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Abstract. Topological indices are applied to measure the chemical characteristics of 
chemical compounds. In this study, we introduce the geometric-quadratic (GQ) and 
quadratic-geometric (QG) indices of a graph and compute the exact values of some 
standard graphs and benzenoid systems. 
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1. Introduction 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The 
degree dG(u) of a vertex u is the number of vertices adjacent to u. We refer [1], for other 
undefined notations and terminologies. 

A molecular graph is a graph such that its vertices correspond to the atoms and 
edges to the bonds. Chemical Graph Theory is a branch of mathematical chemistry, 
which has an important effect on the development of Chemical Sciences. Several 
topological indices have been considered in Theoretical Chemistry and have found some 
applications. 

The geometric-arithmetic index [2] of a graph G was defined as 
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             This index was studied, for example, in [3, 4, 5, 6, 7, 8, 9]. 
            Motivated by the definition of geometric-arithmetic index of a graph G, we define 
the geometric-quadratic index as 
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This equation consists from geometric mean of end vertex degrees of an edge uv, 

( ) ( )G Gd u d v  as numerator and quadratic mean of end vertex degrees of the edge uv, 

( ) ( )2 2
( ) / 2G Gd u d v+  as denominator. 

   Also we introduce the quadratic-geometric index of a graph G and defined it as 
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 In this paper, we compute these two newly defined novel graph indices for some 
standard graphs and benzenoid systems. For benzenoid systems, see [10]. 
 
2. Results for some standard graphs        
Proposition 1.  Let   Kr,s     be a complete bipartite graph with 1 ≤ r ≤ s, and s ≥ 2 vertices. 
Then   
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Proof: Let  Kr,s    be a complete bipartite graph with r + s vertices and rs edges such that 
|V1|= r , |V2|= s, V (Kr,s ) = V1 ∪ V2  for 1 ≤ r ≤ s, and s ≥ 2. Every vertex of  V1 is incident 
with s edges and every vertex of V2  is incident with r edges. 
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Corollary 1.1.  Let   Kr,r     be a complete bipartite graph with  r ≥ 2. Then   
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Corollary 1.2.  Let  K1,r-1   be a star with  r ≥ 2. Then  
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Proposition 2. If G is r-regular with n vertices and r ≥ 2, then  ( ) .
2

nr
GQ G =  

Proof: Let   G is r-regular with n vertices and r ≥ 2 and  
2

nr
 edges. Then  
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Corollary 1.1.  Let Cn    be a cycle  with   n≥ 3 vertices. Then  ( ) .nGQ C n=  

 
Corollary 1.1.  Let Kn    be a complete graph with  n≥ 3 vertices. Then      
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Proposition 3. If G is a path with n ≥ 3 vertices, then 
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Proposition 4.  Let Kr,s   be a complete bipartite graph with 1 ≤ r ≤ s, and s ≥ 2 vertices. 

Then                                 ( ),   
2 21

( ).
2

r sG KQ rs r s= +  

Proof: Let Kr,s    be a complete bipartite graph with r + s vertices and rs edges such that 
|V1|= r , |V2|= s, V (Kr,s ) = V1 ∪ V2  for 1 ≤ r ≤ s, and s ≥ 2. Every vertex of  V1 is incident 
with s edges and every vertex of V2   is incident with r edges. 

( ),   
2 21
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2
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Corollary 4.1.  Let Kr,r  be a complete bipartite graph with  r ≥ 2. Then ( ),    
2.r rKQG r=  

Corollary 4.2. Let K1,r-1 be a star with  r ≥ 2. Then 

( ) 
2

1, 1  
1

(r 1)( 2 2).
2

rQG rK r− = − − +  

Proposition 5. If G is r-regular with n vertices and r ≥ 2, then   
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Proof: Let G is r-regular with n vertices and r ≥ 2 and  
2
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 edges. Then  
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Corollary 5.1.  Let Cn    be a cycle  with   n≥ 3 vertices. Then  ( ) .nQG C n=  

 
Corollary 5.1.  Let Kn    be a complete graph with  n≥ 3 vertices. Then      
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Proposition 6. If G is a path with n ≥ 3 vertices, then ( ) 3 5.nQG nP = − +  

 

3. Results for Benzenoid Systems 
We focus on the chemical graph structure of a jagged rectangle benzenoid system, 
denoted by Bm, n for all m, n, in N. Three chemical graphs of a jagged rectangle benzenoid 
system are depicted in Figure 1. 
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         Let H = Bm, n. Clearly the vertices of H are either of degree 2 or 3, see Figure 1. By 
calculation, we obtain that H has 4mn + 4m + m – 2 vertices and 6mn + 5m + n – 4 edges. 
In H, there are three types of edges based on the degree of end vertices of each edge as 
given in Table 1. 
 

                      
                                                           Figure 1        
 

dH(u) dH(v)\uv ϵE(H) (2,2) (2,3)) (3, 3) 

Number of edges 2n+4 4m+4n – 4 6mn + m – 5n – 4 

Table 1: Edge partition of Bm, n 
In the following theorem, we determine the Geometric-quadratic index of Bm, n. 
 
Theorem 1. Let Bm, n be the family of a jagged rectangle benzenoid system. Then 
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Proof: Let H = Bm, n. By using equation and Table 1, we deduce 
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 After simplification, we obtain the desired result. 
 
Theorem 2. Let Bm, n be the family of a jagged rectangle benzenoid system. Then 
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Proof: Let H = Bm, n. By using equation  and Table 1, we deduce 
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gives the desired result after simplification. 
 
3. Conclusion 
In this paper, we have introduced the geometric-quadratic index and quadratic-geometric 
index of a graph. We have determined exact values of these two novel graph indices for 
some standard graphs and also for benzenoid systems. Many questions are suggested by 
this research, among them are the following: 
1. Characterize the GQ and QG indices in term of other degree based topological indices. 
2. Obtain the extremal values and extremal graphs of GQ and QG indices. 
3. Compute the exact values of these two indices for other chemical nanostructures. 
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