 3.2. (Length theorem) Let 	 be a prime set and let $ be a nominal-prime set. 
Then |	| = |\| = |$|.                          (18) 
Proof: By Definition 2.2 and by Definition 3.1. For each � ∈ 	, < ∈ \ and π ∈ $, 
using the transitive, we are done.                                            □ 
 
4. The element entanglement 
Definition 4.1. (Element entanglement) Let �  and ]  be two infinite sets and 
suppose ^: � ⟶ ]  is a bijection. We say that ̂ is an entanglement if there are 
equivalent at first element, � and ] are entangled, and we write � ≑ ],                              (19) 
if an entanglement between them exists. 
 
Definition 4.2. Let `, a, b ∈ ℝ. Then the following properties hold: a = (a ≑ `),                            (20) 

 ` ≑ (a ≑ b) = (` ≑ a) ≑ b,                     (21) 
 ` ≑ (a + b) = (` ≑ a) + (` ≑ b).                   (22) 

 
Theorem 4.3. (Entanglement theorem) Let $ be a nominal-prime set and let 	 be a 
prime set. Suppose ): $ ⟶ 	. Then $ ≑ 	.                              (23) 
Proof: We have π� = 3 = ��, and by Definition 4.1, as required. We display any tow 
element entanglement correspondence in Figure 3.                              □ 
 
Theorem 4.4. (Natural entanglement theorem) Let \ = d3, 4, 5, ⋯ e and let $ be a 
nominal-prime set. Suppose f: \ ⟶ $. Then \ ≑ $.                              (24) 
Proof: Let  <� =  3 =  ��, by Definition 4.1 and by Theorem 4.3, we have \ ≑ 	  and  	 ≑ $                        (25) 
For maps is a transitivity and thus \ ≑ $, as claimed.                          □ 
 
Definition 4.5. (Equivalence of order-set) Let g and h be two nonempty ordered sets. 
If g ≑ h. Then we say that g ∼ h.                              (26) 
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= �6 
 <��T � ℏ�
>

6@�
 

 

�� �6 �T 

:i 
:> 

Theorem 4.6. (Natural equivalence theorem) Let $ be a nominal-prime set and let \  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: A entangled graph: this figure shows the :i ≑ �6 and  :> ≑ �T. 

be a natural number set. If \ ≥ 3. Then $ ∼ \.                              (27) 
Proof: By Natural Entanglement Theorem 4.4 and by Definition 2.4, as required.     □ 
 
Corollary 4.7. Let 	 be a prime set and let \ be a natural number set. If 	, \ ≥ 2. 
Then 	 ∼ \.                              (28) 
 
Theorem 4.8. Let, `, a ∈ ℝ. Then the following statements are equivalent: |`| ≑ |a|,                             (29) |`| = |a|,                             (30) ` = a.                              (31) 
Proof: Since ≑ is symmetric and transitive, it is an entanglement relation, and their length 
is the same.                                                       □ 
 
5. Further results 
Conjecture 5.1. (Quasi-Goldbach conjecture) The quasi-Goldbach conjecture is whether 
or not 

¿ 2	 = � + � ?                         (32) 
where �, � and 	 are primes, and � < � and 	 ≥ 5. 
 

Now, the following is an algebraic approach. 
 
Lemma 5.2. (Prime lemma) Let � and � be two primes and let ℏ ∈ ℤ. If �6, ℏ < �T. 
Then 
  

for 1 ≤ I ≤ <.          (33) 
 

Proof: By the Entanglement Theorem 4.3, we prove like the Decimal Theorem 2.8.   □ 
 

:�l 

$ 

	 

⋯  ≑ ⋯ 
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Corollary 5.3. (Prime corollary) Let � � � � m in 	 and suppose ℏ < m. Then for ℏ ∈ ℤ, we have 
 2(m − ℏ) < � + �.                          (34) 
 
Proof of Conjecture 5.1. Let r be a prime and suppose |ℏ| < |m| and ℏ ∈ ℤ. By the 
Prime Corollary 5.3 and by the Length Theorem 3.2, we see that \ ≯ m − ℏ  and  \ ≮ m − ℏ.                   (35) 
(Note that, using \, which is to gain show) We thus have \ = m − ℏ.                            (36) 
We need to go back to the Prime Corollary 5.3, hence 2\ = � + �,                            (37) 
then \ = 	 is a prime. 

In order to transform it, by the Entanglement Theorem 4.3, we have :i ≑ �  and   :> ≑ �,                    (38) 
see Figure 3. By the Natural Entanglement Theorem 4.4, we get � ≑ <  and  � ≑ <,                       (39) 
Since |� + �| ≑ |< + <|.                         (40) 
By Theorem 4.8, in all cases, we can thus write � + � = 2<,                            (41) 
since < ∈ \, this yields < = 	 ⊆ \.                            (42) 
We proved for the first time that Conjecture 5.1 is true for double the primes.        □ 
 

Because of this ingenious proof, we say the same is likely true of other composite 
numbers to the Goldbach Conjecture 1.1. One of the major applications of actions is for 
intimate prime-pairs. The key to this is the following theorem. 

 
Theorem 5.4. (Goldbach-Liu theorem) Let 	 ≥ 5 and � < �, where 	, � and � are 
primes. We have 2	 = � + �.                            (43) 
Proof: It’s easy to verify Goldbach identity. But technically, we’ve done the proof, on 
top.                                                                   □ 
 
Theorem 5.5. (Right interval theorem) If 	, is a prime, then there is always two primes 
between 	� and (	 + 1)�. 
Proof: Let 	 is prime, we have (	 + 1)� − 	� = 2	 + 1,                       (44) 
by Theorem 5.4, since 2	 = � + �, and hence 	� < � < � < (	 + 1)�.           □ 

 
As a corollary, for all primes �, we have �� < ` < a < (� + 1)�.                       (45) 

 
The number �� ∶= (`, a),                            (46) 
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are intimate prime-pairs. Thus there are infinitely many intimate prime-pairs, cf. Appendix 
A Case 7.1 for more details. We have the following problem and conjecture: 
 
Problem 5.6. How large is :���� for arbitrary? 
 
Conjecture 5.7. Let 	 � � and � � �, where 	, � and � are primes. We have 

¿  2	 = � − � ?                           (47) 
 

Correspondingly, we give the following theorem. 
 
Theorem 5.8. (Left interval theorem) If 	 is a prime, then there is always two primes 
between (	 − 1)� and 	�. 
Proof: Let 	 is prime, we have 	� − (	 − 1)� = 2	 − 1.                      (48) 
Let 	 < � and � < �, where � and � are primes. By Conjecture 5.7, if 2	 = � − �, 
then (	 − 1)� < � < � < 	�,                       (49) 
and the examples follows.                                                 □ 
 

As a corollary, for all primes �, we have (� − 1)� < b < s < ��,                       (50) 
the number ��� ∶= (b, s),                            (51) 
 
are intimate prime-pairs. Thus there are infinitely many intimate prime-pairs, cf. Appendix 
A Case 7.2 for more details. For π���� �, we have the same problem: 
 
Problem 5.9. How large is π���� � for arbitrary? 
 

In intimate prime-pairs �� and ��� , ask whether there are twin primes. For example, 
Table 3 and Table 4 shows twin primes in Appendix A Case 7.3. So we have the following 
conjecture: 
 
Conjecture 5.10. Is there always a twin primes between (	 − 1)� and (	 + 1)�? 
 
Conjecture 5.11. Is there always a twin primes between � and 2�? 
 
6. Conclusion  
In this paper, we show first that 2	 = (� + �) is a kind of quasi-Goldbach conjecture, 
which proof of 2	 = (� + �) is true. As a result, we see that it is two any prime factors 
in the range: 	� < � < � < (	 + 1)�, (� − 1)� < � < � < 	�. We defines the intimate 
prime-pairs �� and  ��� , we also defines the number of intimate prime-pairs π���� and π���� �. 
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7. Future prospects 
We raises two open problems concerning the intimate prime-pairs and several conjectures 
concerning the twin primes in the sequence of prime numbers, but proof is again hopelessly 
beyond reach. Such examples be given easily, but they have their own meaning in 
connection with the Goldbach conjecture and the twin primes conjecture. Initially, one may 
try to work by computer, continues to add to the list of intimate prime-pairs. 
 
Appendix A: Intimate prime-pairs 
Case 7.1. The first intimate prime-pairs �� are 
�� 
 (5, 7).                                                           (52) 

 
�t 
 (11, 13).                                                         (53) 

 
�u 
 (29, 31).                                                         (54) 

 
�v 
 (53, 59), (53, 61), (59, 61).                                          (55) 

 
��� 
 (127, 131), (127, 137), (127, 139), (131, 137), (131, 139), (137, 139).       (56) 
 
��t 
 (173, 179), (173, 181), (173, 191), (173, 193), (179, 181), (179, 191), 
     (179, 193), (181, 191), (181, 193), (191, 193).                          (57) 
 
��v 
 (293, 307), (293, 311), (293, 313), (293, 317), (307, 311), (307; 313), 

(307, 317), (311, 313), (311, 317), (313, 317).                           (58) 
 
��w 
 (367, 373), (367, 379), (367, 383), (367, 389), (367, 397), (373, 379), 

(373, 383), (373, 389), (373, 397), (379, 383), (379, 389), (379, 397), 
 (383, 389), (383, 397), (389, 397).                                    (59) 

 
��t 
 (541, 547), (541, 557), (541, 563), (541, 569), (541, 571), (547, 557), 

(547, 563), (547, 569), (547, 571), (557, 563), (557, 569), (557, 571), 
 (563, 569), (563, 571), (569, 571).                                    (60) 

 
��w 
 (853, 857), (853, 859), (853, 863), (853, 877), (853, 881), (853, 883), 

(853, 887), (857, 859), (857, 863), (857, 877), (857, 881), (857, 883), 
(857, 887), (859, 863), (859, 877), (859, 881), (859, 883), (859, 887), 
(863, 877), (863, 881), (863, 883), (863, 887), (877, 881), (877, 883), 
(877, 887), (881, 883), (881, 887), (883, 887).                          (61) 

 
�t� 
 (967, 971), (967, 977), (967, 983), (967, 991), (967, 997), (967, 1009), 

(967, 1013), (967, 1019), (967, 1021), (971, 977), (971, 983), 
(971, 991), (971, 997), (971, 1009), (971, 1013), (971, 1019), 
(971, 1021), (977, 983), (977, 991), (977, 997), (977, 1009), 
(977, 1013), (977, 1019), (977, 1021), (983, 991), (983, 997), 
(983, 1009), (983, 1013), (983, 1019), (983, 1021), (991, 997), 
(991, 1009), (991, 1013), (991, 1019), (991, 1021), (997, 1009), 
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(997, 1013), (997, 1019), (997, 1021), (1009, 1013), (1009, 1019), 
Table 1: Some numbers of intimate prime-pairs π����: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

(1009, 1021), (1013, 1019), (1013, 1021), (1019, 1021).                  (62) 
 �tv = (1373, 1381), (1373, 1399), (1373, 1409), (1373, 1423), (1373, 1427), 

(1373, 1429), (1373, 1433), (1373, 1439), (1381, 1399), (1381, 1409), 
(1381, 1423), (1381, 1427), (1381, 1429), (1381, 1433), (1381, 1439), 
(1399, 1409), (1399, 1423), (1399, 1427), (1399, 1429), (1399, 1433), 
(1399, 1439), (1409, 1423), (1409, 1427), (1409, 1429), (1409, 1433), 
(1409, 1439), (1423, 1427), (1423, 1429), (1423, 1433), (1423, 1439), 
(1427, 1429), (1427, 1433), (1427, 1439), (1429, 1433), (1429, 1439), 
(1433, 1439).                                                     (63) 

 
Let π���� be the number of intimate prime-pairs. Table 1 shows π����. We can 

visualize π���� more easily with the help of the table, and we find that 
π���� 
 π��t� 
 π��u� 
 1.                      (64) 

 
π���t� 
 π���v� 
 10.                       (65) 

 

p 
 

2 
3 
5 
7 

11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
⁝ 

π���� 
 

1 
1 
1 
3 
6 
10 
10 
15 
15 
28 
45 
36 
55 
66 
78 
66 
120 
78 
105 
⁝ 
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π���w� 
 π���t� 
 15.                       (66) 
 

Table 2: Some numbers of intimate prime-pairs π���� �: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

π��tv� � π��t��.                          (67) 
 

π��xt� 
 π��ut� 
 66.                       (68) 
 

π��ut� � π��xv�.                          (69) 
 

π��xv� 
 π��y�� 
 78.                       (70) 
 

π��y�� � π��uw�.                          (71) 
 

π��yv� � π��uw�.                          (72) 
 
Case 7.2. The first intimate prime-pairs  ���  are 
 ��� 
 (2, 3).                                                     (73) 

 
 �t� 
 (5, 7).                                                     (74) 

p 
 

2 
3 
5 
7 

11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
⁝ 

π���� � 
 

1 
1 
3 
6 
10 
10 
21 
15 
21 
36 
28 
36 
66 
36 
45 
120 
78 
120 
105 
⁝ 
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  �u� = (17, 19), (17, 23), (19, 23).                                    (75) 
  �v�  = (37, 41), (37, 43), (37, 47), (41, 43), (41, 47), (43, 47).                   (76) 
  ���� = (101, 103), (101, 107), (101, 109), (101, 113), (103, 107), (103, 109), 

(103, 113), (107, 109), (107, 113), (109, 113).                          (77)  ��t� = (149, 151), (149, 157), (149, 163), (149, 167), (151, 157), (151, 163), 
(151, 167), (157, 163), (157, 167), (163, 167).                         (78) 

  ��v� = (257, 263), (257, 269), (257, 271), (257, 277), (257, 281), (257, 283),  
(263, 269), (263, 271), (263, 277), (263, 281), (263, 283), (269, 271), 
(269, 277), (269, 281), (269, 283), (271, 277), (271, 281), (271, 283),  

      (277, 281), (277, 283), (281, 283).                                  (79) 
  ��w� = (331, 337), (331, 347), (331, 349), (331, 353), (331, 359), (337, 347),  

(337, 349), (337, 353), (357, 359), (347, 349), (347, 353), (347, 359), 
(349, 353), (349, 359), (353,359).                                   (80) 

  ��t� = (487, 491), (487, 499), (487, 503), (487, 509), (487, 521), (487, 523),  
(491, 499), (491, 503), (491, 509), (491, 521), (491, 523), (499, 503), 
(499, 509), (499, 521), (499, 523), (503, 509), (503, 521), (503, 523), 
(509, 521), (509, 523), (521, 523).                                   (81) 

  ��w� = (787, 797), (787, 809), (787, 811), (787, 821), (787, 823), (787, 827),  
(787, 829), (787, 839), (797, 809), (797, 811), (797, 821), (797, 823), 
(797, 827), (797, 829), (797, 839), (809, 811), (809, 821), (809, 823), 
(809, 827), (809, 829), (809, 839), (811, 821), (811, 823), (811, 827), 
(811, 829), (811, 839), (821, 823), (821, 827), (821, 829), (821, 839), 
(823, 827), (823, 829), (823, 839), (827, 829), (827, 839), (829, 839).       (82) 

  �t�� = (907, 911), (907, 919), (907, 929), (907, 937), (907, 941), (907, 947), 
(907, 953), (911, 919), (911, 929), (911, 937), (911, 941), (911, 947), 
(911, 953), (919, 929), (919, 937), (919, 941), (919, 947), (919, 953), 
(929, 937), (929, 941), (929, 947), (929, 953), (937, 941), (937, 947), 
(937, 953), (941, 947), (941, 953), (947, 953).                    (83) 

  �tv� = (1297, 1301), (1279, 1303), (1279, 1307), (1279, 1319), (1279, 1321),  
(1279, 1327), (1279, 1361), (1279, 1367), (1301, 1303), (1301, 1307),  
(1301, 1319), (1301, 1321), (1301, 1327), (1301, 1361), (1301, 1367),  
(1303, 1307), (1303, 1319), (1303, 1321), (1303, 1327), (1303, 1361),  
(1303, 1367), (1307, 1319), (1307, 1321), (1307, 1327), (1307, 1361),  
(1307, 1367), (1319, 1321), (1319, 1327), (1319, 1361), (1319, 1367),  
(1321, 1327), (1321, 1361), (1321, 1367), (1327, 1361), (1327, 1367),  
(1361, 1367).                                             (84) 
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Let π���� � be the number of intimate prime-pairs. Table 2 shows π���� �. Next we  
Table 3: Some twin primes in ��. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
can visualize π���� � more easily with the help of the table, and we find that 

π���� � 
 π��t� � 
 1.                         (85) 
 

π����� � 
 π���t� � 
 10.                       (86) 
 

π���v� � 
 π���t� � 
 21.                       (87) 
 

π���w� � � π���v� �.                          (88) 
 

π��t�� � � π���w� �.                          (89) 
 

π��tv� � 
 π��xt� � 
 36.                       (90) 
 

π��xt� � � π��x�� �.                          (91) 
 

π��xv� � � π��x�� �.                          (92) 
 

�� 
 
�� 
�t 
�u 
�v 
��� 
��t 
��v 
��w 
��t 
��w 
�t� 
�tv 
�x� 
�xt 
�xv 
�ut 
�uw 
�y� 
�yv 
⁝ 

Twin primes s� ∶
 2 
 

(5, 7) 
(11, 13) 
(29, 31) 
(59, 61) 
(137, 139) 
(179, 181), (191, 193) 
(311, 313) 

� 
(569, 571) 
(857, 859), (881, 883) 
(1019, 1021) 
(1427, 1429) 
(1697, 1699), (1721, 1723) 
(1877, 1879), (1931, 1933) 
(2237, 2239), (2267, 2269) 

― 
(3527, 3529), (3539, 3541), (3557, 3559), (3581, 3583) 
(3821, 3823) 
(4517, 4519), (4547, 4549) 

⁝ 
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π��ut� � 
 π��y�� � 
 120.                      (93) 
Table 4: Some twin primes in ��� . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

π��uw� � � π��ut� �.                          (94) 
 

π��yv� � � π��y�� �.                          (95) 
 

We also find out that 
π���� 
 π���� � 
 1.                        (96) 

 
π��t� 
 π��t� � 
 1.                        (97) 

 
π���t� 
 π���t� � 
 10.                      (98) 

 
π���w� 
 π���w� � 
 15.                      (99) 

 
π��tv� 
 π��tv� � 
 36.                     (100) 

 
π��yv� 
 π��yv� � 
 105.                    (101) 

 

���  
 
�t�  �u�  
�v�  ����  
��t�  
��v�  
��w�  
��t�  
��w�  
�t��  
�tv�  
�x��  
�xt�  
�xv�  
�ut�  
�uw�  
�y��  
�yv�  
⁝ 

Twin primes s� ∶
 2 
 

(5, 7) 
(17, 19) 
(41, 43) 
(101, 103), (107, 109) 
(149, 151) 
(269, 271), (281, 283) 
(347, 349) 
(521, 523) 
(809, 811), (821, 823), (827, 829) 

� 
(1301, 1303), (1319, 1321) 
(1607, 1609), (1667, 1669) 
(1787, 1789) 
(2129, 2131), (2141, 2143) 
(2711, 2713), (2729, 2731), (2789, 2791), (2801, 2803) 
(3371, 3373), (3389, 3391), (3461, 3463), (3467, 3469) 
(3671, 3673) 
(4421, 4423), (4481, 4483) 

⁝ 
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Case 7.3. Some twin primes �� and ���  in Table 3 and Table 4. 

    The twin primes s� ∶= 2, for instance. 
    Clearly, only one of the intimate prime-pairs (5, 7) can be �� = �t� .                              (102) 

Indeed, the least intimate prime-pairs is (2, 3). 
 
Acknowledgements. The author would like to thank the reviewers for their careful reading 
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