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Abstract. This study aims to continue the study of the properties of pre-γ-open 
and pre-γ-generalized closed sets in fuzzy topological spaces. Also, we introduce the 
concepts of fuzzy pre-γ-closed, fuzzy pre-γ-closure, fuzzy pre-γ-interior, and fuzzy pre-
γ-generalized open sets. We prove that every fuzzy pre-γ-closed set is fuzzy pre-γ-
generalized-closed but not converse. In addition, we introduce some characterizations and 
properties of these concepts. Finally, we investigate the relationship between these fuzzy 
sets. 
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1. Introduction 
The idea of fuzzy sets originated from the classical paper of Zadeh [11] in 1965. The theory 
of fuzzy topological spaces was introduced and developed by Chang [4] in 1968 and since 
then many concepts in general topology have been extended to fuzzy topological 
spaces. In general topology, the concept of pre-γ-open sets was introduced and studied 
also by Ibrahim [6]. Properties of pre-γ-open sets and mappings are also discussed by 
Vadivel and Sivashanmugaraja [10]. Generalized maximal closed set in a topological 
space is studied by Banasode and Desurkar [2].    In 1979, Kasahara [8] defined the 
notion of an operation γ on fuzzy topological spaces. Kalitha and Das [7] introduced 
the notion of fuzzy γ-open sets. Fuzzy generalized γ-closed sets are introduced by De 
[5]. In [9], the concept of the pre-γ-open set has been generalized to t h e  fuzzy setting. 
In this paper fuzzy pre-γ-closed, fuzzy pre-γ-closure, fuzzy pre-γ-interior and fuzzy pre-
γ-generalized open sets are introduced. Notations, definitions and preliminaries appear 
in section 2. The main results of the paper are given in sections 3 and 4. In section 3, the 
properties of pre-γ-open fuzzy sets are discussed. In section 4, we introduce the notion of 
pre-γ-generalized open sets and investigate the relationships between these fuzzy sets. 
 
2. Preliminaries 
Throughout this paper (X,τ) or simply X stand for a fuzzy topological space (fts, for  
short). The interior, the closure and complement of a fuzzy set � ∈ ��is denoted by 
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int(A), cl(A) and Ac respectively. By 0X and 1X, we mean the constant fuzzy sets 
taking on the values 0 and 1 on X, respectively. Now we recall some of the 
fundamental definitions in fuzzy topology. 
 
Definition 2.1. [7] A fuzzy operation γ ∶ τ →  I�  such that µ ⊆  γ(µ),  for every 
µ ∈ τ, where γ(µ) denotes the value of γ at µ. The mapping defined as γ(µ)=µ, 
γ(µ)=cl(µ), γ(µ)=int(cl(µ)), etc are examples of fuzzy operations. 
 
Definition  2.2.   [7] A fuzzy subset λ of a fts (X,τ) is called a fuzzy  γ-open, if  ∀ px

λq 
λ , ∃ µ ∈ τ and px

λq µ such that γ(µ) ⊆ λ. τγ denotes the set  o f  all fuzzy γ-open sets. 
Clearly we have τγ ⊆  τ.  
 
Definition 2.3. [7] Let λ be a fuzzy set in a fts  X. Then τγ-cl(λ) is defined as τγ-cl(λ) = 
∧{µ : λ ≤ µ, µc ∈ τγ (X)} and τγ-int(λ) is defined as  τγ- int(λ) = ∨{µ : µ ≤       λ, µ ∈  τγ (X)}.  
 
Definition 2.4. [3] A fuzzy subset µ of a fts (X,τ) is called fuzzy preopen  if         µ 
≤      int(cl(µ)). 
 
Definition 2.5. [3] Let µ be a fuzzy subset of (X,τ). Then the fuzzy pre- interior of µ 
is defined by pint(µ) = ∨{ λ ≤ µ : λ ∈ FPO(X)} and fuzzy pre-closure of µ is defined 
by pcl(µ) = ∧{ λ ≥ µ : λ ∈ FPC(X)}. 
 
Definition 2.6.    [9] A fuzzy subset µ of (X,τ) is said to be fuzzy pre-γ-open (in short, 
fpγ-open) if µ ≤ τγ-int(cl(µ)). The family of all pre-γ-open fuzzy sets is denoted by 
FPγO(X). 
 
Definition 7.2.17. [1] A fts (X,τ) is called fuzzy door space if each fuzzy subset of  X is 
fuzzy open or fuzzy closed. 
 
3.  Fuzzy pre-γ-open and pre-γ-closed sets 
In this section, we introduce the concepts of pre-γ-closed, pre-γ-closure and pre-γ-
interior in fuzzy settings. Also we investigate some characterizations and fundamental 
properties of pre-γ-closed and pre-γ-open fuzzy sets. 
 
Definition 3.1. A fuzzy subset µ of (X,τ) is called fuzzy pre-γ-closed (in short,           
fpγ-closed) if µ ≥ τγ-cl(int(µ)). The family of all fuzzy pre-γ-closed sets is represented 
by FPγC(X). 
 

Theorem 3.1.  Let µ be any fuzzy subset of a fts X, 
       (i) µ is fpγ -open set iff µc is fpγ -closed; 

(ii)  µ is fpγ -closed set iff µc is fpγ -open. 
 
Definition 3.2.   Let µ be a fuzzy subset of a (X, τ ).  Then 

(i) fuzzy pre-γ-interior of µ is defined by pintγ(µ) = ∨{λ ≤ µ : λ ∈ 

FPγO(X)}. 

(ii) fuzzy pre-γ-closure of µ   is defined by   pclγ(µ) = ∧{ λ ≥ µ : λ ∈ 

FPγC(X)}. 
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Theorem 3.2.  For any fuzzy set µ of a fts X, the following statements hold 

(i)  intγ(µ) ≤ int(µ) ≤ pint(µ) ≤ µ ≤ pcl(µ) ≤ cl(µ) ≤ clγ(µ); 
(ii) intγ(µ) ≤ pintγ(µ) ≤ pint(µ) ≤ µ ≤ pcl(µ) ≤ pclγ(µ) ≤ clγ(µ); 

 
Example 3.1. Let X = {a, b, c} and   µ1,  µ2,  µ3,  µ4 ∈ IX  defined  by 
µ1(a)=0.3, µ1(b)=0.4, µ1(c)=0.7; µ2(a)=0.5, µ2(b)=0.5, µ2(c)=0.5; µ3(a)=0.5, 
µ3(b)=0.5, µ3(c)=0.7; µ4(a)=0.3, µ4(b)=0.4, µ4(c)=0.5. Let τ = {0, 1, µ1, µ2, µ3, 
µ4}. Now clearly (X,τ) is a fts. Define γ: τ → IX   by γ(1)=1, γ(0)=0, γ(µ1)=µ1, 
γ(µ2)=µ2, γ(µ3)=int(cl(µ3)), γ(µ4)=cl(µ4). The fuzzy sets µ3 and µ4 are fuzzy preopen 
and also fuzzy pre-γ-open sets, but not fuzzy γ -open. 
 

Theorem 3.3.  Let µ1 and µ2 be two fuzzy sets of a fts (X, τ ).  Then 
(i) µ1 ≤ µ2 iff pintγ(µ1) ≤ pintγ(µ2); 
(ii) µ1 ≤ µ2 iff pclγ(µ1) ≤ pclγ(µ2). 
Proof: Obvious. 
 
Theorem 3.4. For any fuzzy subset µ of a fts X, the following statements hold 
   (i)  pclγ(µc) = (pintγ(µ))c; 
   (ii) pintγ(µc) = (pclγ(µ))c. 
Proof:   
             (i)  (pint�(μ))� = (∨ �d: d ≤  μ, d ∈ FPγO(X)%)�

 

                               = ∧ {dc ∶ d ≤  μ, d ∈ FPγO(X)} 
                          = ∧ {c ∶ c ≥  μc, c ∈ FPγC(X)} 
             =  pcl�(μc). 
 

(ii)  (pcl�(μ))� = (pcl�(μ�)�)� 
                        = ((pint�(μ�))�)� 
   = pint�(μ�) 
 
Theorem 3.5. For any fuzzy subset µ of a fts X, the below statements hold. 
  (i)  µ is fuzzy pre-γ-closed iff  µ = pclγ(µ); 
  (ii) µ is fuzzy pre-γ-open iff µ = pintγ(µ). 
Proof: (i) Suppose  µ = pcl�(µ) =∧ {λ: λ is a pre-γ-closed fuzzy set and      - ≥
 .} that implies, µ ∈ ∧ {λ: λ is a pre-γ-closed fuzzy set and  λ ≥ µ  that implies, 
µ is pre-γ-closed fuzzy set. 

Conversely, suppose µ is a pre-γ-closed fuzzy set in X. We take µ ≤ µ and µ is a 
fuzzy pre-γ-closed fuzzy set. So µ ∈ {λ: λ is a pre-γ-closed fuzzy set and λ ≥ µ}, µ ≤ λ 
implies, µ = ∧{ λ: λ is a pre-γ-closed fuzzy set and λ ≥   µ} = pclγ(µ). 
(ii) Similar to that of (i). 
 
Theorem 3.6. In a fts X, the following statements hold for fuzzy pre-γ-closure. 

(i) pclγ(0X) = 0X; 
(ii)  pclγ(1X) = 1X; 
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(iii)  pclγ(µ) is a pre-γ-closed fuzzy set in  X; 
(iv) pclγ(pclγ(µ)) = pclγ(µ). 

 

Theorem 3.7. For any two fuzzy subsets µ1 and µ2 of a fts X, the below statements 
hold. 

(i) pcl�(μ0 ˅ μ2) ≥  pcl�(μ0) ˅ pcl�(μ2);  
(ii) pcl�(μ0 ˄ μ2) ≤  pcl�(μ0) ˄ pcl�(μ2); 

Proof: (i) Since µ1 ≤ µ1 ∨ µ2 (or) µ2 ≤ µ1 ∨ µ2, which gives  
                   pcl�(μ0) ≤  pcl�(μ0 ˅ μ2)  (or) pcl�(μ2) ≤  pcl�(μ0 ˅ μ2).  Therefore              

                   pcl�(μ0 ˅ μ2) ≥  pcl�(μ0) ˅ pcl�(μ2).  
           (ii) Similar to that of (i). 
 
Theorem 3.8. In a fts X, the following statements hold for fuzzy pre-γ-interior. 

(i) pintγ(0X) = 0X; 
(ii)  pintγ(1X) = 1X; 
(iii) pint γ(µ) is a pre-γ-open fuzzy set in  X. 

      (iv) pintγ(pintγ(µ)) = pintγ(µ). 
 
Theorem 3.9. For any two fuzzy subsets µ1 and µ2 of a fts X, the following statements 
hold. 

(i) pintγ(µ1 ∨ µ2) ≥   pintγ(µ1) ∨   pintγ(µ2); 
(ii)  pintγ(µ1 ∧ µ2) ≤   pintγ(µ1) ∧    pintγ(µ2). 

Proof: (i) Since µ1 ≤ µ1∨µ2 (or) µ2 ≤ µ1∨µ2 that implies pintγ(µ1) ≤ pintγ(µ1∨ µ2) (or) 
pintγ(µ2) ≤  pintγ(µ1∨µ2). Therefore, pintγ(µ1∨µ2) ≥              pintγ(µ1) ∨           pintγ(µ2). 
(ii) Similar to that of (i). 

Proposition 3.1. Let (X,τ) be fuzzy γ-regular and fuzzy door space. Then each pre-γ-
open fuzzy set is an open fuzzy set. 
 
4.  Fuzzy pre-γ-generalized open and pre-γ-generalized closed sets 
In this section, we introduce the concept of pre-γ-generalized open sets in fuzzy topological 
spaces. Further we discuss the relationships between fuzzy pre-γ-open and fuzzy pre-γ-
generalized open sets. 
 
Definition 4.1. Let γ be a fuzzy operation on a fts (X,τ). A fuzzy subset µ ∈ IX is 
called fuzzy pre-γ-generalized open (in short, fpγg-open) if µ ≤ pintγ(µ) whenever µ 
≤     λ and λ is pre-γ-closed fuzzy set in (X, τ ) . 
 
Remark 4.1. For any fuzzy subset µ in a fuzzy topological space X, 
(i) µ is fpγg-open iff µc is fpγg-closed; 
(ii)  µ is fpγg-closed iff µc is fpγg-open. 
 
Theorem 4.1.  A fuzzy subset µ of a fts (X, τ ) is fpγg-open  iff λ ≤ pintγ(µ), whenever 

λ is pre-γ-closed fuzzy set and λ ≤  µ. 
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Proof: Let µ be a fpγg-open in X. Then µc is fpγg-closed in X. Let λ be a fpγ-closed 
in X such that λ ≤ µ. So µc ≤ λc, λc is fpγ-open in X. Since µc is fpγg -closed, pclγ(µc) 
≤  λc, which gives (pintγ(µ))c ≤ λc. Hence λ ≤   pintγ(µ). 
Conversely, suppose that λ ≤ pintγ(µ), whenever λ ≤ µ and λ is fpγ-closed in X . So 

(pintγ(µ))c ≤ λc = ν, where ν is pre-γ-open fuzzy set fpγ-open in X. That is pclγ(µc) ≤  ν, 
which gives µc is fpγg -closed. Thus µ is fpγg-open. 
 

Theorem 4.2. Every closed fuzzy set in (X,τ) is fpγg-closed in (X,τ). 
Proof: Let µ be a closed fuzzy set in fts X. Let . ≤  -, where λ is pre-γ- open fuzzy 
set in X. Since µ is fuzzy closed, it is also is pre-γ-closed and so clγ(µ) = pclγ(µ) = µ ≤  
λ. Thus pclγ(µ) ≤   λ. Hence µ is fpγg-closed. 
 
Theorem 4.3. Every fuzzy γ-closed set in (X,τ) is fpγg-closed in (X,τ). 
Proof:  Let µ be a γ-closed fuzzy set in fts X. Let . ≤  -, where λ is  γ-open fuzzy 
set in X. Since µ is γ-closed, it is also is pre-γ-closed and so clγ(µ) = pclγ(µ) = µ ≤     λ. 
Thus pclγ(µ) ≤   λ. Thus µ is fpγg -closed. 
 
Theorem 4.4.  Every pre-γ-closed fuzzy set in (X,τ)  is fpγg-closed  in (X, τ ). 
Proof:  Let µ be a pre-γ-closed fuzzy set in fts X. Let . ≤  -, where  λ  is pre-γ-open 
fuzzy set in X. By hypothesis, µ is pre-γ-closed fuzzy set, we have pclγ(µ) = µ ≤    λ. 
Thus pclγ(µ) ≤   λ. Hence µ is fpγg -closed. 
But the converse need not be true as shown in the following example. 

Example 4.1. Let  X  = {a,b}. Consider the fuzzy sets µ1, µ2, ∈ IX defined by µ1(a)=0.2, 
µ1(b)=0.4;  µ2(a)=0.3, µ2(b)=0.6. Let τ = {1,0,µ1}. Now clearly (X,τ)  is a fts. 
Define γ: τ → IX by γ(1)=1, γ(0)=0, γ(µ1)=µ1. The fuzzy set µ2 is fpγg-closed set, 
but not fpγ -closed set. 
 
Theorem 4.5. If µ is pre-γ-generalized closed and pre-γ-open fuzzy set in X, then µ 
is fuzzy pre-γ-closed. 
Proof: Let µ ≤ µ, where µ is pre-γ-generalized closed and pre-γ-open fuzzy set. So
 pcl�(μ)  ≤  μ.  But μ ≤   pcl�(μ) .  Thus, µ = pclγ(µ)  and so  µ  is pre-γ-closed fuzzy
set. 
 
Theorem 4.6. Let µ be a fuzzy subset of a fts (X,τ). Then µ is a pre-γ-generalized-      
closed fuzzy set iff . ≤ - implies pclγ(µ) ≤ λ, ∀ pre-γ-closed fuzzy set λ in X. 
Proof: Let µ be a pre-γ-generalized-closed fuzzy set and λ be a pre-γ-closed fuzzy 
set such that µ ≤ λ. Thus µ ≤ λc and λc is pre-γ-open fuzzy set in X. Since µ is pre-γ-
generalized-closed fuzzy set, pclγ(µ) ≤ λc. Thus pclγ(µ) = λ. 
  Conversely, let ν be pre-γ-open fuzzy set in X, such that . ≤ -. Thus   
µ78νc which implies pclγ(µ) ≤   νc, so pclγ(µ)≤ ν. Thus µ is pre-γ-generalized-  
  closed fuzzy set in X. 
 
Theorem  4.7. If µ is pre-γ-generalized-closed fuzzy set in a fts (X,τ) and µ ≤  λ ≤  
pclγ(µ), then λ is also a pre-γ-generalized-closed fuzzy set in (X,τ). 
Proof: Let ν be pre-γ-open fuzzy set in X such that λ ≤  ν. So µ ≤ λ,   µ ≤ ν. By 
hypothesis µ is a pre-γ-generalized-closed fuzzy set in X, it follows that pclγ(µ) ≤ ν. Now 
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λ ≤ pclγ(µ) which gives pclγ(λ) ≤ pclγ(pclγ(µ)) = pclγ(µ). Hence pclγ(λ) ≤  ν. Thus λ 
is fuzzy pre-γ-generalized-closed in X. 
 
Theorem 4.8. If µ is pre-γ-generalized-open fuzzy set in a  fts (X,τ) and pintγ(µ) ≤   
λ ≤   µ, then λ is also a pre-γ-generalized-open fuzzy set in (X,τ). 
Proof: Let µ be fuzzy pre-γ-generalized-open and λ be any fuzzy set in X such that 
pint�(µ) ≤ λ ≤ µ . Then µc is a pre-γ-generalized-closed fuzzy set in X and 
μ� ≤  λ� ≤  pcl�(μ�).  Then, λc is a pre-γ-generalized-closed fuzzy set in X. Hence λ is 
fuzzy pre-γ-generalized-open set in X. 
 
Theorem 4.9. Let µ be any fuzzy subset of (Y,τY) and (Y,τY) be  a subspace of a fts 
(X, τX ). If µ is fpγg-closed set in X, then µ is fpγg-closed  in Y. 
 
5. Conclusion  
In this paper, we introduced the concepts of fuzzy pre-γ-closed, fuzzy pre-γ-closure, fuzzy 
pre-γ-interior and fuzzy pre-γ-generalized open sets in fuzzy topological spaces. We 
discussed the relationships between fuzzy pre-γ-closed and fuzzy pre-γ-generalized closed 
sets. We proved that every pre-γ-closed fuzzy set is pre-γ-generalized-closed as well as 
every γ-closed fuzzy set is pre-γ-generalized-closed but not converse. There is a scope to 
study and extend these newly defined generalized fuzzy sets.  
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