Annals of Pure and Applied Mathematics Vol. 25, No. 2, 2022, 97-107 ISSN: 2279-087X (P), 2279-0888(online) Published on 20 June 2022 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v25n2a06868

# Annals of Pure and Applied <u>Mathematics</u>

# **Relatively Prime Split Geodetic Number of a Graph**

C. Jayasekaran<sup> $1^*$ </sup> and A. Sheeba<sup>2</sup>

<sup>1,2</sup>Department of Mathematics, Pioneer Kumaraswamy College Nagercoil 629003, Tamil Nadu, India. Email: <u>1jayacpkc@gmail.com</u>; <u>2jelina.j@gmail.com</u> Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli 627 012, Tamil Nadu, India. \*Corresponding author. Email: <u>jayacpkc@gmail.com</u>

Received 2 May 2022; accepted 18 June 2022

*Abstract.* In this paper we introduce relatively prime split geodetic set of a graph G. A set  $S \subseteq V(G)$  is said to be relatively prime split geodetic set in G if S is a relatively prime geodetic set and  $\langle V(G) - S \rangle$  is disconnected. The relatively prime split geodetic set is denoted by  $g_{rps}(G)$ - set. The minimum cardinality of relatively prime split geodetic set is the relatively prime split geodetic number and it is denoted by  $g_{rps}(G)$ .

*Keywords:* Geodetic set, geodetic number, prime split geodetic set, relatively prime, line graph.

#### AMS Mathematics Subject Classification (2010): 05C12

#### **1. Introduction**

By a graph G = (V, E) we mean a finite, connected, undirected graph with neither loops nor multiple edges. The order |V| and size |E| of G are denoted by p and q respectively. For graph theoretic terminology we refer to West [7].

In a connected graph *G*, the distance between two vertices *x* and *y* is denoted by d(x, y) and is defined as the length of a shortest x - y path in *G*. If  $e = \{u, v\}$  is an edge of a graph *G* with deg(u) = 1 and deg(v) > 1, then we call *e* a pendant edge, *u* a pendent vertex and *v* a support vertex. A set of vertices is said to be independent if no two vertices in it are adjacent. A vertex *v* of *G* is said to be an extreme vertex if the subgraph induced by its neighborhood is complete. For any set *S* of points of *G*, the induced sub graph < S > is the maximal subgraph of *G* with point set *S*. Thus two points of *S* are adjacent in < S > if and only if they are adjacent in *G*. An acyclic connected graph is called a tree. An x - y path of length d(x, y) is called geodesic. A vertex *v* is said to lie on a geodesic *P* if *v* is an internal vertex of *P*. The closed interval I[x, y], consists of x, y and all vertices lying on some x - y geodesic of *G* and for a non empty set  $S \subseteq V(G), I[S] = \bigcup_{x,y \in S} I[x, y]$ .

A set  $S \subseteq V(G)$  in a connected graph is a geodetic set of G if I[S] = V(G). The geodetic number of G denoted by g(G), is the minimum cardinality of a geodetic set of G. The

geodetic number of a disconnected graph is the sum of the geodetic number of its components. A geodetic set of cardinality g(G) is called g(G) – set. Various concepts inspired by geodetic set are introduced in [1, 4]. The concept relatively prime domination was introduced by C. Jayasekaran et. al [5]. The relatively prime geodetic number of a graphs was introduced by C. Jayasekaran et. al [6]. In [7, 8], r-Relatively Prime sets were studied. In this paper we define relatively prime split geodetic number of graphs.

**Definition 1.1. [3]** The line graph L(G) of a graph G is the graph whose vertices are the edges of G and two vertices in L(G) are adjacent if the corresponding edges of G are adjacent.

**Definition 1.2.** [5] A set  $S \subseteq V(G)$  is said to be relatively prime dominating set of a graph *G* if it is a dominating set of *G* with at least two elements and for every pair of vertices *u* and *v* in *S* such that (degu, deg v) = 1. The minimum cardinatility of a relatively prime dominating set of *G* is called relatively prime domination number of *G* and it is denoted by  $\gamma_{rpd}(G)$ .

**Definition 1.3.** [8] A geodetic set *S* of a graph G = (V, E) is a split geodetic set if the induced subgraph  $\langle V(G) - S \rangle$  is disconnected. The split geodetic number  $g_s(G)$  of *G* is the minimum cardinality of a split geodetic set.

**Definition 1.4.** [2] The jewel graph  $J_n$  is a graph with vertex set  $V(J_n) = \{u, x, v, y, v_i \mid 1 \le i \le n\}$  and  $E(J_n) = \{ux, vx, uy, vy, xy, uv_i, vv_i \mid 1 \le i \le n\}$ .

**Definition 1.5. [9]** The double fan  $DF_n$  consists of two fan graph that have a common path. In other words  $DF_n = P_n + \overline{K}_2$ .

**Definition 1.6.** [2] The n-pan graph is the graph obtained by joining a cycle  $C_n$  to a singleton graph  $K_1$  with a bridge. It is denoted by  $P_{n_n}$ .

# 2. Some basic result

In this section we cite some results to be used in the sequel.

**Theorem 2.1.** [5] Each end vertices of a graph G belongs to relatively prime geodetic set of G.

**Theorem 2.2.** [5] Each relatively prime geodetic set of a graph contains its extreme vertices.

**Theorem 2.3. [5]** For a star graph  $K_{1,n}$ ,  $g_{rp}(K_{1,n}) = \begin{cases} 3 \text{ for } n = 2\\ 0 \text{ for } n \ge 2 \end{cases}$ .

**Theorem 2.4.** [5] For a bistar graph  $B_{m,n}$ ,  $g_{rp}(B_{m,n}) = \begin{cases} 3 \text{ for } m = n = 1 \\ 0 \text{ otherwise} \end{cases}$ . **Theorem 2.5.** [5] For a connected graph *G* of order *n* if  $g_{rp}(G)$  exists, then  $g(G) \leq g_{rp}(G) \leq n$ .

**Theorem 2.6.** [5] For a wheel graph  $W_n$   $(n \ge 4)$ ,  $g_{rp}(W_n) = \begin{cases} 4 \text{ if } n = 4 \\ 3 \text{ if } n = 5 \\ 0 \text{ otherwise} \end{cases}$ .

# 3. Relatively prime split geodetic number of a graph

**Definition 3.1.** A set  $S \subseteq V(G)$  is said to be relatively prime split geodetic set in *G* if *S* is a relatively prime geodetic set and  $\langle V(G) - S \rangle$  is disconnected. The relatively prime split geodetic set is denoted by  $g_{rps}(G)$ -set. The minimum cardinality of relatively prime split geodetic set is the relatively prime split geodetic number and it is denoted by  $g_{rps}(G)$ .

**Example 3.2.** Consider the graph in figure 1. The set  $S = \{v_1, v_7\}$  is a minimum geodetic set and  $S' = \{v_1, v_5, v_7\}$  is a minimum relatively prime geodetic set. But  $\langle V(G) - S' \rangle = P_4$  is connected and hence S' cannot be a relatively prime split geodetic number. Now consider  $S'' = \{v_1, v_4, v_5, v_7\}$ . Then S'' is a minimum relatively prime geodetic set and  $\langle V(G) - S'' \rangle$  is disconnected. Here S'' is a relatively prime split geodetic set of G. Moreover it has the minimum cardinality with this property and hence  $g_{rps}(G) = 4$ .



Figure 1: G

**Theorem 3.3.** Let *G* be a connected graph of order *n*. Then

(i) Each relatively prime split geodetic set of G contains its extreme vertices.

(ii) Each end vertex of G belongs to relatively prime spilt geodetic set of G.

**Proof:** Let G be a connected graph of order n. By definition, each relatively prime split geodetic set is a relatively prime geodetic set.

- (i) Hence by Theorem 2.1, each relatively prime split geodetic set of G contains its extreme vertices.
- (ii) Further by Theorem 2.2, each end vertex of G belongs to relatively prime split geodetic set of G.

**Theorem 3.4.** For a connected graph G of order n, if  $g_{rps}(G)$  exists, then  $g(G) \leq g_{rp}(G) \leq g_{rps}(G)$ .

**Proof:** Let G be a connected graph of order n, such that  $g_{rps}(G)$  exists. Since every relatively prime split geodetic set is a relatively prime geodetic set,  $g_{rp}(G) \le g_{rps}(G)$ . By Theorem 2.5,  $g(G) \le g_{rp}(G)$ . Thus,  $g(G) \le g_{rps}(G) \le g_{rps}(G)$ .

**Remark 3.5.** For the cycle graph  $C_n$  of odd order n,  $(n \ge 5)$ ,  $g(C_n) = g_{rp}(C_n) = g_{rps}(C_n) = 3$ . Hence all the inequalities in Theorem 3.4 become sharp. Now consider the graph G given in Figure 1. Here  $S = \{v_1, v_7\}$  is a geodetic set of G and of minimum order and so  $g(G) = 2.S' = \{v_1, v_6, v_7\}$  is a minimum relatively prime geodetic set of G and so  $g_{rp}(G) = 3$ . The set  $S'' = \{v_1, v_4, v_6, v_7\}$  is a minimum relatively prime split geodetic set of G and so  $g_{rps}(G) = 4$ . Thus  $g(G) < g_{rps}(G) < g_{rps}(G)$  and hence all the inequalities in Theorem 3.4 become strict.

**Theorem 3.6.** For cycle  $C_n$  of even order  $n \ge 6$ ,  $g_{rps}(C_n) = 3$ .

**Proof:** Let  $v_1 v_2 ... v_n v_1$  be the cycle  $C_n$  of order n. Clearly  $S = \{v_i, v_{i+\frac{n}{2}}\}$  where the suffices modulo n, is a minimum geodetic set of  $C_n$  and hence  $g(C_n) = 2$ . By definition, any relatively prime split geodetic set of  $C_n$ , must contain at least 3 vertices of  $C_n$ . Let  $S' = \{v_i, v_{i+1}, v_{i+\frac{n}{2}}\}$  where the suffices modulo n. Then S' is a geodetic set. Now  $d(v_i, v_{i+1}) = 1, d\left(v_i, v_{i+\frac{n}{2}}\right) = \frac{n}{2}$  and  $d\left(v_{i+1}, v_{i+\frac{n}{2}}\right) = \frac{n}{2} - 1$ . Clearly  $(1, \frac{n}{2}) = (1, \frac{n}{2} - 1) = (\frac{n}{2}, \frac{n}{2} - 1) = 1$ . Also  $\langle V(G) - S' \rangle = P_{\frac{n}{2}-2} \cup P_{\frac{n}{2}-1}$  which is disconnected. Therefore, S' is a minimum relatively prime split geodetic set of  $C_n$  and hence,  $g_{rps}(C_n) = 3$ .

Note 3.7. For n = 4,  $g_{rps}(C_n) = 0$ .

**Theorem 3.8.** For path graph  $P_n$  of order n,  $g_{rps}(G) = 3$  for  $n \ge 6$  and  $n \ne 7$ . **Proof:** Let  $v_1, v_2, \ldots, v_n$  be a path  $P_n$ . Let S be a minimum relatively prime geodetic set of  $P_n$ . By Theorem 2.1, the end vertices  $v_1$  and  $v_n$  must be in any relatively prime geodetic set and hence  $v_1, v_n \in S$ .

Case 1. n is even

Subcase 1.1. n = 4

To get relatively prime split geodetic set, we must add one more vertex to S. Then S is either  $\{v_1, v_2, v_4\}$  or  $\{v_1, v_3, v_4\}$  and  $\langle V(G) - S \rangle = K_1$  which is connected. Thus  $g_{rps}(P_n) = 0$ .

Subcase 1.2.  $n \ge 6$ 

Clearly  $S = \{v_1, v_3, v_n\}$  is a geodetic set and  $d(v_1, v_3) = 2$ ,  $d(v_1, v_n) = n - 1$  and  $d(v_3, v_n) = n - 3$ . Since *n* is even, both n - 1 and n - 3 are odd and hence (2, n - 1) = (2, n - 3) = (n - 1, n - 3) = 1. Also  $\langle V(G) - S \rangle = K_1 \cup P_{n-4}$  which is disconnected. Therefore *S* is a minimum relatively prime split geodetic set of  $P_n$  and hence  $g_{rps}(P_n) = 3$ .

Case 2. n is odd

Subcase 2.1. n = 3

Clearly  $S = \{v_1, v_2, v_3\}$  is the only relatively prime geodetic set and  $V(P_n) - S = \phi$ . Thus  $g_{rps}(P_n) = 0$ . Subcase 2.2. n = 5

To get relatively prime split geodetic set, we must add one more vertex to S. Then  $S = \{v_1, v_3, v_5\}$  and  $\langle V(G) - S \rangle = K_1 \cup K_1$  which is disconnected. Hence S is a split geodetic set. For  $v_i, v_j \in S$ , we have  $d(v_i, v_j) = 2$  and therefore any two shortest distance between are not relatively prime. Hence it follows that  $g_{rps}(P_n) = 0$ . Subcase 2.3.  $n \ge 7$ 

Clearly  $S = \{v_1, v_i, v_n\}$  where  $i \equiv 0 \pmod{2}$  is a geodetic set and  $d(v_1, v_n) = n - 1$ ,  $d(v_1, v_i) = i - 1$ ,  $d(v_i, v_n) = n - i$ . Since *n* is odd, n - 1 is even and also *i* is even implies that both i - 1 and n - i are odd. This implies that (n - 1, i - 1) = (n - 1, n - i) = (i - 1, n - i) = 1. Also  $\langle V(G) - S \rangle = K_{i-2} \cup P_{n-i-1}$ , which is disconnected. Therefore *S* is a minimum relatively prime split geodetic set of  $P_n$  and hence  $g_{rps}(P_n) = 3$ .

**Theorem 3.9.** For a connected graph G, if  $g_{rps}(G)$  exists, then  $g_{rps}(G) \ge 3$ . **Proof:** Let  $S \subseteq V(G)$  be a minimum relatively prime split geodetic set of G. Then S is a relatively prime geodetic set and hence by the definition  $|S| \ge 3$ . Hence  $g_{rps}(G) \ge 3$ .

**Theorem 3.10.** For the jewel graph  $J_n$ ,  $g_{rps}(J_n) = 3$ .

**Proof:** Consider the 4 cycle  $u_1u_2 u_3 u_4 u_1$ . Join  $u_2$  and  $u_4$ , new vertices  $v_i, 1 \le i \le n$  and join  $v_i$  to both  $u_1$  and  $u_3$ . The resulting graph G is the jewel graph  $J_n$  with vertex set  $V(G) = \{u_1, u_2, u_3, u_4, v_i/1 \le i \le n\}$  and edge set

 $E(G) = \{u_1u_2, u_1u_3, u_1u_4, u_2u_3, u_2u_4, u_3u_4, u_1v_i, u_3v_i/1 \le i \le n\}.$ 

Clearly  $S = \{u_1, u_3\}$  is a minimum geodetic set. By definition, any relatively prime split geodetic set must contain at least three vertices. Let  $S' = \{u_1, u_3, v_i/1 \le i \le n\}$ . Clearly S' is a geodetic set and  $d(u_1, u_3) = 2, d(u_1, v_i) = 1, d(u_3, v_i) = 1$  and (2,1) =(1,1) = 1. Also  $\langle V(G) - S \rangle = \overline{K}_n$  which is disconnected and hence S' is a minimum relatively prime split geodetic set of  $J_n$ . Thus  $g_{rps}(J_n) = 3$ .

**Theorem 3.11.** If G is either complete graph  $K_n$  or star graph  $K_{1,n}$  or bistar graph  $B_{m,n}$ , then  $g_{rps}(G) = 0$ .

**Proof:** (i) We have d(u, v) = 1 for any two vertices u and v in  $K_n$ ,  $(n \ge 3)$ . Let  $S = V(K_n)$ . Clearly S is the minimum relatively prime geodetic set of  $K_n$  and hence  $g_{rp}(K_n) = n$ . Since  $V(K_n) - S = \phi$ , there is no relatively prime split geodetic set of  $K_n$  and hence  $g_{rps}(K_n) = 0$ .

(ii) Let v be the central vertex and  $u_i, 1 \le i \le n$  be the vertices of  $K_{1,n}, (n \ge 2)$ . Let S be a minimum relatively prime geodetic set of  $K_{1,n}$ . By Theorem 2.3, |S| = 3 for n = 2. In this case  $K_{1,2} = P_3$  and  $V(K_{1,2}) - S = \phi$ . This implies that  $K_{1,n}$  has no relatively prime split geodetic set and hence  $g_{rps}(K_{1,n}) = 0$ .

(iii) Let  $u_0$  and  $v_0$  be the vertices of  $P_2$ . Let  $u_1, u_2, ..., u_m$  be the vertices attached with  $u_0$  and let  $v_1, v_2, ..., v_n$  be the vertices attached with  $v_0$ . The resultant graph is a bistar graph  $B_{m,n}$ ,  $(m, n \ge 1)$  with  $V(B_{m,n}) = \{u_0, v_0, u_i, v_i, 1 \le i \le m, 1 \le j \le n\}$  and  $E(B_{m,n}) = \{u_0, v_0, u_0, u_i, v_0, v_j, 1 \le i \le m, 1 \le j \le n\}$ . Let *S* be a minimum relatively prime geodetic set of  $B_{m,n}$ . By Theorem 2.4, |S| = 3 for m = n = 1. In this case  $B_{1,1} = P_4$  and  $\langle V(B_{m,n}) - S \rangle = K_1$  which is connected and hence  $B_{m,n}$  has no relatively prime split geodetic set. Thus  $g_{rps}(B_{m,n}) = 0$ .

**Theorem 3.12.** For a wheel  $W_n = K_1 + C_{n-1}$   $(n \ge 4)$ ,  $g_{rps}(W_n) = \begin{cases} 3 \text{ if } n = 5 \\ 0 \text{ otherwise} \end{cases}$ . **Proof:** Let  $v_1 v_2 \dots v_{n-1} v_1$  be the outer cycle  $C_{n-1}$  and v be the central vertex of  $W_n$ . Then  $d(v_i, v_j) = 2$  for  $1 \le i \ne j \le n-1$  and  $\{i, j\} \ne \{1, n-1\}$ . We consider the following cases. Case 1. n = 4

Clearly,  $W_4 = K_4$ . By Theorem 3.11,  $g_{rps}(W_4) = 0$ . Case 2. n = 5

Clearly  $S = \{v_1, v_3\}$  is a minimum geodetic set. By definition, any relatively prime split geodetic set must contain at least three vertices. Let  $S' = \{v_1, v_3, v\}$ . Then S' is a geodetic set. Now  $d(v_1, v_3) = 2$ ,  $d(v_1, v) = 1$ ,  $d(v_3, v) = 1$  and (2, 1) = (1, 1) = 1. Also  $\langle V(W_n) - S' \rangle = \overline{K}_2$  which is disconnected and hence S' is a minimum relatively prime split geodetic set. Therefore  $g_{rps}(W_n) = 3$ . Case 3.  $n \ge 6$ 

Any minimum geodetic set of  $W_n$  is  $S_i = \{v_i, v_{i+2}, v_{i+4}, \dots, v_{i+(\lfloor \frac{n}{2} \rfloor - 1)^2}\}$  and the  $\langle V(W_n) - S_i \rangle = K_{1,\lfloor \frac{n+1}{2} \rfloor}$  which is connected. Let  $S'_i =$ subgraph  $\{v_i, v_{i+2}, v_{i+4}, \dots, v_{i+(\lfloor \frac{n}{2} \rfloor - 1)^2}, v\}$ . Then  $S'_i$  is a geodetic set and  $\langle V(W_n) - S'_i \rangle = \overline{K}_{|\frac{n+1}{2}|}$  which is disconnected. Now  $d(v_i, v_{i+2}) = d(v_{i+2}, v_{i+4}) = \dots = 2$  and hence any two of these shortest distances are not relatively prime. This implies that  $g_{rps}(W_n) = 0$ . The result follows from cases 1, 2 and 3.

**Theorem 3.13.** For a double fan graph  $DF_n$ ,  $g_{rpns}(DF_n) = 3$  if  $n \ge 3$ .

**Proof:** Let  $v_1 v_2 \dots v_n$  be a path. Add two vertices  $u_1$  and  $u_2$  which are adjacent to each  $v_i, 1 \le i \le n$ . The resultant graph is the double fan  $DF_n$ . Clearly

 $\{u_1 v_i, u_2 v_i / 1 \le i \le n\}$  and

 $|V(DF_n)| = n + 2, |E(DF_n)| = 3n - 1.$  In  $DF_n, S = \{u_1, u_2\}$  is а minimum geodetic set. To get relatively prime split geodetic set we add one more vertices to S. Let  $S' = \{u_1, u_2, v_i\}$  where  $2 \le i \le n - 1$ . Clearly S' is a geodetic set and  $\langle V(G) - S' \rangle$  $= P_{n-i} \cup P_{i-1}$ , which is disconnected. Now  $d(u_1, u_2) = 2, d(u_1, v_1) = 2$  $1, d(u_2, v_1) = 1$  and (1, 2) = (1, 1) = 1. Hence S' is a minimum relatively prime split geodetic set of  $DF_n$ . Thus  $g_{rpns}(DF_n) = 3$ .

**Theorem 3.14.** For a 1 - pan graph  $P_{n_1}$  of even order  $n \ge 4$ ,  $g_{rps}(P_{n_1}) = 3$ . **Proof:** Let  $v_1 v_2 \dots v_n v_1$  be a cycle  $C_n$  and let  $K_1$  be the vertex v. Join u with  $v_1$ , we get a 1-pan graph  $P_{n_1}$ . Clearly  $V(P_{n_1}) = \{u, v_1\}$  and  $E(P_{n_1}) = \{u, v_1, v_j, v_{j+1}/1 \le j \le n\}$ where the suffices modulo n. In  $P_{n_1}$ ,  $S = \{u, v_{1+\frac{n}{2}}\}$  is a minimum geodetic set. To get relatively prime split geodetic set we add one more vertices to S. Let  $S' = \left\{ u, v_1, v_{1+\frac{n}{2}} \right\}$ . Clearly S' is a geodetic set and  $\langle V(G) - S' \rangle = P_{\frac{n-2}{2}} \cup P_{\frac{n-2}{2}}$  which is disconnected.

Now  $d(u, v_1) = 1, d\left(u, v_{1+\frac{n}{2}}\right) = \frac{n}{2} + 1, d\left(v_1, v_{1+\frac{n}{2}}\right) = \frac{n}{2}$  and  $(1, \frac{n}{2} + 1) = (1, \frac{n}{2}) = (\frac{n}{2} + 1, \frac{n}{2}) = 1$ . Hence S' is a minimum relatively prime split geodetic set of  $P_{n_1}$ . Thus  $g_{rps}(P_{n_1}) = 3$ .

**Theorem 3.15.** For a Dumbbell graph  $Db_n$ ,  $g_{rps}(Db_n) = \begin{cases} 3 \text{ if } n \text{ is even} \\ 0 \text{ if } n \text{ is odd} \end{cases}$ **Proof:** The dumbbell graph  $Db_n$  is obtained by joining two disjoint cycles

**Proof:** The dumbbell graph  $Db_n$  is obtained by joining two disjoint cycles  $u_1 u_2 ... u_n u_1$  and  $v_1 v_2 ... v_n v_1$  with an edge  $u_1 v_1$ . Then the vertex set  $V(Db_n) = \{u_i, v_i/1 \le i \le n\}$  and edge set  $E(Db_n) = \{u_1 v_1, u_1 u_n, v_1 v_n, u_i u_{i+1}, v_i v_{i+1}/1 \le i \le n-1\}$ . Clearly  $Db_n$  has 2n vertices and 2n + 1 edges. Now we consider the following cases.

Case 1. n is even

Clearly  $S = \{u_{\frac{n}{2}+1}^{n}, v_{\frac{n}{2}+1}^{n}\}$  where the suffices modulo n, is a minimum geodetic set. By definition any relatively prime split geodetic set must contains at least three vertices. Let  $S' = \{u_{\frac{n}{2}+1}^{n}, u_{\frac{n}{2}-1}^{n}, v_{\frac{n}{2}+1}^{n}\}$  where the sufficies modulo n. Clearly S' is a geodetic set and < V(G) - S' > is disconnected. Now  $d(u_{\frac{n}{2}+1}^{n}, u_{\frac{n}{2}-1}^{n}) = 2, d(u_{\frac{n}{2}+1}^{n}, v_{\frac{n}{2}+1}^{n}) = \left[\frac{n+1}{2}\right], d(u_{\frac{n}{2}-1}^{n}, v_{\frac{n}{2}+1}^{n}) = \left[\frac{n-1}{2}\right]$  and  $(1, \left[\frac{n+1}{2}\right]) = (1, \left[\frac{n-1}{2}\right]) = (\left[\frac{n+1}{2}\right], \left[\frac{n-1}{2}\right]) = 1$ . Hence S' is a minimum relatively prime split geodetic set of  $Db_n$ . Thus  $g_{rps}(Db_n) = 3$ . Case 2. n is odd

If n = 3, then  $S = \{u_2, u_3, v_2, v_3\}$  is a minimum geodetic set and  $\langle V(G) - S \rangle = K_2$  is connected and hence  $g_{rps}(Db_n) = 0$ .

Let  $n \ge 5$ . Clearly,  $S = \left\{ u_{\left[\frac{n}{2}\right]}, u_{\left[\frac{n}{2}+1\right]}, v_{\left[\frac{n}{2}\right]}, v_{\left[\frac{n}{2}+1\right]} \right\}$  where the sufficies modulo n, is a minimum geodetic set and < V(G) - S' > is connected. To get relatively prime split geodetic set we must add one more vertex to S. Let  $S' = \left\{ u_{\left[\frac{n}{2}\right]}, u_{\left[\frac{n}{2}+1\right]}, u_1, v_{\left[\frac{n}{2}\right]}, v_{\left[\frac{n}{2}+1\right]} \right\}$  where the sufficies modulo n, is a minimum geodetic set and < V(G) - S' > is disconnected. Now  $d\left(u_{\left[\frac{n}{2}\right]}, u_{\left[\frac{n}{2}+1\right]}\right) = 1, d\left(u_{\left[\frac{n}{2}\right]}, u_{1}\right) = \left[\frac{n}{2}\right], d\left(u_{\left[\frac{n}{2}+1\right]}, u_{1}\right) = \left[\frac{n}{2}\right], d\left(u_{\left[\frac{n}{2}+1\right]}, u_{1}\right) = \left[\frac{n}{2}\right], d\left(u_{\left[\frac{n}{2}+1\right]}\right) = 1, d\left(u_{1}, v_{\left[\frac{n}{2}+1\right]}\right) = \left[\frac{n}{2}\right]$  where  $u_{i}, v_{j} \in S'$  and hence the shortest distance between any two vertices in S' is either  $\left[\frac{n}{2}\right]$  or  $\left[\frac{n}{2}\right]$ . It follows that  $g_{rps}(Db_{n}) = 0$ .

**Theorem 3.16.** For the complete bipartite  $K_{m,n}$ ,

$$g_{rps}(K_{m,n}) = \begin{cases} 3 \text{ if } m = 2, n \ge 3 \text{ or } m \ge 3, n = 2\\ 0, & \text{otherwise} \end{cases}$$

**Proof:** Let  $X = \{u_1, u_2, ..., u_m\}$  and  $Y = \{v_1, v_2, ..., v_n\}$  be a partition of vertex set of  $K_{m,n}$ . Let S be a minimum relatively prime split geodetic set. We consider the following cases.

Case 1.  $m = 1, n \ge 2$  or  $n = 1, m \ge 2$ 

In both cases, the graph is a star graph. By Theorem 3.3(ii) the end vertices  $\{v_1, v_2, \dots, v_n\} \subseteq S$ . Since  $d(v_1, v_2) = 2$ ,  $d(v_1, v_3) = 2$  and  $(d(v_1, v_2), d(v_1, v_3)) = 2$ 2, S cannot be a relatively prime split geodetic set of  $K_{1,n}$ . Thus  $g_{rps}(K_{1,n}) = 0$ . Case 2. m = n = 2

Then the graph  $K_{2,2}$  is  $C_4$ . By Note 3.7,  $g_{rps}(G) = 0$ .

Case 3. m = 2 and  $n \ge 3$  or  $m \ge 3$  and n = 2

Clearly  $S = \{u_1, u_2\}$  is a minimum geodetic set and the subgraph  $\langle V(G) - S \rangle =$  $\overline{K}_n$  which is disconnected and hence S is a split geodetic set. By definition any relatively prime split geodetic set must contains atleast three vertices. Let  $S' = \{u_1, u_2, v_k/1 \le 1\}$  $k \leq n$  is a minimum geodetic set and the subgraph  $\langle V(G) - S \rangle = \overline{K}_{n-1}$  which is disconnected and hence S' is a split geodetic set. Since  $d(u_1, u_2) = 2$ ,  $d(u_1, v_k) = 2$  $1, d(u_2, v_k) = 1$  and (1, 1) = (1, 2) = 1. Hence S' be a minimum relatively prime split geodetic set of  $K_{m,n}$ . Similarly  $S^* = \{u_i, v_1, v_2/1 \le i \le m\}$  is a minimum relatively prime split geodetic set of  $K_{m,n}$ . Hence  $g_{rps}(K_{m,n}) = |S'| = |S^*| = 3$ . Case 4.  $m, n \geq 3$ 

Here  $S = \{u_i, u_j, v_k, v_l\}$  where  $1 \le i \ne j \le m, 1 \le k \ne l \le n$  is a minimum geodetic set and the subgraph  $\langle V(G) - S \rangle = C_4$  which is connected. To get  $\langle V(G) - S \rangle$ S >as disconnected, let  $S' = \{u_1, u_2, \dots, u_m\}$ . Then S' is a minimum geodetic set and the subgraph  $\langle V(G) - S' \rangle = \overline{K}_n$  which is disconnected and hence S' is a split geodetic set. Since  $d(u_i, u_j) = 2$  where  $u_i, u_j \in S'$ , S' is not relatively prime. Hence it follows that  $g_{rps}(K_{m,n}) = 0$ . The result follows from cases 1, 2, 3 and 4.

**Theorem 3.17.** For  $m, n \geq 2$ ,

 $g_{rps}(P_m + P_n) = \begin{cases} 4 \text{ if } m = 3 \text{ and } n \ge 3 \text{ or } m \ge 3 \text{ and } n = 3 \\ 0, \text{ otherwise} \end{cases}$  **Proof:** Let  $P_m$  be the path  $u_1u_2...u_m$  and  $P_n$  be the path  $v_1v_2...v_n$ . Let G be the graph  $P_m + P_n$ . Clearly  $V(G) = \{u_i, v_j / 1 \le i \le m, 1 \le j \le n\}$  and E(G) = $\{u_i v_j, u_i u_{i+1}, v_i v_{j+1} / 1 \le i \le m, 1 \le j \le n\}$ . Now we consider the following cases. Case 1. m = n = 2.

Then the graph  $P_2 + P_2 = K_4$ . By Theorem 3.11,  $g_{rps}(P_m + P_n) = 0$ . Case 2. m = 2, n = 3 or m = 3, n = 2

Clearly  $S = \{v_1, v_3\}$  is a minimum geodetic set. To get relatively prime split geodetic set, we must add one more vertex. Let  $S' = S \cup \{u\}$  where  $u \in \{v_1, v_3, u_2\}$ . Then S' is a minimum geodetic set and the subgraph  $\langle V(G) - S' \rangle = K_2$  is connected. Hence S' cannot be a minimum relatively prime split geodetic set and  $g_{rps}(P_m + P_n) = 0$ . Case 3. m = 3 and  $n \ge 3$  or  $m \ge 3$  and n = 3.

Without loss of generality, let m = 3 and  $n \ge 3$ . Clearly  $S = \{u_1, u_3\}$  is a minimum geodetic set. To get relatively prime geodetic set, we must add one more vertex. Let  $S'_i$  =  $\{u_1, u_3, v_i/2 \le i \le n-1\}$ . Then  $S'_i$  is a minimum geodetic set and the subgraph < $V(G) - S'_i > = P_3$  is connected. To get relatively prime split geodetic set, we must add one more vertex. Let  $S_i'' = \{u_1, u_2, u_3, v_i / 2 \le i \le n-1\}$ . Then  $S_i''$  is a minimum geodetic set and the subgraph  $\langle V(G) - S''_i \rangle = K_1 \cup P_{i-1} \cup P_{m-i}$  is disconnected.  $d(u_1, u_2) = 1, d(u_1, u_3) = 2, d(u_1, v_i) = 2, d(u_2, u_3) = 1, d(u_2, v_i) = 1$ Now

 $1, d(u_3, v_i) = 1$  and (1, 1) = (1, 2) = 1. Hence  $S''_i$  is a minimum relatively prime split geodetic set. Then  $g_{rps}(P_m + P_n) = 4$ .

Case 4.  $m \ge 4$  and  $n \ge 1, n \ne 3$ 

Clearly  $S = \{v_1, v_3, ..., v_{n-2}, v_n\}$  for *n* is odd and  $S = \{v_1, v_3, ..., v_{n-1}, v_n\}$  for *n* is even is a minimum geodetic set of  $P_m + P_n$ . Here  $d(v_j, v_k) = 2$  where  $v_j, v_k \in S$  and hence the shortest distance between any two vertices in *S* is 2. It follows that  $g_{rps}(P_m + P_n) = 0$ . The result follows from cases 1, 2, 3 and 4.

## **Theorem 3.18.** For $m, n \geq 1$ ,

 $g_{rps}(C_m + K_n) = \begin{cases} m+n-2 \text{ if } m = 4 \text{ and } n \ge 1\\ 0, \text{ otherwise} \end{cases}$ 

**Proof:** Let  $v_1 v_2 \dots v_m v_1$  be the vertices of  $C_m$ . Let  $u_1, u_2, \dots, u_n$  be the vertices of  $K_n$ . Clearly  $V(C_m + K_n) = \{v_i, u_j/1 \le i \le m, 1 \le j \le n\}$  and  $E(C_m + K_n) = \{v_i u_j, v_i v_{i+1}, u_i u_j/1 \le i \le m, 1 \le j \le n\}$ . Now we consider the following cases. Case 1. *m* is even and  $n \ge 1$ 

Subcase 1.1. m = 4 and  $n \ge 1$ 

For  $1 \le i \le 4$ ,  $S_i = \{v_i, v_{i+\frac{m}{2}}\}$  is a minimum geodetic set of  $C_4 + K_n$  and  $< V(G) - S_i > = K_{n+2} - \{e\}$  which is connected where  $e = v_{i-1} v_{i+1}$ . For  $< V(G) - S_i >$  to be disconnected, we must include all vertices of  $K_n$ . Let  $S'_i = \{u_1, u_2, \dots, u_n, v_i, v_{i+\frac{m}{2}}\}$ . Then  $S'_i$  is a geodetic set and  $< V(G) - S'_i > = 2 K_1$  which is disconnected. Now  $d(u_i, u_j) = 1$ ,  $d(u_i, v_i) = 1$ ,  $d(u_j, v_{i+\frac{n}{2}}) = 1$ ,  $d(v_i, v_{i+\frac{n}{2}}) = 2$  and (1, 2) = (1, 1) = 1. Hence  $S'_i$  is a minimum relatively prime split geodetic set and so  $g_{rps}(C_4 + K_n) = m + n - 2$ . Subcase 1.2.  $m \ge 6$  and  $n \ge 1$ 

Clearly  $S_i = \{v_1, v_3, \dots, v_{m-1}\}$  is a minimum geodetic set of  $C_m + K_n$  and  $\langle V(G) - S_i \rangle$  is connected. For  $\langle V(G) - S_i \rangle$  to be disconnected, we must include all vertices of  $K_n$ . Then  $S'_i = \{u_1, u_2, \dots, u_n, v_1, v_3, \dots, v_{m-1}\}$  is geodetic set and the subgraph  $\langle V(G) - S'_i \rangle = (n - 2)K_1$  which is disconnected. Now  $d(v_k, v_l) = 2$ ,  $d(u_i, v_k) = 1$ ,  $d(u_i, v_l) = 1$ ,  $d(u_j, v_k) = 1$ ,  $d(u_j, v_l) = 1$ ,  $d(u_i, u_j) = 1$  where  $v_j, v_k \in S'_i$  and hence the shortest distance between any two vertices in  $S'_i$  is 2. It follows that  $g_{rps}(C_m + K_n) = 0$ .

Case 2. *m* is odd and  $n \ge 1$ 

Subcase 2.1. m = 3 and  $n \ge 1$ 

Clearly  $C_m + K_n = K_m + K_n = K_{m+n}$ . By Theorem 3.11,  $g_{rps}(C_m + K_n) = 0$ . Subcase 2.2.  $m \ge 5$  and  $n \ge 1$ 

Clearly  $S_i = \{v_1, v_3, \dots, v_{m-2}, v_{m-1}\}$  is a minimum geodetic set of  $C_m + K_n$  and  $\langle V(G) - S_i \rangle$  is connected. For  $\langle V(G) - S_i \rangle$  to be disconnected, we must include all vertices of  $K_n$ . Then  $S' = \{u_1, u_2, \dots, u_n, v_1, v_3, \dots, v_{m-2}, v_{m-1}\}$  is geodetic set and the subgraph  $\langle V(G) - S'_i \rangle = (n - 2)K_1$  which is disconnected. Now  $d(v_k, v_l) = 2, d(u_i, v_k) = 1, d(u_i, v_l) = 1, d(u_j, v_k) = 1, d(u_j, v_l) = 1, d(u_i, u_j) = 1$  where  $v_j, v_k \in S'_i$  and hence the shortest distance between any two vertices in  $S'_i$  is 2. It follows that  $g_{rps}(C_m + K_n) = 0$ . The result follows from cases 1 and 2.

**Theorem 3.19.** For cycle  $C_n$  of even order  $n \ge 6$ ,  $g_{rps}(C_n) = \frac{n}{\alpha_0(C_n)} + 1$  where  $\alpha_0(C_n)$  is the vertex covering number of G.

**Proof:** Let  $v_1 v_2 \dots v_n v_1$  be the cycle  $C_n$  of even order n and let  $\alpha_0(C_n)$  be the vertex covering number of G. Clearly  $S = \{v_i, v_i + \frac{n}{2}\}$  is a minimum geodetic set of  $C_n$ . We have

by Theorem 3.6,  $g_{rps}(C_n) = 3$ . Also vertex covering number  $\alpha_0(C_n) = \frac{n}{2}$ . Hence  $g_{rps}(C_n) = \frac{n}{2} + 1 = \frac{n}{\alpha_0(C_n)} + 1$ .

**Theorem 3.20.** Let  $L(C_n)$  be the line graph of  $C_n$  of even order n. Then  $g_{rps}(L(C_n)) = 3$  for  $n \ge 6$ . **Proof:** We have  $L(C_n) = C_n$ . The result follows from Theorem 3.6.

**Theorem 3.21.** Let  $L(P_n)$  be the line graph of  $P_n$ . Then  $g_{rps}(L(P_n)) = 3$  for  $n \ge 9$ . **Proof:** We have  $L(P_n) = P_{n-1}$ . By Theorem 3.8,  $g_{rps}(L(P_n)) = g_{rps}(P_{n-1}) = 3$  for  $n-1 \ge 8$  and hence  $n \ge 9$ .

**Theorem 3.22.** Let  $L(K_{1,n})$  be the line graph of  $K_{1,n}$ . Then  $g_{rps}(L(K_{1,n})) = 0$ . **Proof:** We have  $L(K_{1,n}) = K_n$ . By Theorem 3.11,  $g_{rps}(L(K_{1,n})) = g_{rps}(K_n)$  hence  $L(K_{1,n}) = 0$ .

#### 4. Conclusion

In this paper, we have found the relatively prime split geodetic number of some standard graphs like cycle graph, path graph, wheel graph, double fan graph, 1-pan graph, jewel graph, and complete bipartite graph.

*Acknowledgements.* The authors would like to thank the anonymous referees for their valuable suggestions.

**Conflict of interest.** The authors declare that they have no conflict of interest.

Authors' Contributions. All the authors contributed equally to this work.

#### REFERENCES

- 1. F.Buckley and F.Harary, Distance in Graphs, Addition-Wesley, Redwood City, 1990.
- 2. J.Gallian, Dynamic survey of graph labelling, Elec. J. Combin., DS6. Dec. 2, 2018.
- F.Harary and C.J.A.Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, *Canadian Mathematical Bulletin*, 8(6) (1965) 701-709.
- 4. F.Harary, E.Loukakis and C.Tsourous, The geodetic number of a graph, *Mathematical* and *Computer Modelling*, 17(11) (1993) 89 95.
- 5. C.Jayasekaran and A.Jancy Vini, Results on relatively prime dominating sets in graphs, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 359-369.
- 6. C.Jayasekaran and A.Sheeba, Relatively prime geodetic number of a graph, *Malaya Journal of Matematik*, 8 (4) (2020) 2302 2305.

- 7. G.Kamala and G.Lalitha, r relatively prime sets and r- generalization of Phi-function for subsets of {1,2,...,n}, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 497-508.
- 8. G.Kamala and G.Lalitha, The number of r relatively prime subsets and Phi-function for {*m*, *m*+1, ..., *n*}, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 581-592.
- 9. D.B.West, *Introduction to Graph Theory*, Second Ed., Prentice-Hall, Upper Saddle River, NJ, 2001.
- 10. V.M.Goudar, K.S.Ashalatha and Venkadatesh, Split geodetic number of a graph, *Advances and Applications in Discrete Mathematics*, 13 (1) (2014) 9 22.
- 11. L.A.Zadeh, Similarity relations and fuzzy orderings, *Information Sciences*, 3(2) (1971) 177-200.