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value problems involving the Caputo fractional derivative in Banach space. We are 
applying the topological degree approach and fixed point theorem with topological 
structures in some appropriate situations. An example is propounded to uphold our 
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1.  Introduction 
Fractional differential equations are established to be effective modeling of the many 
phenomena in several fields of science for more details, see [14, 15, 17, 18, 26]. Certainly, 
the usage of topological strategies stands up very close to evaluating the existence of 
solutions for fractional differential equations within the last decades, see [12], and [16]. 
Fractional differential equations in Banach space are receiving more attention by means of 
many researchers such as Agarwal et al. [3, 4], Balachandran and Park [6], Benchohra et 
al. [7] and Zhang [24]. Boundary value problems with integral boundary conditions 
establish a very significant class of problems. They include two, three, multipoint and 
nonlocal boundary value problems as special cases [10, 11]. Integral boundary conditions 
appear in cellular systems [2] and population dynamics [8]. In 2006, Zhang [25], 
considered the existence of positive solutions for nonlinear fractional boundary value 
problems via applying the properties of the green function and fixed point theorem on 
cones. In 2009, Benchohra et al. [7], examined the existence and uniqueness of solutions 
for fractional boundary value problems with nonlocal conditions by fixed point theorem. 
In 2012, Wang et. al [22, 23], obtained the required and sufficient conditions for fractional 
boundary value problems via a coincidence degree for condensing maps in Banach spaces. 
In 2015, the result was extended to the case of solutions to the fractional-order multipoint 
boundary value problem by Khan and Shah [13], who intentioned sufficient conditions for 
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existence results for the boundary value problem. In 2017, Samina et al. [20], studied the 
existence of solutions of nonlinear fractional Hybrid differential equations by some results 
on the existence of solutions and therefore Kuratowski’s measure of non-compactness. 
Abdol and Panchal [1], proved a new uniqueness of results for nonlinear integro-
differential equations with respect to the Caputo fractional operator fractional. They used 
fractional calculus and its properties, Banach contraction mapping principle and Bihari’s 
inequality. Li and Zhai [19], investigated the existence and uniqueness of solutions for 
Langevin equations with two fractional orders by using e -positive operators and Altman 
fixed point theory. In [9], the authors considered the initial problem for systems of 
differential equations to fractional order. They produced a regularization problem and were 
given an algorithm for normal and unique solubility general iterative systems of differential 
equations with partial derivatives. 
   Motivated from the above-cited results, our aim during this paper is to verify some new 
outcomes on the following boundary value problem (BVP) for fractional differential 
equations involving the Caputo fractional derivative by topological degree method and 
fixed point theorem in Banach space �.  

� ��� ���	 = ���, ���		��0	 = ���	,    ���	 = ��                                                                                                   (1) 

 
where � ∈ �: = [0, �], � ∈ �0,1	,  ��� is the Caputo derivative,  �: � × � → � and �: � → � are given continuous maps. 

 
2. Preliminaries 
In this section, we introduce some necessary definitions, propositions and theorems which 
are needed throughout this paper.  
We define a Banach space ���, �	 as a Banach space of all continuous functions from � 
into � with the topological norm ∥ � ∥�: = �� {∥ ���	 ∥: � ∈ ���, �	, � ∈ �} and � =[0, �], � > 0. 
 
Definition 2.1. ([17], [21]) For a given function � on the closed interval [$, %], the ��ℎ 
fractional order integral of � is defined by;  ℐ()� ���	 = *+��	 ,-( �� − �	�/*���	0�, (2) 

 where Γ is the gamma function.  
 
Definition 2.2. ([17], [21]) For a given function � on the closed interval [$, %], the ��ℎ 
Riemann- Liouville fractional-order derivative of �, is defined by;  ��()� �	��	 = *+�2/�	 � 33-	2 ,-( �� − �	2/�/*���	0�. (3) 

 where 5 = [�] + 1 and [�] denotes the integer part of �.  
 
Definition 2.3. ([17], [21]) For a given function � on the closed interval [$, %], the Caputo 
fractional order derivative of �, is defined by; 

 ���()� �	��	 = *+�2/�	 ,-( �� − �	2/�/*��2	��	0�, (4) 

 where 5 = [�] + 1 .  
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Definition 2.4. ([21], [26]) Let 7 ⊂ 9 and :: 7 → 9 be a continuous bounded map. One 
can say that : is ;-Lipschitz if there exists < ≥ 0 such that  ;�:�>		 ≤ <;�>	    �∀	  > ⊂ Ω   %B�50C0 . 
In case, < < 1, then we call : is a strict ;-contraction. One can say that : is ;-condensing 
if  ;�:�>		 < ;�>	    �∀	  > ⊂ Ω   %B�50C0  EF�ℎ   ;�>	 > 0. 
We recall that :: Ω → 9 is Lipschitz if there exists < > 0 such that  ∥ :G − :H ∥≤ < ∥ � − I ∥     �∀	  �, I ⊂ Ω, 
and if < < 1 then : is a strict contraction.  
 
Theorem 2.1. ([21])  Let � be a Banach space, and ℱ, K: � → � be two operators such 
that ℱ is a contraction operator, and K is a completely continuous operator then the 
operator equation L� = ℱ� + K� = � has a solution � ∈ �.  
 
Proposition 2.1. ([21], [26]) If ℱ, K: 7 → 9 are ;-Lipschitz maps with constants <, <M 
respectively, then ℱ + K: 7 → 9 is ;-Lipschitz with constant < + <M.  
 
Proposition 2.2. ([21], [26]) If ℱ: 7 → 9 is compac, then ℱ is ;-Lipschitz with zero 
constant.  
 
Proposition 2.3 ([21], [26])) If ℱ: 7 → 9 is Lipschitz with constant <, then ℱ is ;-
Lipschitz with the same constant <.  

 
3.  Existence and uniqueness result of the system 
First, we define the meaning of a solution to the BVP(1). 
 
Definition 3.1. A function � ∈ ���, �	 is called a solution of the fractional BVP(1), if � 
satisfies the equation  ������	 = ���, ���		 almost everywhere on � and the conditions ��0	 = ���	, ���	 = ��.  

 
   In order to solve a problem of existence to BVP (1), we need the following assumptions: 

  
[H1]   �: � × � → � is continuous.  
 
[H2]  There exists a constant NO ∈ �0,1	, such that  ∥ ���, �	 − ���, I	 ∥≤ NO ∥ � − I ∥ ,      ∀� ∈ �, �, I ∈ �. 
 
[H3]  There exists a constant NP ∈ �0,1	, such that  ∥ ���	 − ��I	 ∥≤ NP ∥ � − I ∥ ,      ∀�, I ∈ �. 

 
Lemma 3.1. Let 0 < � < 1, the fractional integral equation  ���	 = *+��	 ,-� �� − �	�/*���, ���		0� − -Q+��	 ,Q� �� − �	�/*���, ���		0�

−�-Q − 1	���	 + -Q ��  (5) 
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has a solution � ∈ ���, �	 if and only if � is a solution of the fractional BVP (1).  
Proof: Assume that � is a solution of BVP(1), then we have to show that � is also a solution 
of FIE(5). We have,  ���	 − ��0	 = *+��	 ,-� �� − �	�/*���, ���		0� (6) 

 Then,  

���	 − ��0	 = 1Γ��	 RQ
� �� − �	�/*���, ���		0�

����	 − ���0	 = �Γ��	 RQ
� �� − �	�/*���, ���		0�

���0	 + ����	 − ���0	 = ���0	 + �Γ��	 RQ
� �� − �	�/*���, ���		0�

 

 By the boundary conditions ��0	 = ���	, ���	 = ��, we get  ��0	 = − -Q+��	 ,Q� �� − �	�/*���, ���		0� − �-Q − 1	���	 + -Q �� (7) 

 Replacing in equation(6), we get  

���	 = 1Γ��	 R-
� �� − �	�/*���, ���		0� − ��Γ��	 RQ

� �� − �	�/*���, ���		0� − ���− 1	���	 + �� �� 

 Conversely, assume that � ∈ ���, �	 satisfies the FIE(5).  If � = 0, it is easy to obtain ��0	 = ���	, ���	 = ��. For � ∈ S by using the both facts that  ��� is the left inverse of T-� and  ��� of a constant is equal to zero then we get  ������	 = ���, ���		 which 
completes the proof.  
 
Theorem 3.1. Assume that (H1)-(H3) hold, if  2NO��

Γ�� + 1	 + NP < 1. 
then the fractional BVP (1) has a unique solution � ∈ ���, �	.  
Proof:  First, Consider the operator ℱ: ���, �	 → ���, �	 defined by  

ℱ��	��	 = 1Γ��	 R-
� �� − �	�/*���, ���		0� − ��Γ��	 RQ

� �� − �	�/*���, ���		0�
−��� − 1	���	 + �� ��.  

 The fixed points of the operator ℱ are solutions of the problem BVP(1). Then, 

 ∥ ℱ��	��	 − ℱ�I	��	 ∥≤ *+��	 ,-� �� − �	�/* ∥ ���, ���		 − ���, I��		 ∥ 0� 

+ ��Γ��	 RQ
� �� − �	�/* ∥ ���, ���		 − ���, I��		 ∥ 0� + ��� − 1	 ∥ ���	 − ��I	 ∥ 

≤ 1Γ��	 R-
� �� − �	�/*NO ∥ � − I ∥ + ��Γ��	 RQ

� �� − �	�/*NO ∥ � − I ∥ 0� 

               +�-Q − 1	NP ∥ � − I ∥ 

≤ 1Γ��	 ���� 	NO ∥ � − I ∥ + ��Γ��	 ���� 	NO ∥ � − I ∥ +��� − 1	NP ∥ � − I ∥ 
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                         ≤ [VW-�-XYZ)QXYZ	+��)*	 + NP�-Q − 1	] ∥ � − I ∥ 

 (8) 
 as 0 ≤ � ≤ � then, 

∥ ℱ��	��	 − ℱ�I	��	 ∥≤ [ 2NO��
Γ�� + 1	 + NP] ∥ � − I ∥ 

Hence, ℱ is a contraction mapping on ���, �	 with contraction constant [ [VWQX
+��)*	 + NP]. By 

applying Banach’s contraction mapping principle, we deduce that the operator ℱ has a 
unique fixed point on ���, �	 which implies the BVP(1) has a unique solution on ���, �	.  
 
Theorem 3.2. Assume that �\1	 − �\3	 and the following hypotheses: 

  
  [H4]  There exist N*, N[ > 0 and �* ∈ [0,1	 such that  ∥ ���, �	 ∥≤ N* ∥ � ∥�Z+ N[,      ∀��, �	 ∈ � × �. 
 
[H5]  There exist N^, N_ > 0, �[ ∈ [0,1	 such that  ∥ ���	 ∥≤ N^ ∥ � ∥�`+ N_,      ∀� ∈ �. 
 
hold then the fractional BVP(1) has at least one solution � ∈ ���, �	.  
Proof: The proof will be presented in the following steps: 
 
Step 1: Prove continuity of ℱ. Let {�2}2a*b  be a sequence of a bounded set ℬd ⊆ ���, �	 
such that ∥ �2 − � ∥→ 0 as 5 → ∞ in ℬd�g > 0	. For all � ∈ [0, �], � ∈ �, we have to show 
that ∥ ℱ�2 − ℱ� ∥→ 0 as 5 → ∞ as follows:  

∥ �ℱ�2	��	 − �ℱ�	��	 ∥≤ 1Γ��	 R-
� �� − �	�/* ∥ ���, �2��		 − ���, ���		 ∥ 0�

+ ��Γ��	 RQ
� �� − �	�/* ∥ ���, �2��		 − ���, ���		 ∥ 0� + ��� − 1	 ∥ ���2	 − ���	 ∥

≤ 1Γ��	 R-
� �� − �	�/*NO ∥ �2 − � ∥ 0� + ��Γ��	 RQ

� �� − �	�/*NO ∥ �2 − � ∥ 0�
+��� − 1	NP ∥ �2 − � ∥→ 0  $�  5 → ∞.

 

 
Step 2: Prove ℱ map bounded sets into bounded sets in ���, �	. 
For any g > 0, we have � ∈ ℬd: = {� ∈ ���, �	: ∥ � ∥≤ g},  
∥ �ℱ�	��	 ∥≤ 1Γ��	 R-

� �� − �	�/* ∥ ���, ���		 ∥ 0� + ��Γ��	 RQ
� �� − �	�/* ∥ ���, ���		 ∥ 0� 

+��� − 1	 ∥ ���	 ∥ + �� �� 

≤ 1Γ��	 R-
� �� − �	�/*[N* ∥ � ∥�Z+ N[]0� + ��Γ��	 RQ

� �� − �	�/*[N* ∥ � ∥�Z+ N[]0� 

+ h�� − 1i [N^ ∥ � ∥�`+ N_] + �� �� 
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≤ 1
Γ��	[N* ∥ � ∥�Z+ N[] j��� k + �

�Γ��	[N* ∥ � ∥�Z+ N[] j��� k
+ h�� − 1i [N^ ∥ � ∥�`+ N_] + �� �� 

≤ ����/* + ��/*	Γ�� + 1	[N* ∥ g ∥�Z+ N[] + h�� − 1i [N^ ∥ g ∥�`+ N_] + �� �� ≔ < 

Thus, ℱ map bounded sets into bounded sets in ���, �	. 
 
Step 3: Prove ℱ�ℬd	 is equicontinuous. For �*, �[ ∈ � and 0 ≤ �* ≤ �[ ≤ 1, let � ∈ ℬd, 
then,  

∥ �ℱ�	��[	 − �ℱ�	��*	 ∥=∥ 1Γ��	 R-`
� ��[ − �	�/*���, ���		0� − �[�Γ��	 RQ

� �� − �	�/*���, ���		0�
−��[� 	���	 + �[� �� − 1Γ��	 R-Z

� ��* − �	�/*���, ���		0� + �*�Γ��	 RQ
� �� − �	�/*���, ���		0�

+��*� 	���	 − �*� �� ∥
≤ 1Γ��	 R-Z

� [��[ − �	�/* − ��* − �	�/*] ∥ ���, ���		 ∥ 0� + 1Γ��	 R-`
-Z ��[ − �	�/*���, ���		0�

+ ��[ − �*	�Γ��	 RQ
� �� − �	�/* ∥ ���, ���		 ∥ 0� + ��[ − �*	� ∥ ���	 ∥ + ��[ − �*	� ��

 

 As �* → �[, we get ∥ �ℱ�	��[	 − �ℱ�	��*	 ∥→ 0 which means ℱ�ℬd	 is equicontinuous. 
As consequence of steps (1) to (3) together with the Arzela Ascoli theorem, one 

can get ℱ: ℬd → ℬd is completely continuous. 
 

Step 4: Consider the following set of solutions of the system (1)  m = {� ∈ ���, �	: �ℎCnC  C�F���  o ∈ [0,1]  ��pℎ  �ℎ$�  � = oℱ�}. 
We shall prove that m is bounded in ���, �	. For � ∈ q and o ∈ [0,1], we have  

∥ ���	 ∥=∥ oℱ���	 ∥≤ 1Γ��	 R-
� �� − �	�/* ∥ ���, ���		 ∥ 0�

+ ��Γ��	 RQ
� �� − �	�/* ∥ ���, ���		 ∥ 0� + ��� − 1	 ∥ ���	 ∥ + �� ��

≤ ����/* + ��/*	Γ�� + 1	 [N* ∥ g ∥�Z+ N[] + ��� − 1	[N^ ∥ g ∥�`+ N_] + �� ��
 

 The above inequality together with �*, �[ ∈ [0,1	 and step(2) show that m is bounded in ���, �	. As a consequence of Schaefer’s fixed point theorem, we conclude that ℱ has a 
fixed point which is the solution of the BVP (1).  
 
Remark 3.1. If �\1	 − �\5	 hold and ℱ: ���, �	 → ���, �	 is a linear operator then 
the set of solutions of the fractional BVP(1) is convex.  
 
Lemma 3.2. The operator ℱ: ���, �	 → ���, �	 is compact. Consequently, ℱ is ; − 
Lipschitz with zero constant.  
Proof: Consider a bounded subset ℳ ⊆ ���, �	. As we prove in Theorem 3.2 ℱ: ���, �	 → ���, �	 is continuous and completely continuous. By applying the Arzela 
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Ascoli Theorem ℱ�ℳ	 is a relatively compact subset of ���, �	. Hence, ℱ: ���, �	 →���, �	 is compact. Consequently, by Proposition 2.2 ℱ is ; −Lipschitz with zero 
constant.  
 
Example 3.1. Consider the following fractional BVP  

t �Z̀� ���	 = �*/-`	G�-	[√v     � ∈ � ≔ [0,1],   0 < q < 1
��0	 = G_ ,    ��1	 = 0,                                          (9) 

 Set � = *[, for ��, �	 ∈ [0,1] × [0, +∞	. We have ���, �	 = �*/-`	G�-	[√v . By assumption 

(H1)-(H3), we can arrive  

|���, �	 − ���, I	| ≤ |1 − �[|2√y |���	 − I��	|
≤ |1 − �[|2√y |� − I|,      � ∈ [0,1]
≤ 12√y |� − I| ⇒ NO = 12√y

 

 and,  |���	 − ��I	| ≤ 14 |� − I| ⇒ NP = 14. 
If � = *[, we have Γ�� + 1	 = *[ Γ�*[	 = *[ √y,  

| 2NO��
Γ�� + 1	 + NP| = | 2� 12√y	

12 √y + 14 | = 2y + 14 < 1 

Thus, all assumptions in Theorem (3.1) are satisfied, our results can be used to solve the 
BVP (9). 

 
4. Conclusion 
We confirmed some sufficient conditions for the existence and uniqueness of a solution to 
BVP(1). We based on the fixed point theorem besides to topological technique of 
approximate solutions. Additionally, we studied some topological properties for the set of 
solutions. In the end, an example was presented to justify our results. 
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