The Existence, Uniqueness and Continuity of a Solution to Mixed Fractional Constant Elasticity of Variance Model with Double Stochastic Volatilities

Yu-dong Sun\(^1\) and Qian Ye\(^2\)

\(^1\)School of Political and Economic Management, Guizhou Minzu University, Guiyang – 550025, Guiyang GuiZhou, China. Email: yudongsun@yeah.net
\(^2\)School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang – 550025, Guiyang, China. Email: 264491231@qq.com

Received 1 February 2022; accepted 14 March 2022

Abstract. In this work, we study the existence, uniqueness, continuity and some estimates of the solution to the stochastic differential equation with double stochastic volatilities driven by the mixed fractional Brownian motion.

Keywords: Mixed fractional constant elasticity of variance model; Double stochastic volatilities; Existence; Uniqueness; Continuity.

AMS Mathematics Subject Classification (2010): 37H10

1. Introduction

Empirical evidence showed that the volatility smile observed in the financial market does not allow a constant volatility in financial models [1,2]. To model the volatility smile effectively one solution is to use the stochastic volatility under two cases. Either the function of stochastic processes is used to describe the volatility [3], or the additional Brownian motion is introduced to describe the stochastic parts of stochastic volatility (SV) models. In this paper, we focus on the second case.

Hull and White in [4] first introduced an SV model called Heston model in which the volatility of the market follows a mean-reverting Cox-Ingersoll-Ross process. The theoretical development of the SV model was introduced in [5] by studying the following equations

\[
\begin{align*}
 dS(t) &= rS(t)dt + \sqrt{v(t)}S(t)dB_1(t) + \sigma S(t)dJ(t), \\
 dv(t) &= \kappa(\theta - v(t))dt + \sigma(v(t))dB_2(t),
\end{align*}
\]

(1.1)

whose stochastic parts added a Levy process \(\{J(t), t \geq 0\}\). Here \(r, \kappa, \theta, \sigma\) and \(\sigma(v)\) are constants, \(B_1(t)\) and \(B_2(t)\) are standard Brownian motions with the assumption that \(B_1(t)\) and \(B_2(t)\) are mutually independent. The paper also studied the existence and uniqueness of a strong solution to (1.1). Certain \(L^p\) estimates of (1.1) were proved in [6].
Yu-dong Sun and Qian Ye

However, all the existing SV models mentioned above are based on the Brownian motion, in which the increments follow the independent normal distribution. Many works argue that the returns of risky assets have long-range dependence properties, which are expressed by the increment of financial models. Using the Brownian motion to express the stochastic parts without considering its dependency to the financial modeling may have some serious disadvantages [7].

Recently, studying stochastic partial functional differential equation driven by fractional Brownian motion becomes a hot research topic. Fractional Brownian motion (fBm) is used to describe the stochastic parts of risky assets models because the increments of the fractional Brownian motion have the self-similar and long-range dependent properties. We refer readers to [7,8,9] for the motivation and references concerning the study of the fractional Brownian motion.

While the normality of increments assumption does not hold exactly, the pricing of options has been studied recently as alternative diffusion models. Specifically, some researches [12,13] focused on the constant elasticity of variance model called CEV model:

\[dS(t) = rS(t)dt + \sigma S(t)^\alpha dB(t), \]

where \(\alpha \) is the elasticity constant with \(0 < \alpha < 1 \). The model is better than Black-Scholes model since it captures the implied volatility smile (or skew phenomena) that the classical Black-Scholes model does not.

In spirit of fBm and CEV models, this paper uses mixed fractional Brown motion (mfBm), which is a linear combination of the Brown motion and fractional Brown motion to drive the following stock price equation of the CEV model

\[dS(t) = rS(t)dt + \sqrt{v_1(t)S(t)^{\theta_1}} dM^H_{1,1}(t) + \sqrt{v_2(t)S(t)^{\theta_2}} dM^H_{1,2}(t), \tag{1.2} \]

where the variance processes \(v_1(t) \) and \(v_2(t) \) are driven by another mfBms satisfy

\[dv_1(t) = \kappa_1(\theta_1 - v_1(t))dt + \sigma_1 v_1(t)^\beta_1 dM^H_{2,1}(t), \tag{1.3} \]
\[dv_2(t) = \kappa_1(\theta_2 - v_2(t))dt + \sigma_2 v_2(t)^\beta_2 dM^H_{2,2}(t), \tag{1.4} \]
\[dM^H_{1,1}(t) \cdot dM^H_{1,2}(t) = 0, \]
\[dM^H_{1,1}(t) \cdot dM^H_{2,1}(t) = 0, \]
\[dM^H_{1,2}(t) \cdot dM^H_{2,2}(t) = 0, \]
\[dM^H_{1,1}(t) \cdot dM^H_{1,2}(t) = \rho_1 dt^{2H}, \]
\[dM^H_{1,2}(t) \cdot dM^H_{2,2}(t) = \rho_2 dt^{2H}, \]

where \(v_i(0), v_2(0) \) and \(S(0) \) are given positive values, the non negative constants \(\theta_i, \sigma_i \) and \(\kappa_i \) represent the long variance, the volatility of variance process and the rate at which \(v_i \) reverts to \(\theta_i = 1, 2 \), respectively. \(M^H_{1,1}(t), M^H_{1,2}(t), M^H_{2,1}(t) \) and \(M^H_{2,2}(t) \) are mfBm processes whose concepts and relative conclusions will be given later. \(r \) is a constant interest rate, \(\alpha_i \) and \(\beta_i \) are elastic constants to stock price \(S(t) \) and volatility of variance \(v_i(t) \), for each \(i = 1, 2 \), with the restriction that \(\alpha_i \nleq 1, \beta_i \nleq 1 \).

The main goal of this work is to investigate the existence, uniqueness and continuity of solutions to the dynamic model (1.2)-(1.4). The existence and uniqueness are analyzed in Section 2. Section 3 studies the continuity of the solution to the dynamic model (1.2)-(1.4).
The Existence, Uniqueness and Continuity of a Solution to Mixed Fractional Constant Elasticity of Variance Model with Double Stochastic Volatilities

2. Some preliminaries with respect to the mixed fractional Brown motion
The mixed fractional Brownian motion is a critical stochastic process and plays an important role in financial modeling. For a better understanding of the rest paper, we briefly review some basic concepts and properties of the mixed fractional Brownian motion.

2.1. Mixed fractional Brownian motion
Assume H is a constant belonging to $(0,1)$. A fractional Brownian motion (fBm) \(\{B^H(t), t \geq 0\} \) with Hurst parameter H is a continuous and centered Gaussian process with covariance
\[
E[B^H(t)B^H(s)] = \frac{1}{2} \left(t^{2H} + t^{2H} - |t-s|^{2H} \right) \text{ for any } s,t > 0.
\]
When $H = \frac{1}{2}$, the fBm becomes a standard Brownian motion denoted by \(\{B(t), t \geq 0\} \).

A mixed fractional Brownian motion \(\{M^H(t), t \geq 0\} \) is a linear combination of Brownian motion and fractional Brownian motion, defined with a filtered probability space \((\Omega, \mathcal{F}, \mathcal{F}_t, P)\) by:
\[
M^H(t) = \lambda B(t) + B^H(t),
\]
where λ is a real constant, P is the physical probability measure, and \(\{\mathcal{F}_t \geq 0\} \) denotes the P-augmentation of the filtration generated by \(\{B(t), B^H(t)\} \). A mfBm \(\{M^H(t), t > 0\} \) has the following properties\(^{12,13,14,15}\):
1. $M^H(0) = 0$ and $E[M^H(t)] = 0$ for any $t \geq 0$;
2. $M^H(t)$ is a centered Gaussian process and not a Markovian process for all $H \in (0,1)$;
3. \(\{M^H(t), t \geq 0\} \) has homogeneous increments, i.e., $M^H(t+s) - M^H(s)$ has the same distribution as $B^H(t)$ for any $s,t \geq 0$;
4. The covariation functions of $M^H(t)$ and $M^H(s)$ are given by
\[
E[M^H(t)M^H(s)] = \lambda^2 \cdot s \wedge t + \frac{1}{2} \left(t^{2H} + s^{2H} - |t-s|^{2H} \right) \text{ for any } s,t > 0.
\]
5. The increments of $M^H(t)$ are positively correlated if $\frac{1}{2} < H < 1$, uncorrelated if $H = 0.5$, and negatively correlated if $0 < H < \frac{1}{2}$.

2.2. Basic spaces
To study our problems, we introduce some new function spaces.

Definition 2.1. For any $s < t$, suppose that $C^{-1}([s,t])$ denotes the Banach space of continuous functions equipped with the supremum norm $\|f\|_{s,t}$.

43
The space of Holder continuous functions of order $\beta > 0$ is denoted by $C^\beta([s,t])$, and its norm is

$$
\|f\|_{\alpha,\lambda} = \sup\left\{ \frac{|f(u) - f(v)|}{|u - v|^\lambda}, \quad s \leq u \leq v \leq t \right\}.
$$

Let $X_0(t) = x$, and for $n = 1, 2, \ldots$, we define the Picard iterations as

$$
X_{n+1}(t) = x + \int_0^t \mu(X_n(s, x)) \, ds + \int_0^t \sigma(X_n(s, x)) \, dM^H(s),
$$

for all $t \in [0, T]$. The integral wrt the Wiener process $\{B(t), t \geq 0\}$ is described as the Ito integral, while the integral wrt the process $\{B^H(t), t \geq 0\}$ is described as the wick integral. Let D^mX denote the m-order derivatives of X w.r.t. x. It is easy to see that $D^m(X_n(t, x))$ for any integer $m \geq 0$ is continuous because X_0 is continuous in (t, x).

If we could prove X_n converges in $C^\infty(R)$, then the solution X of equation is C^∞ in $x \in R$.

Let $M_{p,T}$ denote the set of all continuous F_t adapted processes for $t \in [0, T]$ such that

$$
E\left[\sup_{s \in [0,T]} |X_t| \right] < \infty
$$

for a given $p \geq 2$. Then $M_{p,T} = L^p(R, C([0,T]))$ is a Banach space under the norm

$$
\|X\|_{p,T} = \inf\left\{ \left(E\left[\sup_{s \in [0,T]} |X_t| \right]^p \right)^{1/p} \right\}.
$$

Let $N_{p,T}$ denote the set of locally integrable and measurable maps

$$
X_t : x \mapsto X_{p,T}.
$$

Thus, its Lebesgue integral is

$$
\|X\|_{p,T} = \int_0^T \|X(t, x)\|_{p,T} \, dx.
$$

3. The existence and uniqueness

In this section, we prove the existence and uniqueness of the solution for the mixed Heston model by extending the idea of [16] for the mixed stochastic differential equation.

Theorem 3.1. For each $i = 1, 2$, the volatility equation of the mixed CEV model has a unique solution $v_i(t)$ where $t \in [0, T]$.

Proof: Here, we confirm the solution’s existence and uniqueness for stochastic equations (1.3) and (1.4). Define an operator A in $N_{p,T}$ as follows

$$
(Av)(t, v_0) = v_0 + \int_0^t \kappa(\theta - v(s, v_0)) \, ds + \int_0^t \sigma v(s, v_0)^\beta \, dM^H(s) \quad (3.1)
$$
The Existence, Uniqueness and Continuity of a Solution to Mixed Fractional Constant Elasticity of Variance Model with Double Stochastic Volatilities

for \(v \in N_{p,T} \), and it suffices to prove that the operator \(A \) has a unique fixed point \(v_n \in N_{p,T} \).

First, we prove the existence of fixed point: \(Av \) is an element of \(N_{p,T} \) for each \(v(t,v_0) \) in \(N_{p,T} \). We can see that \(Av \) is continuous in \(x \in R \). Using

\[
(a + b + c)^n \leq 3^{n-1} (a^n + b^n + c^n),
\]

we have

\[
||Av(s,v_0)||^p \leq 3^{n-1} |v_0|^p + 3^{n-1} \left[\int_0^t \kappa(\theta - v(s,v_0)) ds \right]^p + 3^{n-1} \left[\int_0^t \sigma v(s,v_0)^p dM^H(s) \right]^p.
\]

Then

\[
\left\| Av(t,v_0) \right\|^p \leq 3^{n-1} E |v_0|^p + 3^{n-1} E M_1 + 3^{n-1} E M_2,
\]

where

\[
M_1 = \left| \int_0^t \kappa(\theta - v(s,v_0)) ds \right|^p, M_2 = \left| \int_0^t \sigma v(s,v_0)^p dM^H(s) \right|^p.
\]

Now, we compute \(E[M_1] \) and \(E[M_3] \). Using \((a + b)^n \leq 2^{n-1} (a^n + b^n)\) and Holder inequality, we have

\[
E[M_1] \leq \kappa^n \int_0^t |\theta - v(s,v_0)|^n ds \leq 2^{n-1} \kappa^n \theta^n \int_0^t E[v(s,v_0)]^n ds.
\]

Noting that \(M^H(t) = \lambda B(t) + B^H(t) \) and using \((a + b)^n \leq 2^{n-1} (a^n + b^n)\) to \(M_2 \), we have

\[
E[M_2] \leq 2^{n-1} \lambda^n E[M_1] + 2^{n-1} E[M_3],
\]

where

\[
M_3 = \left| \int_0^t \sigma v(s,v_0)^p dB(s) \right|^p, M_4 = \left| \int_0^t \sigma v(s,v_0)^p dB^H(s) \right|^p.
\]

Using the B-D-G inequality and fractional B-D-G inequality\(^{(15)}\) to \(E[M_3] \) and \(E[M_4] \), respectively, and using Holder inequality, we obtain

\[
E[M_3] \leq \sigma^n \lambda^n \int_0^t E[v(s,v_0)^p] \left| \int_0^t v(s,v_0)^p ds \right|^p \leq \sigma^n \lambda^n \int_0^t E[v(s,v_0)^p]^p ds,
\]

\[
E[M_4] \leq \sigma^n \lambda^n \int_0^t v(s,v_0)^p \left| \int_0^t E[v(s,v_0)^p] ds \right|^p \leq \sigma^n \lambda^n \int_0^t E[v(s,v_0)^p]^p ds.
\]

Substituting (3.5) and (3.6) into (3.4), we have

\[
E[M_2] \leq C_1(\lambda, p, \sigma, T, H) \int_0^t E[v(s)]^p ds,
\]

where \(C_1(\lambda, p, \sigma, T, H) = 2^{n-1} \lambda^n \sigma^n \lambda^n T + 2^{n-1} \sigma^n \lambda^n T^{pH + \frac{p}{2}} \). Consequently, we substitute (3.7) and (3.3) into (3.2) to arrive at
Yu-dong Sun and Qian Ye

\[\|A\|_{p,t} \leq 3^{p-1}E\left[|v_0|^p\right] + 6^{p-1}k^p\theta^pT^2 + C_2(\lambda, p, \sigma, \kappa, T, H) \int_0^T E\left[|v(s,v_0)|^p\right]ds \] (3.8)

uniformly in \(v_0 \) on each bounded domain \(B \subset R \), where

\[C_2(\lambda, p, \sigma, \kappa, T, H) = 6^{p-1}k^p\theta^pT^2 + 3^{p-1}C_1(\lambda, p, \sigma, T, H). \]

Thus, we have \(A \in N_{p,T} \).

Now we prove the uniqueness of the fixed point. Suppose \(Y(t, v_0) \) and \(Z(t, v_0) \) are fixed points in \(N_{p,T} \). Therefore, we have

\[\|A Y(t, v_0) - A Z(t, v_0)\|_{p,t} \]

\[= \kappa \int_0^t Y(s, v_0) - Z(s, v_0)ds + \sigma_1 \int_0^t Y(s, v_0)^{\beta_1} - Z(s, v_0)^{\beta_1} dM^H(s)^2. \]

Using \((a + b)^p \leq 2^{p-1}(a^p + b^p)\), we obtain

\[\|A Y(t, v_0) - A Z(t, v_0)\|_{p,t} \]

\[\leq 2^{p-1}|\kappa| \int_0^t |Y(s, v_0) - Z(s, v_0)|ds + 2^{p-1}|\sigma_1| \int_0^t |Y(s, v_0)^{\beta_1} - Z(s, v_0)^{\beta_1}| dM^H(s)^2. \]

Then

\[\|A Y(t, v_0) - A Z(t, v_0)\|_{p,T} \leq C_3(\lambda)2^{p-1} |\kappa| M_5 + C_3(\lambda)2^{p-1} |\sigma_1| M_6, \] (3.9)

where

\[M_5 = E \left[\int_0^t |Y(s, v_0) - Z(s, v_0)|ds \right]^p, \]

\[M_6 = E \left[\int_0^t |Y(s, v_0)^{\beta_1} - Z(s, v_0)^{\beta_1}| dM^H(s)^2 \right]^p. \]

Following the similar proof of (3.3) and (3.7), we obtain

\[M_5 \leq T \int_0^T E\left[|Y(s, v_0) - Z(s, v_0)|^p\right]ds, \] (3.10)

\[M_6 \leq C_4(\lambda, p, \sigma, \kappa, T, H) \int_0^T E\left[|Y(s, v_0) - Z(s, v_0)|^p\right]ds. \] (3.11)

Substituting (3.10) and (3.11) into (3.9) yields

\[\|A Y - AZ\|_{p,T} \leq C_5(\lambda, p, \sigma, \kappa, T, H) T \int_0^T E\left[|Y(s, v_0) - Z(s, v_0)|^p\right]ds, \]

where

\[C_5(\lambda, p, \sigma, \kappa, T, H) = C_3(\lambda)2^{p-1} |\kappa|^p T + C_3(\lambda)2^{p-1} |\sigma_1|^p C_4(\lambda, p, \sigma, T, H) \]

\[= 2^{p-1}C_3(\lambda)|\kappa|^p T + 4^{p-1}C_3(\lambda)|\sigma_1|^p \lambda^2p T + 4^{p-1}C_3(\lambda)\sigma_2^2p H^{\frac{p}{2}}T^{p+1}\lambda^{\frac{p}{2}}. \]

Therefore

\[\|A Y - AZ\|_{p,T} \leq C_5(\lambda, p, \sigma, \kappa, T, H) T \|Y - Z\|_{p,T}. \]
The Existence, Uniqueness and Continuity of a Solution to Mixed Fractional Constant Elasticity of Variance Model with Double Stochastic Volatilities

uniformly in \(v_0 \) on each bounded domain \(B \). Since

\[
C_i(\lambda, p, \sigma, \kappa, T_0, H)T_0^p < 1
\]

with be enough for small \(T_0 \), it indicates that \(A : N_{p,T} \rightarrow N_{p,T} \) is a contraction with \(T = T_0 \). Therefore, by the contraction mapping principle, \(A \) has a unique fixed point \(v \in N_{p,T} \).

Moreover, let \(v \in N_{p,T} \) be arbitrary, \(v_n = A^nv_0 \). The sequence \(\{v_n, n=1,2,\ldots\} \) converges to \(\lim v_n \in N_{p,T} \) for all \(p \geq 2 \). Consequently, the uniqueness of the solution is proved choosing \(v = v_0 \).

Next, we will derive \(L_p \) estimate for the solution of the volatility equations.

Lemma 3.1. Let \(T > 0 \) be fixed. Then for any positive constant \(C_i = C(\lambda, p, \sigma, \kappa, H, v_1(0),T) \), we have

\[
E \sup_{t \in [0,T]} \left| v_i(t, v_i(0)) \right|^p \leq C_i, \quad i = 1,2.
\] (3.12)

Proof: Here we only prove the case of \(i = 1 \). For any \(t \in [0,T] \), we have

\[
v_i(t, v_i(0)) = v_i(0) + \int_0^t \kappa_i(\theta_i - v_i(s, v_i(0)))ds + \sigma_i \int_0^t v_i(s, v_i(0))dM^W_\beta(s).
\]

First, we consider the case that \(p \geq 2 \). Using the Young’s inequality, we have for any \(p \geq 2 \) that

\[
\sup_{t \in [0,T]} \left| v_i(t, v_i(0)) \right|^p \leq 3^{p-1}\left| v_i(0) \right|^p + M_i + M_k.
\] (3.13)

where

\[
M_i = \kappa_i^p \left(\int_0^t \theta_i - v_i(s, v_i(0))ds \right)^p, \quad M_k = \sigma_i^p \left(\int_0^t v_i(s, v_i(0))dM^W_\beta(s) \right)^p.
\]

Now, we compute \(E[M_i] \) and \(E[M_k] \). Using the Holder inequality and \((a+b)^p \leq 2^{p-1}(a^p + b^p)\), we have

\[
E[M_i] \leq C_i(\lambda, p, \sigma, T, H) \left| v_i(0) \right|^p, \quad E[M_k] \leq C_i(\lambda, p, \sigma, T, H) \left| v_i(0) \right|^p.
\] (3.14)

Following the similar proof of (3.7), we obtain

\[
E[M_i] \leq C_i(\lambda, p, \sigma, T, H) \left| v_i(0) \right|^p \left(\int_0^t \left| v_i(s, v_i(0)) \right|^p ds \right) \left| v_i(0) \right|^p ds.
\] (3.15)

Substituting (3.14) and (3.15) into (3.13), and letting

\[
C_i = 3^{p-1}\left| v_i(0) \right|^p + 6^{p-1}\kappa_i^p \theta_i^p T, \quad C_k = 3^{p-1}C_i(\lambda, p, \sigma, T, H) + 6^{p-1}\kappa_i^p T
\]

we obtain

47
Yu-dong Sun and Qian Ye

\[E \left[|v_1(s, v_1(0))|^p \right] \leq C_1 + C_2 \int_0^s E \left[|v_1(s, v_1(0))|^p \right] ds. \] \hspace{1cm} (3.16)

Hence, the Gronwall inequality implies that

\[\sup_{n \in [0, T]} E \left[|v_1(t)|^p \right] \leq C_3 \exp \left(C_4 t \right) = C_4 (\lambda, p, \sigma, \theta, \kappa, H, v_1(0), T), \quad p \geq 2. \] \hspace{1cm} (3.17)

Second, we prove that (3.17) still holds for any \(1 < p < 2 \). Using the Cauchy inequality, we obtain

\[E \left[|v_1(t, v_1(0))|^p \right] \leq E \left[|v_1(t, v_1(0))|^{2p} \right] \leq \left[\sup_{n \in [0, T]} E \left[|v_1(t, v_1(0))|^{2p} \right] \right]^{\frac{1}{2}}. \]

Noting that \(2p < 2 \) and using (3.17), we obtain

\[E \left[|v_1(t, v_1(0))|^p \right] \leq \sqrt{C_3} (\lambda, p, \sigma, \theta, \kappa, H, v_1(0), T). \]

Because \(t \in [0, T] \) is arbitrary, (3.17) is proved when \(1 \leq p < 2 \).

Third, if \(0 < p < 1 \), note that

\[|v_1(t, v_1(0))|^p = |v_1(t, v_1(0))|^{p+1} I_{[t \geq n, n \in [0, T)} + |v_1(t, v_1(0))|^p I_{[t < n, n \in [0, T)} \leq |v_1(t, v_1(0))|^{p+1} I_{[t \geq n, n \in [0, T)} + |v_1(t, v_1(0))|^p I_{[t < n, n \in [0, T)}.

Further we have

\[|v_1(t, v_1(0))|^p \leq |v_1(t, v_1(0))|^{p+1} I_{[t \geq n, n \in [0, T)} + 1 \leq |v_1(t, v_1(0))|^{p+1} + 1. \]

Hence it follows from the case \(1 < p < 2 \)

\[\sup_{t \in [0, T]} E \left[|v_1(t, v_1(0))|^p \right] \leq \sqrt{C_3} (\lambda, p, \sigma, \theta, \kappa, H, v_1(0), T) \]

This completes the proof of Lemma 3.1.

Following the proof of Theorem 3.1 and Lemma 3.1, we can prove the following lemma for the stock price equation.

Lemma 3.2. The stock price equation of the CEV model has a unique solution. Moreover

\[\sup_{n \in [0, T]} E \left[|S(t)|^p \right] \leq C_5 (\mu, \lambda, p, \sigma, H, \theta, \kappa, v_1(0), v_2(0), S(0), T). \] \hspace{1cm} (3.18)

4. Continuity

In this section, we discuss the continuity of the stock price equation of the CEV model.

Theorem 4.1. The stock price process of the CEV model \(\{S(t), t > 0\} \) is continuous in \(t \).

Proof: Note that for any \(0 \leq s < t \leq T \),

\[S(t) - S(s) = \int_s^t \mu S(s) ds + \int_s^t \sqrt{v_1(\tau)} S(\tau)^{\alpha} dM^{H}_{1,1}(\tau) + \int_s^t \sqrt{v_1(\tau)} S(\tau)^{\alpha} dM^{H}_{1,2}(\tau). \]

Using \((a + b + c)^4 \leq 3^3 (a^4 + b^4 + c^4) \), we obtain

\[\left| S(t) - S(s) \right|^4 \leq 3^3 A_1 + 3^3 A_2 + 3^3 A_3, \] \hspace{1cm} (4.1)
The Existence, Uniqueness and Continuity of a Solution to Mixed Fractional Constant Elasticity of Variance Model with Double Stochastic Volatilities

where

\[A_1 = \int_0^1 \mu S(s) ds, \quad A_2 = \int_0^1 \sqrt{\nu_1(\tau)} S(\tau) dM^\mu_{1,\tau}(\tau), \quad A_3 = \int_0^1 \sqrt{\nu_2(\tau)} S(\tau) dM^\mu_{2,\tau}(\tau). \]

It follows the Cauchy inequality,

\[\left(\int_s^t S(s) ds \right)^2 \leq \left(\int_0^1 \mu S(s) ds \right)^2. \]

Therefore,

\[E[A_1] \leq |\mu|^4 (t-s)^2 E\left[\int_s^t |S(s)|^4 ds \right] \leq |\mu|^4 (t-s)^2 \sup_{t \in [0,1]} E\left[|S(t)|^4 \right] ds. \tag{4.2} \]

(3.18) and (4.2) imply that

\[E[A_1] \leq |\mu|^4 C_{14} |t-s|^2. \tag{4.3} \]

Now we pay attention to \(E[A_4] \) and \(E[A_5] \). Using the B-D-G inequality[12,14], we obtain

\[E[A_4] \leq (\lambda^2 + 2HT^{2H-1}) \int \int E\left[|v_1(\tau)| |S(\tau)|^\alpha \right] d\tau, \quad E[A_5] \leq (\lambda^2 + 2HT^{2H-1}) \int \int E\left[|v_2(\tau)| |S(\tau)|^\alpha \right] d\tau. \]

We use the Holder inequality to arrive at

\[E[A_4] \leq (\lambda^2 + 2HT^{2H-1}) \int \int E\left[|v_1(\tau)|^\frac{4}{3} \right] \left[E\left[|S(\tau)|^{\frac{12}{3}} \right] \right] d\tau, \quad E[A_5] \leq (\lambda^2 + 2HT^{2H-1}) \int \int E\left[|v_2(\tau)|^\frac{4}{3} \right] \left[E\left[|S(\tau)|^{\frac{12}{3}} \right] \right] d\tau. \]

It follows (2.9) and (2.15) that

\[E[A_4] \leq C_{12} \int t |s|^2, \quad E[A_5] \leq C_{13} \int t |s|^2. \tag{4.4} \]

Combing (4.1), (4.3) and (4.4), we yield

\[E\left[|S(t) - S(s)|^4 \right] \leq C_1 |t-s|^2 + |\mu|^4 C_{14} |t-s|^2 \leq \left(C_1 T^{2H} + |\mu|^4 C_{14} \right) |t-s|^2. \tag{4.5} \]

Therefore, the theorem is proved.

Acknowledgments. The authors are sincerely grateful to the reference and the Associate Editor handling the paper for their valuable comments. This work was supported by Guizhou Provincial Education Foundation of Youth Science and Technology Talent Development (No. [2016]168).

The authors would like to the anonymous reviewers for their careful reading and constructive suggestions and comments.

Conflict of interest. The authors declare that they have no conflict of interest.

Authors’ Contributions. All the authors contributed equally to this work.

REFERENCES