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1. Introduction

Empirical evidence showed that the volatility snuleserved in the financial market does
not allow a constant volatility in financial moddls,2]. To model the volatility smile
effectively one solution is to use the stochastitatility under two cases. Either the
function of stochastic processes is used to desdhb volatility [3], or the additional
Brownian motion is introduced to describe the séatic parts of stochastic volatility (SV)
models. In this paper, we focus on the second case.

Hull and White in [4] first introduced an S\obntel called Heston model in which the
volatility of the market follows a mean-revertingoxcingersoll-Ross process. The
theoretical development of the SV model was intoadiin [5] by studying the following
equations

dS(t) = rS(t)dt + Ju(t)S(t)AB, (1) + oS(H)d I (1), W
do(t) = k(0 — v(t))dt + o (v(t)dB,(1),

whose stochastic parts added a Levy pro%dis),t O}. Herer,x,0, o and o,are

constants B, (t) andB,(t) are standard Brownian motions with the assumptiati3, (¢)

, B,(t) and J(t) are mutually independent. The paper also studiedexistence and

uniqueness of a strong solution to (1.1). Ceda@stimates of (1.1) were proved in [6].
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However, all the existing SV models mentioned abake based on the Brownian
motion, in which the increments follow the indepentinorm distribution. Many works
argue that the returns of risky assets have longealependence properties, which are
expressed by the increment of financial modelsngy#lie Brownian motion to express the
stochastic parts without considering its dependaadfe financial modeling may have
some serious disadvantages [7].

Recently, studying stochastic partial functiondfedential equation driven by fractional
Brownian motion becomes a hot research topic. ersait Brownian motionfBm) is used

to describe the stochastic parts of risky assetdetsobecause the increments of the
fractional Brownian motion have the self-similaddang-range dependent properties. We
refer readers to [7,8,9] for the motivation anderehces concerning the study of the
fractional Brownian motion.

While the normality of increments assumption doesshold exactly, the pricing of
options has been studied recently as alternatiffesthn models. Specifically, some
researches [12,13] focused on the constant elgsbicvariance model called CEV model:

dS(t) = rS(t)dt + oS(t)*dB(t),
where g is the elasticity constant with < a < 1. The model is better than Black-Scholes
model since it captures the implied volatility senfbr skew phenomena) that the classical
Black-Scholes model does not.

In spirit of fBm and CEV models, this paper uses mixed fractionaWBr motion
(mfBm), which is a linear combination of the Brown matiand fractional Brown motion
to drive the following stock price equation of tBEV model

dS(t) = rS(t)dt +Jo,()S(1)" AMP (1) + Jo, ()@= M (1), (1.2)
where the variance processg$t) andv,(t) are driven by anothenfBms satisfy
o, (1) = K, (6, ~V,(D)dlt + Ty, YA M Y ), (1.3)
dv,(t) = k,(0, — v,(t))dt + agvz(t)ﬂz dMQH_Q(t), (1.4)
dMi(t) dM[,(t)  dM, () dM,(t) O,
AM () dM,(t)  dM(t) dM,\(t) O,
dMy} (1) L8B3, (1) = pd™ , M 3, € M 5 . )= o 8™
wherev,(0), v,(0) and S(0) are given positive values, the non negative cotse , g,
and x, represent the long variance, the volatility of sage process and the rate at which
v, reverts tog,i=12, respectively. M (t), M(t), M, (t) and M,(t) are mfBm

processes whose concepts and relative conclusidh®evngiven later.r is a constant
interest ratep, and 8 are elastic constants to stock prgg) and volatility of variance

fvi(t) , for eachi =1, 2, with the restriction thag, Oa, <1, g 08, <1

The main goal of this work is to investigate théstnce, uniqueness and continuity
of solutions to the dynamic model (1.2)-(1.4). Hxistence and uniqueness are analyzed
in Section 2. Section 3 studies the continuityhaf $olution to the dynamic model (1.2)-
(1.4).
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2. Some preliminaries with respect to the mixed fretional Brown motion

The mixed fractional Brownian motion is a criticsochastic process and plays an
important role in financial modeling. For a bettederstanding of the rest paper, we briefly
review some basic concepts and properties of thedrfractional Brownian motion.

2.1. Mixed fractional Brownian motion
AssumeH is a constant belonging t(),1) . A fractional Brownian motion fBm)
{BH (t),t O} with Hurst parameteH is a continuous and centered Gaussian process

with covariance

E[B"(t)B" (s)] = %(tw + ¢ — ‘t — s‘w) for any s,t > 0.

WhenH = L | thefBm becomes a standard Brownian motion denotefiB),t = 0} .
2

A mixed fractional Brownian motioéMH (1)t 0} is a linear combination of Brownian

motion and fractional Brownian motion, defined with filtered probability space
(Q,F,F,P) by:

M* (t) = AB(t) + B (1),
where \ is a real constank is the physical probability measure, 4rrqtzq denotes the
P-augmentation of the filtration generated [y(t), B” (t)). A mfBm {M"(t).t>q has
the following propertig&?1314131:
1.M"(0)=0andg[M"(t)]=0 foranyt O ;
2. M" (t) is a centered Gaussian process and not a Markpuaess for alH [ (0,1);
3.{mM"(t),t= 0} has homogeneous increments;, M (t + s) — M" (s) has the same
distribution asB" (t) for anys,t> 0;
4. The covariation functions ai/” (t) andMm* (s) are given by

EIMT ()M (9] = A* EtDt+%(t2“ +t* |t —sf“) for any s,t > 0.
5. The increments of\/”(t) are positively correlated it <4 <1, uncorrelated if
2

1
H = 0.5, and negatively correlated < H <§.

2.2. Basic spaces
To study our problems, we introduce some new fonctpaces.

Definition 2.1. For anys<t, suppose that:m([s,t]) denotes the Banach space of
continuous functions equipped with the supremunmni|

St,c0
’
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Hf " sup {‘f(r)‘,s r t}.

The space of Holder continuous functions of order 0 is denoted bg” ([st]) , and its

norm is
sup{M,s voou ot}
Ju—1]

|7

EXP

Let X, (t) = x, and fom = 1,2,..., we define the Picard iterations as

t t
Xoa(6,3) =+ [ (X, (8, 3))d+ [ o (X, (5x))M" 6),
for all tD[O,T]. The integral wrt the Wiener procefss(t),t > 0} is described as the Ito

integral, while the integral wrt the proce%BH(t),t O} is described as the wick
integral. LetD™X denote them-order derivatives o w.r.t. x. It is easy to see that
D™(X,,,)(t,x) for any integenn 0 is continuous becausk, is continuous in(t, X).
If we could provex  converges inC' (R) , then the solutioiX of equation isC” in
xOR.
Let M, denote the set of all continuou$ adapted processes fom[0,T] such that
E{supxtp}«w

tfo.T]

foragivenp 2.ThenM . =L°(RC(0,T])) is a Banach space under the norm

1/p
el =1, = (| stpl €57 |
Let N, denote the set of locally integrable and measunaialgs
A, 0:a M

p,T "
Thus, its Lebesgue integral is

X2 o = [ X, (-

3. The existence and uniqueness
In this section, we prove the existence and unigsef the solution for the mixed Heston
model by extending the idea of [16] for the mixéachastic differential equation.

Theorem 3.1.For eachi = 1,2, the volatility equation of the mixed CEV modelsha
unique solutiony, (ty wheret0[0,T].

Proof. Here, we confirm the solution’s existence and uaigss for stochastic equations
(1.3) and (1.4). Define an operat®in Nﬂ as follows

t

(Av)(t,v,) = v, + ) k(0 —v(s,v,))ds + Ot ou(s,v,)’ dM" (s) (3.1)
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for vLIN, ; , and it suffices to prove that the operatohas a unique fixed point
v, ON .
First, we prove the existence of fixed poifst.is an element oNp , foreachv(t,v,)
in N . We can see thatv is continuous inx J R. Using
(a+b+c)"<3'(@" +b" +c"),

we have
(AV)(s,%,)| < 37 vyl + 37 j;K(H—v(s,vo ))d;(p + 3 j;av 6V, Y M" 6 ')p
Then
|Aut), 3 B[ 3B M 3B M, (3.2)
Where

t p t H p
M, :on(a—v(s,vo))ds{ ,MZZUOOV(S,VO)Ed\/I (si -
Now, we computg[m,]andE[m,]. Using(a  b)" 2"'(a” b") and Holder
inequality, we have
t » B t
E[M,]< /(F’tjo|6?—v(s,v0)|p ds< 27k PEt% + 2° 1/(”tfo E[|v(s Vo }p} s (33
Noting thatM " (t) = AB(t) + B" (t) and using(a+b)" <2"*(a" +b") to M, ,we have
E[M,] < 2°"APE[M,]+ 2°"E[M,] (3.4)
where
M, :U;O'V(S,VO)EdB(S)‘p M, :U;av(s,vo)ﬁ aB" (sf-
Using the B-D-G inequality and fractional B-D-G énality** to E M, andg[m,],
respectively, and using Holder inequality, we aitai

P
E[M,]<02°|[] E[v(s,vo)zﬂds{2 <" A't[ E[v(sv, ) Job, (3.5)
P _P t ) 2
E M, o'H 2| B v(s, v, )"’ ds|’
0 (3.6)
L4 [1H+1—£ t
o"H?t 2 E(sv,)" ds.
0
Substituting (3.5) and (3.6) into (3.4), we have
E[M,]<C(A,p.o.T.H)[ E[vis) o5, (3.7)

PP _
where C, (A, p,o,T,H)= 2" APgP AT + X7 gPH 2T A Consequently, we substitute
(3.7) and (3.3) into (3.2) to arrive at
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AV ssp-lE[|vO|pJ+6p—1/(PHPT2+C2(/],p,U,/(,T,H )LTEUV(S,VO}"J‘* (3.8)

PT (V)
uniformly in v, on each bounded domaBiO R , where
C,(A,p,0,kT,H)=6"«P6°T*+3'CApoTH §
Thus, we haveavON, ;-
Now we prove the uniqueness of the fixed point.Bep Y (, 110) andz(,v,) are
fixed points ian.T- Therefore, we have

p

A Y (t,v,) — AZCt,)

. 2

K UY(S,UO) Z(s,v,)ds o OtY(s,vU)ﬁl Z(s,vo)ﬁldMH(s)

1

Using (a+b)® < 2°™(a” +b”), we obtain
|AY(t,v,) - AZ(t,v,)]"

LYWz + 2ol [V 6w P -2 6w ar” 6)

<2«

Then

IAY (t,vo) = AZCE Y, )| < C,(P)2|x|" M4+ C,(P)Z o] M, (3.9)
where
P

'
5

M :E‘ tY(s,vo)—Z(s,vo)ds
0

V4

M, =E

Ut Y(s,0,)" — Z(s,,)" dM" (s)

Following the similar proof of (3.3) and (3.7), wbtain
Mo <T [ E[[¥(sv0)=Z(svo)" | s, (3.10)
My <C,(A,p.o.T.H)[. E[|Y(s,v0)—2(s,vojp] & (3.11)
Substituting (3.10) and (3.11) into (3.9) yields
|AY - AZ|? <Cy(A, p.ok T H )LT EDY 6, )-Z 6N, j"} &
where
C.(\ p,o,5,T,H)
= C,(PR" W] T+ Cy(PR" o] C,(\p.0.T,H)

J4
q+1-2
P 2

P
= 2" (P T + 477 C,(P)o™ AT + 47 C,(P)o™ H*T
Therefore
|AY - AZ||S‘T <Cs(A, p.o.k, T HT|Y - Z||E,T
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uniformly in v, on each bounded doman Since

C.(\p,0,5,T,H)T, <1
with be enough for smatf, it indicates thaia: No. - N, is a contraction withr =T, .
Therefore, by the contraction mapping princildas a unique fixed point N%T .
Moreover, letv N%T be arbitrary,v = A"v, . The sequencév, n=1,2,..}
converges toy, ON,, for all p=2. Consequently, the uniqueness of the solution is

proved choosing = v .
Next, we will derivel, estimate for the solution of the volatility equatso

Lemma 3.1.Let T > 0be fixed. Then for any positive constant=c(, p,a,«, ,H v, (0)T).
we have

E sup ‘fui(t,fui(O))‘p C,i 12 (3.12)
t 0T

Proof: Here we only prove the case of= 1. For anyt O[o,T], we have
vi(t,v,(0)) = V1(0)+J; K1(91—V1(51V1(0)))CS+Ulﬁvl 6v.(0)f a7, 6

First, we consider the case that 2. Using the Young s inequality, we have for any
p 2 that

vt v, (0))° < (v, (0)° + M, + M), (3.13)
where
t p b t 8 M p
M, = k2[J,0-vi(s. 0D + M,y =0F [ (s V0 )
Now, we compute® M and E[M,] - Using the Holder inequality and

(a+h)" <2"*(@" +b"), we have

p

EM, 27'R0'T 277k

oy (5,9, (0))ds

(3.14)

t
2RO 2 RIT| B fuy(s,0,(0)) | ds.

Following the similar proof of (3.7), we obtain
E[M,]<C,(4, p.o.T.H)[ E[ (s, (O |65 (3.15)
Substituting (3.14) and (3.15) into (3.13), andihet
L =3 o0 + 6" 810"T.C, = 37 C,(\, p,o T, H) + 6" KIT
we obtain
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E[|v1(s, v,(0)) p} <C,+C, j; E[|vl(s,v1(0)jp}ds. (3.16)
Hence, the Gronwall inequality implies that
supEUv ¢ }< C, exfCiT} =C, A po 6, 6H v, (O p= - (3.17)

tfo,T]
Second, we prove that (3.17) still holds for ahy p 2. Using the Cauchy
inequality, we obtain
El|v,(t,v,(0))° |<E 1t,102pi£{ E|lv, (v, (O “T
(1)< E[[mt O | supE[|v, (v, ©)F |
Noting that2p 2 and using (3.17), we obtain
E[Jwt ()’ |<JC,@.p.0 84 H v, O)T )
Becausem[o,T] is arbitrary, (3.17) is proved whark p < 2.
Third, if 0 < p <1, note that
v (t v, (0))"
= |V1(th1(O))|p I{\vl(t,vl(O) =1 +|V (t 'Vl(o)jp | {l € v (0))<}

p+1
< |V1(t!V1(O)) ‘\,1(1 \,1(0 |V (t Vl(o)j {‘Vl tv (o))<} "

Further we have
MEAO) A EAO) i (oned T 1S €V, o))" +1
Hence it follows from the cask< p< 2

supE‘ O))‘p \/CQ(/\,p,a 0,k,H,v(0),T) 1.

L A
t 07T

This completes the proof of Lemma 3.1.
Following the proof of Theorem 3.1 and Lemma 3.&, @an prove the following
lemma for the stock price equation.

Lemma 3.2.Stock price equation of the CEV model has a unapletion. Moreover
SUPEUSU ]< CoWApoHE b,k k,v, Oy, 05 (OF -  (3.18)

tfo.7]

4. Continuity
In this section, we discuss the continuity of tteck price equation of the CEV model.

Theorem 4.1.Stock price process of the CEV modg|t),t > 0} is continuous irt.

Proof: Note that forany0 s ¢t T,
S(t)—S(s)

= (s)ds + 1/ T)S(T ”ldMH J T)S(T ”dMH

Using (a+b+c) s33(a +b4+c ), we obtain
St -S| sTA+FA+ A, (4.1)
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where
4 4
A=|[Luso . A =[[ L @SEm ML C)] A

It follows the Cauchy inequality,

[ Eserante]

4 3
_t S(s)ds (t s)Z _t wS(s)ds.
Therefore,
E[A]=|uf'(1-5)+| {569 | (1-5) [ supe[ls 6] o (4:2)

(3.18) and (4.2) imply that
E[A] sl cult -5 @3)
Now we pay attention te[A] and E A . Using the B-D-G inequalitf*¥,
we obtain
E[A]< (22 +2HT21) L‘E[\vl(r)\QJS(r)f"l}dr‘z E[A]<(22+ 24129 |['E[ v, € s € | dr‘z
We use the Holder inequality to arrive at
E[A]< (4 +2HT*7) [E[ w0 |dr [ E[ () Jar,
E[A]< (/12 + 2HT2”‘1)2 J: EDV2 (r)ﬂdrﬁ E[|S(r)|""2 }dr.
It follows (2.9) and (2.15) that

2 2
EA  Cult s .EA C,lt o, (4.4)
Combing (4.1), (4.3) and (4.4), we yield
E[Is) - S(9I* | < Cult—o +|d* Cut -5 s(clgr‘ll +y“c12]m .y (4.5)

Therefore, the theorem is proved.
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