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Abstract. In 1961, MacRobert in his very popular, useful and interesting research paper 
obtained a new type of finite integrals and used the integrals to evaluate integral involving 
E-functions which he had developed and is a generalization of hypergeometric and 
generalized hypergeometric functions. The main objective of this short research paper is to 
find an exciting integral associated with a generalized hypergeometric function by using 
the integrals obtained by MacRobert. The beauty of our results is that they appear on the 
product of the ratios of gamma functions. It is clear that the integral associated with gamma 
functions, the results are very useful from the perspective of the point of view of 
applications. In terms of parameters, one can easily derive the known integrals due to 
Rathie and the integral given in Mathai and Saxena's book. It is no exaggeration to mention 
here that, for other integrals, the transformation and summation formulas involve 
generalized hypergeometric function. 
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1. Introduction 
Fernandez et al., [1] discussed the following bivariate Mittage-Leffler function that occurs 
naturally in biological engineering, its fractional calculus properties, and its associations 
with other special functions such as bivariate Laguerre polynomials:   
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As recently as 2021, Abubakar and Dudi [2] used the two-variable Mittage-Leffler function 
in equation (1) as a kernel to study some properties and applications to statistical and 
fractional calculus of the following new generalized beta function: 
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where !"��
 > 0, !"��
 > 0, !"��
 > 0, !"��
 > 0. 
They also [2] studied the following generalized Gauss and confluent hypergeometric 
functions defined by the beta function in equation (2): 
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where F, G ≥ 0, |+| < 1, !"��
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where F, G ≥ 0, |+| < 1, !"��
 > 0, !"��
 > 0, !"��
 > 0, !"��
 > 0, !"�<
 >
!"�;
 > 0. 
 
2. Results required 
The following interesting integral formulas by MacRobert’s [3] will be present in our 
current investigation: 
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where !"�Y
 > 0 and !"�]
 > 0, and 
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where !"�Y
 > −1 and !"�]
 > 0.  
This paper is motivated by the work of several researchers (see for example, [4]-[10]) who 
have studied many integrals formulas and transforms involving a wide range of special 
functions of mathematical physics play an important role in many field such as engineering, 
science and technology.  
 
3. Main result 
The following integral involving a generalized hypergeometric function will be evaluated 
in this article: 
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where !"�Y
 > 0 and !"�]
 > 0.  
Proof: Expressing the left-hand side of (8) by j, we have 
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Changing the order of integration and summation (which is reasonably easy seen to 
justified given the uniform convergence of the series involved in the process), after a little 
simplification, gives 
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Evaluating the integral using MacRobert's (5), we get 
 

j = ∑ �:
�
=>,?,@

A;B,C�D��,E/D

=�D,E/D
�!

���� "/KkX
V l"KT UV ��L�k
 ��M


��L�k�M
 m.  
And after some simplification, yields 

j = "Kh UV n�Y
 n�]

n�Y + ]
 o �:
��Y
k

�Y + ]
k
&�,�,�

�;(,)�; + p, < − ;

&�;, < − ;


1�

p!
�

���
 , 

Finally summing up the series, we easily go to the right-hand side of the (8). Consider 
equations (6) and (7), which leads to the following result: 
 
Corollary 3.1.     
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where !"�Y
 > −1 and !"�]
 > 0. 
 
5. Special cases 
In this section we will cover some of the very interesting known special cases of our main 
result. 

1. If we take : = Y + ] in equation (8) we get 
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2. If � = � = � = � = 1 in equation (8), gives 
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where !"�Y
 # 0 and !"�]
 > 0 and 89 0;(,) is extended Gauss hypergeometric 
function in Choi et al., [11]. 

3. Putting � = � = � = � = 1 and  F = G in equation (8), yields 
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where !"�Y
 > 0 and !"�]
 > 0 and 89 0;(,) is extended Gauss 
hypergeometric function in Chaudhry et al., [12].                 
 Setting � = � = � = � = 1 and  F = G = 0 in equation (8), we have  
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where !"�Y
 > 0 and !"�]
 > 0 and 89 0 is extended Gauss hypergeometric function in 
[13]. 

 
6. Conclusions 
The following integral that contains generalized hypergeometric function is evaluated 
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where !"�Y
 > 0 and !"�]
 > 0. We obtain other interesting results as a special cases of 
our main result.  
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