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Abstract. In 1961, MacRobert in his very popular, useful ameresting research paper
obtained a new type of finite integrals and usedititegrals to evaluate integral involving
E-functions which he had developed and is a gemat@n of hypergeometric and
generalized hypergeometric functions. The mainaibje of this short research paper is to
find an exciting integral associated with a geneeal hypergeometric function by using
the integrals obtained by MacRobert. The beautyunfresults is that they appear on the
product of the ratios of gamma functions. It isaclnat the integral associated with gamma
functions, the results are very useful from thespective of the point of view of
applications. In terms of parameters, one can\edsitive the known integrals due to
Rathie and the integral given in Mathai and Sasemaok. It is no exaggeration to mention
here that, for other integrals, the transformatemd summation formulas involve
generalized hypergeometric function.
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1. Introduction

Fernandez et al., [1] discussed the following hatarMittage-Leffler function that occurs
naturally in biological engineering, its fractioradlculus properties, and its associations
with other special functions such as bivariate leaggipolynomials:

T — ' @r+s W'Y*S
EsnpW,y) = Xis=0 T@rtnstp) risl (1)

whereé,n, p, t,w,y € C with Re(§) > 0,Re(n) > 0.
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As recently as 2021, Abubakar and Dudi [2] usedwlmevariable Mittage-Leffler function
in equation (1) as a kernel to study some propedied applications to statistical and
fractional calculus of the following new generatizgeta function:

BiPd(x,z) = [, ¥ 11— )"V E,, (—%,—ﬁ) dt, )
whereRe(§) > 0,Re(n) > 0,Re(p) > 0,Re(1) > 0.
They also [2] studied the following generalized &awand confluent hypergeometric
functions defined by the beta function in equati®n
qu(b+rc b) 57

zFlrgT?p(a,b; ¢;z) = Xyzo(@), 8an(bC SRR (3)
where p,q = 0,|z| <1,Re(5) > 0,Re(n) > 0,Re(p) > 0,Re(t) > 0,Re(c) >

Re(b) > 0,Re(a) > 0, and
qu(b+rc —b) 57
DA (p. ) = g D8
1F1T577p(blCJZ)_Zr O%#T! ’ (4)
where p,q = 0,|z| <1,Re(5) > 0,Re(n) > 0,Re(p) > 0,Re(t) > 0,Re(c) >
Re(b) > 0.

2. Results required
The following interesting integral formulas by Maabert's [3] will be present in our
current investigation:

f(? e @B (sind)* 1 (cos¢p)P1dp = ™2 Fr(gi g) (5)
whereRe(a) > 0 and Re(B) > 0,
Jg cos[(a + B)¢] (sing)* 1 (cosp)P~1d¢p = cos (1‘[ %) %, (6)
whereRe(a) > 0 and Re(B) > 0, and
Jgsin[(a + )] (sing)* (cosp)P~td¢p = sin (n %) sz?oiig;)’ (7)

whereRe(a) > —1 and Re(B) > 0.

This paper is motivated by the work of several aedleers (see for example, [4]-[10]) who
have studied many integrals formulas and transfonwalving a wide range of special

functions of mathematical physics play an importate in many field such as engineering,
science and technology.

3. Main result
The following integral involving a generalized hygeometric function will be evaluated
in this article:

foge'i(”““[")‘i’(sinq’>)”“1(cosqb)ﬁ‘1 2Fism (a, b;c; ei(d’_g)sind)) d¢

= TS T@IE) pTa (g b o o4 Bi1), (8)

r(a+p) 3. 2;6m,p
whereRe(a) > 0 and Re(B) > 0.
Proof: Expressing the left-hand side of (8) hywe have
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T . 3 1w BiPYUbtrc—b) (") . .

[ :foz el(a+,8)¢(sm¢)a 1(cos¢)‘8 1 Zr:o(a)r%—_b)ﬂem(d) 2)(sm¢)nd(;b.
Changing the order of integration and summationiclwvhis reasonably easy seen to
justified given the uniform convergence of the egiinvolved in the process), after a little
simplification, gives

B2 (p+rc—b) _pm T
= TR o(a), 22200 oI (2 o (5ing)  (cosp) Hdp (9)
Evaluating the integral using MacRobert's (5), wé g

_ v Bipa®Hre=b) iy ( in & D(a+n)T(B)
I'= Zr:o(a)r B(b,c—b)r! ’ { : I'(a+n+p) }
And after some simplification, yields

e [(@) T(B) " (@, (@), By (b +1,c =) 17
‘T@+p) L@+fn  Blc—b 1’

Finally summing up the series, we easily go torigbt-hand side of the (8). Consider
equations (6) and (7), which leads to the followiagult:

I =

Corollary 3.1.
Jg cos[(a + B)¢p] (sing)* (cosp)F1 zF;;g;?,p (a, b; c; ei(d’_g)sin(p) d¢
= cos (11 Z) OB F¥P4 (a4, b, a;c,a + f; 1), (10)

2/ r(a+p) 3 26mp
whereRe(a) > 0 and Re(8) > 0, and

Jgsin[(a + B)¢] (sing)* (cosp)P1 zFf;;g#_p (a, b; c; ei((p_?)sinqb) d¢o
= sin (n %) L@r)  prpa (a,b,a;c,a+ B;1), (11)

r(a+p) 3 2:8mp
whereRe(a) > —1 and Re(B) > 0.

5. Special cases
In this section we will cover some of the very netgting known special cases of our main
result.

1. If we takea = a + f in equation (8) we get

fOEe'i(”““[")‘i’(sinq’>)”“1(cosqb)ﬁ‘1 zF;;g;?,p (a, b; c; ei(d’_?)sind)) do

_ inér@r® ptpq .
= Tarpy o (@ @G L).
2. If § =n=p=1=1Iinequation (8), gives

T

fog e @HPP (sing)* 1 (cosp)P ! ,F1p g (a, b;c;e i(d’_?)sin(j)) d¢

mg r(rp)

=€ Tp 3

Fypqa,b,a;c,a+ B; 1),
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whereRe(a) > 0 and Re(B) > 0 and ,F,, , is extended Gauss hypergeometric
function in Choi et al., [11].
3. Puttingd =n=p =1 =1andp = q in equation (8), yields

fogei(““;)d’ (sing)* (cosp)P~1 ,F,, (a, b; c; ei(‘p_g)sinqﬁ) d¢

in % [(@)r(B)
ra+p) 3

where Re(a) >0andRe(f) >0 and ,F,, is extended Gauss
hypergeometric function in Chaudhry et al., [12].
Settingd =n =p =7 =1andp = q = 0 in equation (8), we have

fogei(“+ﬁ)¢(sin¢)“_1(cosd))ﬁ_l N (a, b; c; ei(‘p_%)sinqb) do

=e Fz;p(a, b,a;c,a + B;1),

i &r@rp)
22— - -
r(a+p) 3

whereRe(a) > 0 and Re(B) > 0 and ,F; is extended Gauss hypergeometric function in
[13].

=e Fy(a,b,a;c,a + B;1),

6. Conclusions

The following integral that contains generalizegéngeometric function is evaluated
fog el(@+B)? (sing)*1(cosp)PF1 ZF;;sp’;’]q'p (a, b;c; ei(d)_?)sinqb) do

whereRe(a) > 0 and Re(B) > 0. We obtain other interesting results as a speeasés of

our main result.
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