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Abstract. In this paper we introduce relatively prime split geodetic set of a graph G. A set 
� ⊆  ���� is said to be relatively prime split geodetic set in � if � is a relatively prime 
geodetic set and � ���� 	 � 
 is disconnected. The relatively prime split geodetic set is 
denoted by ��
����- set. The minimum cardinality of relatively prime split geodetic set is 
the relatively prime split geodetic number and it is denoted by   ��
����. 
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1. Introduction 
By a graph � � ��, �� we mean a finite, connected, undirected graph with neither loops 
nor multiple edges. The order |�| and size |�| of G are denoted by � and � respectively. 
For graph theoretic terminology we refer to West [7].   
        In a connected graph �, the distance between two vertices � and � is denoted by 
���, �� and is defined as the length of a shortest � 	 � path in �.  If � � ��, �� is an edge 
of a graph � with deg��� �  1 and deg��� 
  1, then we call � a pendant edge, � a pendent 
vertex and � a support vertex. A set of vertices is said to be independent if no two vertices 
in it are adjacent. A vertex � of � is said to be an extreme vertex if the subgraph induced 
by its neighborhood is complete.  For any set � of points of �, the induced sub graph �

� 
 is the maximal subgraph of � with point set �. Thus two points of � are adjacent in 
� � 
 if and only if they are adjacent in �. An acyclic connected graph is called a tree. An 
� –  � path of length ���, �� is called geodesic. A vertex � is said to lie on a geodesic " if 
� is an internal vertex of ". The closed interval #$�, �%, consists of �, � and all vertices 
lying on some � –  � geodesic of � and for a non empty set � ⊆ ����, #$�% �

⋃ #$�, �%.(,)∈+   
      A set � ⊆ ���� in a connected graph is a geodetic set of � if #$�% � ����. The geodetic 
number of � denoted by ����, is the minimum cardinality of a geodetic set of �. The 
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geodetic number of a disconnected graph is the sum of the geodetic number of its 
components. A geodetic set of cardinality ���� is called ���� – set. Various concepts 
inspired by geodetic set are introduced in [1, 4]. The concept relatively prime domination 
was introduced by C. Jayasekaran et. al [5]. The relatively prime geodetic number of a 
graphs was introduced by C. Jayasekaran et. al [6]. In [7, 8], r- Relatively Prime sets were 
studied. In this paper we define relatively prime split geodetic number of graphs. 
 
Definition 1.1. [3] The line graph ,��� of a graph � is the graph whose vertices are  the 
edges of � and two vertices in ,(�) are adjacent if the corresponding edges of � are 
adjacent. 
 
Definition 1.2. [5] A set � ⊆ �(�) is said to be relatively prime dominating set of a graph � if it is a dominating set of � with at least two elements and for every pair of vertices � 
and � in � such that (����, ��� �)  =  1. The minimum cardinatility of a relatively prime 
dominating set of � is called relatively prime domination number of � and it is denoted by -�
.(�). 
 
Definition 1.3. [8] A geodetic set � of a graph � =  (�, �) is a split geodetic set if the 
induced subgraph < �(�) −  � > is disconnected. The split geodetic number ��(�) of � 
is the minimum cardinality of a split geodetic set. 
 
Definition 1.4. [2] The jewel graph /0 is a graph with vertex set �(/0)  = {�, �, �, �, �1 / 1 ≤  4 ≤  5} and �(/0)  =  {��, ��, ��, ��, ��, ��1, ��1/ 1 ≤ 4 ≤ 5}. 
 
Definition 1.5. [9] The double fan 670 consists of two fan graph that have a common path. 
In other words 670  =  "0  +  9:;.  
 
Definition 1.6. [2] The n-pan graph is the graph obtained by joining a cycle <0 to a 
singleton graph 9= with a bridge. It is denoted by "0>. 
 
2. Some basic result 
In this section we cite some results to be used in the sequel. 
 
Theorem 2.1. [5] Each end vertices of a graph G belongs to relatively prime geodetic set 
of G. 
 
Theorem 2.2. [5] Each relatively prime geodetic set of a graph contains its extreme 
vertices. 
 

Theorem 2.3. [5] For a star graph 9=,0 , ��
?9=,0@ =  A 3 for 5 = 20 for 5 ≥ 2. 
 

Theorem 2.4. [5] For a bistar graph IJ,0, ��
?IJ,0@ = A3 for K = 5 = 10 otherwise         . 
Theorem 2.5. [5] For a connected graph � of order 5 if ��
(�) exists, then �(�)  ≤ ��
(�)  ≤  5. 
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Theorem 2.6. [5] For a wheel graph Q0 (5 ≥  4), ��
(Q0) = S4 if 5 = 4    3 if 5 = 5    0 otherwise. 
 
3. Relatively prime split geodetic number of a graph 
Definition 3.1. A set � ⊆  �(�) is said to be relatively prime split geodetic set in � if � is 
a relatively prime geodetic set and < �(�) − � > is disconnected. The relatively prime 
split geodetic set is denoted by ��
�(�)-set. The minimum cardinality of relatively prime 
split geodetic set is the relatively prime split geodetic number and it is denoted by ��
�(�). 
 
Example 3.2. Consider the graph in figure 1. The set � =  {�=, �U}  is a mini mum geodetic 
set and �V  =  {�=, �W, �U}  is a minimum relatively prime geodetic set. But < �(�) − �V > =  "X is connected and hence �V cannot be a relatively prime split geodetic number.  Now 
consider �VV  =  {�=, �X, �W, �U}. Then �VV is a minimum relatively prime geodetic set and  < �(�) − �VV > is disconnected. Here �VV  is a relatively prime split geodetic set of �. 
Moreover it has the minimum cardinality with this property and hence ��
�(�)  =  4. 

 
Figure 1: G 

 
Theorem 3.3. Let � be a connected graph of order 5. Then 
(i) Each relatively prime split geodetic set of � contains its extreme vertices. 
(ii) Each end vertex of � belongs to relatively prime spilt geodetic set of �.    
Proof: Let � be a connected graph of order 5. By definition, each relatively prime split 
geodetic set is a relatively prime geodetic set. 

(i) Hence by Theorem 2.1, each relatively prime split geodetic set of � contains 
its extreme vertices. 

(ii)  Further by Theorem 2.2, each end vertex of � belongs to relatively prime split 
geodetic set of �. 

 
Theorem 3.4. For a connected graph � of order 5, if ��
�(�) exists, then �(�)  ≤ ��
(�)  ≤  ��
� (�). 
Proof: Let � be a connected graph of order 5, such that ��
�(�) exists. Since every 
relatively prime split geodetic set is a relatively prime geodetic set, ��
(�) ≤  ��
�(�). 
By Theorem 2.5, �(�)  ≤  ��
(�). Thus, �(�) ≤  ��
(�)  ≤  ��
�(�). 
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Remark 3.5. For the cycle graph <0 of odd order 5, (5 ≥ 5), �(<0)  =  ��
(<0)  = ��
�(<0)  =  3. Hence all the inequalities in Theorem 3.4 become sharp. Now consider 
the graph � given in Figure 1. Here � =  {�=, �U}  is a geodetic set of � and of minimum 
order and so �(�)  =  2. �V  =  {�=, �Y, �U} is a minimum relatively prime geodetic set of � and so ��
(�)  =  3. The set �VV  =  {�=, �X, �Y, �U} is a minimum relatively prime split 
geodetic set of � and so ��
�(�)  =  4. Thus �(�)  <  ��
(�)  <  ��
�(�) and hence all 
the inequalities in Theorem 3.4 become strict. 
 
Theorem 3.6. For cycle <0 of even order 5 ≥  6, ��
�(<0) = 3. 
Proof: Let �= �;. . . �0 �= be the cycle <0 of order 5. Clearly � =  {�1 , �1[>\ } where the 

suffices modulo 5, is a minimum geodetic set of <0 and hence �(<0)   =  2. By definition, 
any relatively prime split geodetic set of <0,  must contain at least 3 vertices of <0. ,�] �V  =  {�1, �1[=, �1[>\} where the suffices modulo 5. Then �V is a geodetic set. Now 

�(�1 , �1[=) =  1, � ^�1 , �1[>\_  = 0
; and � ^�1[=, �1[>\_  = 0

; − 1. Clearly (1, 0
;)   =  (1, 0

; −
1)   =  (0

; , 0
; − 1)   =  1. Also < �(�) − �V > =  ">\`; ∪  ">\`= which is disconnected.  

Therefore, �V is a minimum relatively prime split geodetic set of <0 and hence, ��
�(<0)   =  3. 
 
Note 3.7. For 5 =  4, ��
�(<0)  =  0.  
 
Theorem 3.8. For path graph "0 of order 5, ��
�(�)  =   3 for 5 ≥  6 and 5 ≠  7. 
Proof: Let �=, �;, . . . , �0 be a path "0. Let � be a minimum relatively prime geodetic set 
of "0. By Theorem 2.1, the end vertices �= and �0 must be in any relatively prime geodetic 
set and hence �=, �0 ∈  �.  
 
Case 1.  5 is even  
Subcase 1.1. 5 = 4 
     To get relatively prime split geodetic set, we must add one more vertex to �. Then � is 
either {�=, �;, �X} or {�=, �d, �X} and < �(�) −  � > =  9= which is connected. Thus ��
�("0)  =  0.  
Subcase 1.2. 5 ≥ 6 
Clearly � = {�=, �d, �0} is a geodetic set and �(�=, �d )  =  2, �(�=, �0)  =  5 − 1 and �(�d, �0)  =  5 − 3. Since 5 is even, both 5 − 1 and 5 − 3 are odd and hence (2, 5 − 1) = (2, 5 − 3) =  (5 − 1, 5 − 3)  = 1. Also < �(�)  −  � > =  9=  ∪  "0`X which is 
disconnected. Therefore � is a minimum relatively prime split geodetic set of "0 and hence ��
�("0)  =  3. 
 
Case 2. 5 is odd  
Subcase 2.1. 5 = 3   
     Clearly � =  {�=, �;, �d} is the only relatively prime geodetic set and �("0)  −  � = e. 
Thus ��
�("0)  =  0. 
Subcase 2.2. 5 =  5 
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     To get relatively prime split geodetic set, we must add one more vertex to �. Then � ={�=, �d, �W} and < �(�) −  � > =  9=  ∪  9= which is disconnected. Hence � is a split 
geodetic set.  For �1 , �f ∈  �, we have �(�1 , �f)  =  2 and therefore any two shortest 
distance between are not relatively prime. Hence it follows that ��
�("0)  =  0. 
Subcase 2.3. 5 ≥ 7 
     Clearly � =  {�=, �1 , �0} where 4 ≡ 0(Kh� 2) is a geodetic set and �(�=, �0)  =  5 −1, �(�=, �1)  =  4 −  1, �(�1, �0)  =  5 −  4. Since 5 is odd,  5 −  1 is even and also 4 is 
even implies that both 4 −  1 and 5 −  4 are odd. This implies that (5 − 1, 4 −  1)  =  (5 −1, 5 −  4)  =  (4 −  1, 5 −  4)  =  1.  Also < �(�) −  � > =  91`; ∪  "0`1`=, which is 
disconnected. Therefore � is a minimum relatively prime split geodetic set of "0 and hence ��
�("0)  =  3. 
 
Theorem 3.9. For a connected graph �, if ��
�(�) exists, then ��
�(�) ≥  3. 
Proof: Let � ⊆ �(�) be a minimum relatively prime split geodetic set of �. Then � is a 
relatively prime geodetic set and hence by the definition | �|  ≥ 3. Hence ��
�(�) ≥  3. 
 
Theorem 3.10. For the jewel graph /0 , ��
�(/0)  =  3. 
Proof: Consider the 4 cycle �=�; �d �X �=. Join �; and �X, new vertices �1 , 1 ≤  4 ≤  5 
and join �1 to both �= and �d. The resulting graph � is the jewel graph /0 with vertex set  �(�)  =  {�=, �;, �d, �X, �1/1 ≤  4 ≤  5} and edge set  �(�)  =  {�=�;, �=�d, �=�X, �;�d, �;�X, �d�X, �=�1, �d�1/ 1 ≤  4 ≤  5}.  
Clearly � =  {�=, �d} is a minimum geodetic set. By definition, any relatively prime split 
geodetic set must contain at least three vertices. Let �V  =  {�=, �d, �1/ 1 ≤ 4 ≤ 5}. Clearly �V is a geodetic set and �(�=, �d)  =  2, �(�=, �1)  = 1, �(�d, �1)  =  1 and (2,1)  = (1,1)  =  1. Also < �(�) −  � > = 9:0 which is disconnected and hence �V is a minimum 
relatively prime split geodetic set of /0. Thus ��
�(/0)  =  3.  
 
Theorem 3.11. If � is either complete graph 90 or  star graph 9=,0 or bistar graph IJ,0, 
then ��
�(�)  =  0. 
Proof: (i) We have �(�, �)  =  1 for any two vertices � and � in 90, (5 ≥ 3). Let � = �(90). Clearly � is the minimum relatively prime geodetic set of 90 and hence ��
 (90)  =  5. Since �(90)  −  � = e, there is no relatively prime split geodetic set of 90 and hence ��
�(90)  =  0. 
  (ii) Let � be the central vertex and �1, 1 ≤  4 ≤  5 be the vertices of 9=,0 , (5 ≥  2).  
Let � be a minimum relatively prime geodetic set of 9=,0. By Theorem 2.3, | � |  =  3 for 5 =  2. In this case 9=,; =  "d and �(9=,;)  −  � = e . This implies that 9=,0  has no 
relatively prime split geodetic set and hence ��
�(9=,0)  =  0. 
 (iii) Let �i and �i be the vertices of ";. Let �=, �;, . . . , �J be the vertices attached 
with �i and let �=, �;, . . . , �0 be the vertices attached with �i. The resultant graph is a bistar 
graph IJ,0, (K, 5 ≥  1) with �(IJ,0)  =  {�i, �i, �1, �1 , 1 ≤  4 ≤  K, 1 ≤  j ≤  5}  and   �(IJ,0)  =  {�i �i, �i �1, �i �f, 1 ≤  4 ≤  K, 1 ≤  j ≤  5}. Let � be a minimum relatively 
prime geodetic set of IJ,0. By Theorem 2.4, |�|  =  3 for K = 5 =  1. In this case I=,=  = "X and < �(IJ,0) −  � > =  9= which is connected and hence IJ,0 has no relatively 
prime split geodetic set. Thus ��
�(IJ,0)  =  0. 
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Theorem 3.12. For a wheel Q0  =  9=  +  <0`= (5 ≥  4),  
��
�(Q0) =  A 3 if 5 = 50 otherwise. 

Proof: Let  �= �;. . . �0`= �=  be the outer cycle <0`= and � be the central vertex of Q0. 
Then  �(�1 , �f) = 2 for  1 ≤  4 ≠  j ≤  5 − 1 and {4, j} ≠  {1, 5 − 1}. We consider the 
following cases.   
Case 1. 5 =  4  
      Clearly, QX  =  9X. By Theorem 3.11,  ��
� (QX)  =  0. 
Case 2. 5 =  5  
     Clearly � =  {�=, �d} is a minimum geodetic set. By definition, any relatively prime 
split geodetic set must contain at least three vertices. Let �V  =  {�=, �d, �}. Then �V is a  
geodetic set. Now �(�=, �d)  =  2, �(�=, �)  = 1, �(�d, �)  =  1 and (2, 1)  =  (1, 1)  =  1. 
Also < �(Q0) − �V > = 9:; which is diconnected and hence �V is a minimum relatively 
prime split geodetic set. Therefore ��
�(Q0)  =  3. 
Case 3. 5 ≥  6  
     Any minimum geodetic set of Q0 is  �1  = {�1 , �1[;, �1[X, . . . , �1[kl>\m`=n;}  and the 

subgraph <  �(Q0)  − �1 > =  9=,o>pq\ r which is connected. Let �1V =
{�1 , �1[;, �1[X, . . . , �1[kl>\m`=n;, �}. Then �1V is a geodetic set and < �(Q0) −  �1V > =
9:o>pq\ r which is disconnected. Now �(�1 , �1[;)  =  �(�1[;, �1[X)  = . . . =  2 and hence any 

two of these shortest distances are not relatively prime. This implies that ��
� (Q0)  = 0. 
The result follows from cases 1, 2 and 3.   
 
Theorem 3.13. For a double fan graph 670, ��
0�(670)  =  3 if 5 ≥  3. 
Proof: Let �= �; … �0 be a path. Add two vertices �= and �; which are adjacent to each �1, 1 ≤  4 ≤  5. The resultant graph is the double fan 670. Clearly 

 �(670) = A�=, �;, … , �0, �=, �; = ≤  4 ≤  5t , �(670) =  {�1�1[=/1 ≤  4 ≤  5 − 1} ∪{�= �1, �;�1 / 1 ≤  4 ≤  5} and  | �(670)|  =  5 +  2, |�(670)|  =  35 −  1.  In 670, � =  {�=, �;} is a minimum 
geodetic set. To get relatively prime split geodetic set we add one more vertices to �. Let �V  =  {�=, �;, �1} where  2 ≤  4 ≤  5 − 1. Clearly �V is a  geodetic set  and < �(�) − �V > =  "0`1 ∪  "1`=, which is disconnected. Now �(�=, �;)  =  2, �(�=, �=)  = 1, �(�;, �=)  =  1 and (1, 2)  =  (1, 1)  =  1. Hence �V is a minimum relatively prime split 
geodetic set of 670. Thus ��
0�(670)  =  3.      
 
Theorem 3.14. For a 1 - pan graph "0q of even order 5 ≥  4, ��
�("0q)  =  3.  
Proof: Let �= �;. . . �0 �= be a cycle <0 and let 9= be the vertex �. Join � with �=, we get a 
1-pan graph "0q. Clearly �("0q)  =  {�, �=} and �("0q)  =  {� �=, �f �f[=/ 1 ≤  j ≤  5} 
where the suffices modulo 5. In "0q , � =  {�, �=[>\} is a minimum geodetic set. To get 

relatively prime split geodetic set we add one more vertices to �. Let �V  =  u�, �=, �=[>\v.  
Clearly �V is a geodetic set and < �(�) − �V >=  ">w\\ ∪   ">w\\  which is disconnected. 
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Now ���, �=) =  1, � ^�, �=[>\_ = 0
; + 1, � ^�=, �=[>\_ = 0

; and (1, 0
; + 1)  =  (1, 0

;)  =
 (0

; + 1, 0
;)  =  1. Hence �V is a minimum relatively prime split geodetic set of "0q. Thus   ��
�("0q) = 3. 

 

Theorem 3.15. For a Dumbbell graph 6x0, ��
�(6x0)  =  A3 if 5 is even0 if 5 is odd .  
Proof: The dumbbell graph 6x0 is obtained by joining two disjoint cycles �= �;. . . �0 �= and �=�; . . . �0 �= with an edge �= �=. Then the vertex set �(6x0)  = {�1, �1/ 1 ≤  4 ≤  5} and edge set  �(6x0)  =  {�=�=, �=�0, �=�0, �1�1[=, �1�1[=/ 1 ≤ 4 ≤  5 − 1}. Clearly 6x0 has 25 vertices and 25 + 1 edges. Now we consider the 
following cases. 
Case 1. 5 is even  
     Clearly � =  {�>\[=, �>\[=} where the suffices modulo 5, is a minimum geodetic set. By 

definition any relatively prime split geodetic set must contains at least three vertices. Let �V  =  {�>\[=, �>\`=, �>\[=} where the sufficies modulo 5. Clearly �V is a geodetic set and <
�(�) − �V > is disconnected. Now �(�>\[=, �>\`=)  =  2, �(�>\[=, �>\[=)  =
l0[=

; m , �(�>\`=, �>\[=)  =  o0`=
; rand (1, l0[=

; m)  =  (1, o0`=
; r)  =  (l0[=

; m , o0`=
; r)  =  1. 

Hence �V is a minimum relatively prime split geodetic set of 6x0. Thus   ��
�(6x0)  =  3. 
Case 2. 5 is odd  
     If 5 =  3, then � = {�;, �d, �;, �d}  is a minimum geodetic set and < �(�) − � >=9; is connected and hence ��
�(6x0)  =  0.  

     Let 5 ≥  5. Clearly, � =  u�l>\m, �l>\[=m, �l>\m, �l>\[=mvwhere the sufficies modulo 5, is a 

minimum geodetic set and < �(�) − �V > is connected. To get relatively prime split 
geodetic set we must add one more vertex to �. Let �V  =  {�l>\m, �l>\[=m, �=, �l>\m, �l>\[=m} 
where the sufficies modulo 5, is a minimum geodetic set and < �(�) − �V > is 

disconnected. Now � ^�l>\m, �l>\[=m_ =  1, � ^�l>\m, �=_ =  o0
;r , � ^�l>\[=m, �=_ =

 o0
;r , � ^�l>\m, �l>\[=m_ =  1, � ^�=, �l>\m_  =  l0

;m , �(�=, �l>\[=m)  =  l0
;m where �1 , �f ∈  �V and 

hence the shortest distance between any two vertices in �V is either l0
;m or o0

;r. It follows 

that ��
�(6x0)  =  0. 
 
Theorem 3.16. For the complete bipartite 9J,0,   

��
� (9J,0)  = u3 if K = 2, 5 ≥ 3 or K ≥ 3, 5 = 2 0, otherwise . 
Proof: Let { =  {�=, �;, . . . , �J} and | =  {�=, �;, . . . , �0} be a partition of vertex set of 9J,0. Let � be a minimum relatively prime split geodetic set. We consider the following 
cases.  
Case 1. K =  1, 5 ≥ 2 or 5 =  1, K ≥  2 
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     In both cases, the graph is a star graph. By Theorem 3.3(ii) the end vertices 
��=, �;, . . . , �0} ⊆  �. Since �(�=, �;)  =  2, �(�=, �d)  =  2 and (�(�=, �;), �(�=, �d)) = 2, S cannot be a relatively prime split geodetic set of 9=,0. Thus ��
�(9=,0)  =  0.   
Case 2. K =  5 =  2  
     Then the graph 9;,; is <X. By Note 3.7, ��
�(�)  =  0.  
Case 3. K =  2 and 5 ≥ 3 or K ≥  3 and 5 = 2 
     Clearly � =  {�=, �;} is a minimum geodetic set and the subgraph < �(�) −  � > =9:0  which is disconnected and hence � is a split geodetic set. By defintion any relatively 
prime split geodetic set must contains atleast three vertices. Let �V  =  {�=, �;, �}/ 1 ≤ ~ ≤  5} is a minimum geodetic set and the subgraph < �(�)  −  � > =  9:0`=  which is 
disconnected and hence �V is a split geodetic set. Since �(�=, �;)  =  2, �(�=, �})  = 1, �(�;, �})  =  1 and (1, 1)  =  (1,2)  =  1. Hence �V be a minimum relatively prime split 
geodetic set of 9J,0. Similarly �∗  = {�1, �=, �;/ 1 ≤  4 ≤  K} is a minimum relatively 
prime split geodetic set of 9J,0. Hence ��
�(9J,0)  = |�V|  = |�∗| =  3.  
Case 4. K, 5 ≥  3  
     Here � =  {�1 , �f, �} , ��} where 1 ≤  4 ≠  j ≤  K, 1 ≤  ~ ≠  � ≤  5 is a minimum 
geodetic set and the subgraph < �(�)  −  � >=  <X  which is connected. To get < �(�)  − � > as disconnected, let �V  =  {�=, �;, . . . , �J}. Then �V  is a minimum geodetic set and 
the subgraph < �(�)  − �V > =  9:0 which is disconnected and hence �V is a split geodetic 
set. Since �(�1, �f)  =  2 where �1, �f ∈  �V, �V is not relatively prime. Hence it follows 
that ��
�(9J,0)  =  0. The result follows from cases 1, 2, 3 and 4.        
 
Theorem 3.17. For K, 5 ≥  2,  
  ��
�("J  +  "0)  =  u 4 if K = 3 and 5 ≥ 3 or K ≥ 3 and 5 = 30, otherwise                                                           . 
Proof: Let "J  be the path �=�;. . . �J and "0 be the path �=�;. . . �0. Let � be the graph "J  + "0. Clearly �(�)  =  {�1, �f/ 1 ≤  4 ≤  K, 1 ≤  j ≤  5} and �(�)  = {�1�f, �1�1[=, �f�f[=/ 1 ≤  4 ≤  K, 1 ≤  j ≤  5 }. Now we consider the following cases. 
Case 1. K =  5 =  2. 
     Then the graph ";  +  ";  =  9X. By Theorem 3.11, ��
�("J + "0)  =  0. 
Case 2. K =  2, 5 =  3 h�  K =  3, 5 =  2 
     Clearly � =  {�=, �d} is a minimum geodetic set. To get relatively prime split geodetic 
set, we must add one more vertex. Let �V  =  � ∪ {�} where � ∈  {�=, �d, �;}. Then �V is a 
minimum geodetic set and the subgraph < �(�)  − �V > =  9;  is connected. Hence �V 
cannot be a minimum relatively prime split geodetic set and ��
�("J + "0) =  0. 
Case 3. K =  3 and 5 ≥ 3 or K ≥  3 and 5 =  3.      
     Without loss of generality, let K =  3 and 5 ≥  3. Clearly � =  {�=, �d} is a minimum 
geodetic set. To get relatively prime geodetic set, we must add one more vertex. Let �1V  = {�=, �d, �1/ 2 ≤  4 ≤  5 − 1}. Then �1V is a minimum geodetic set and the subgraph <�(�) − �1V > =  "d is connected. To get relatively prime split geodetic set, we must add 
one more vertex. Let �1VV =  {�=, �;, �d, �1  / 2 ≤  4 ≤  5 − 1}. Then �1VV is a minimum 
geodetic set and the subgraph < �(�) −  �1VV > =  9= ∪  "1`= ∪  "J`1   is disconnected. 
Now �(�=, �;)  =  1, �(�=, �d)  = 2, �(�=, �1) =  2, �(�;, �d)  =  1, �(�;, �1) =



Relatively Prime Split Geodetic Number of a Graph 

105 
 

1, �(�d, �1) = 1 and (1, 1)  =  (1, 2) =  1. Hence �1VV is a minimum relatively prime split 
geodetic set. Then ��
�("J + "0) =  4. 
Case 4. K ≥  4 and 5 ≥  1, 5 ≠  3 
     Clearly � =  {�=, �d, . . . , �0`;, �0} for 5 is odd and � =  {�=, �d, . . . , �0`=, �0} for 5 is 
even is a minimum geodetic set of "J  +  "0. Here �(�f , �})  =  2 where �f, �} ∈  � and 
hence the shortest distance between any two vertices in � is 2. It follows that ��
�("J  + "0)  =  0. The result follows from cases 1, 2, 3 and 4.  
 
Theorem 3.18. For K, 5 ≥  1,  

��
�(<J  +  90)  =  u K + 5 − 2 if K = 4 and 5 ≥ 1 0, otherwise                                  . 
Proof: Let �= �;. . . �J �= be the vertices of <J. Let �=, �;, . . . , �0 be the vertices of 90. 
Clearly �(<J  + 90)  =  {�1 , �f/ 1 ≤  4 ≤  K, 1 ≤  j ≤  5 } and �(<J  +  90)  = {�1 �f, �1  �1[=, �1  �f/ 1 ≤  4 ≤  K, 1 ≤  j ≤  5}. Now we consider the following cases. 
Case 1. K is even and 5 ≥  1 
Subcase 1.1. K =  4 and  5 ≥  1 
     For 1 ≤  4 ≤  4, �1  =  {�1 , �1[�\  } is a minimum geodetic set of <X  +  90 and <
�(�) − �1 > =  90[; − {�} which is connected where � =  �1`= �1[=. For < �(�) − �1 > to be disconnected, we must include all vertices of 90. Let �1V  = {�=, �;, . . . , �0, �1, �1 [�\  }. Then �1V is a geodetic set and  < �(�)  −  �1V > =  2 9= which 

is disconnected. Now �(�1, �f)  =  1, �(�1 , �1)  =  1, �(�f, �1[>\  ) =  1, �(�1 , �1[>\)  =  2 

and  (1, 2)  =  (1, 1)  =  1. Hence �1V is a minimum relatively prime split geodetic set and 
so ��
�(<X  +  90)  =  K +  5 −  2. 
Subcase 1.2. m ≥ 6 and 5 ≥ 1 
     Clearly �1  =  {�=, �d, . . . , �J`=} is a minimum geodetic set of <J  +  90 and <�(�) − �1 > is connected. For < �(�) −  �1 > to be disconnected, we must include all 
vertices of 90. Then �1V  =  {�=, �;, . . . , �0, �=, �d, . . . , �J`=} is geodetic set and the 
subgraph < �(�) − �1V > =  (5 −  2)9= which is disconnected. Now �(�} , ��)  = 2, �(�1 , �})  =  1, �(�1, ��)  =  1, �(�f, �})  =  1, �(�f, ��)  =  1, �(�1 , �f)  =  1 where �f, �} ∈  �1V and hence the shortest distance between any two vertices in �1V is 2. It follows 
that ��
�(<J  +  90)  =  0.   
Case 2. K is odd and 5 ≥  1 
Subcase 2.1. K =  3 and 5 ≥  1  
     Clearly <J  +  90  =  9J  + 90  =  9J[0. By Theorem 3.11, ��
�(<J + 90)  =  0. 
Subcase 2.2. K ≥  5 and 5 ≥  1 
     Clearly �1  =  {�=, �d, . . . �J`;, �J`=} is a minimum geodetic set of <J  +  90 and <�(�) − �1 > is connected.  For < �(�) −  �1 > to be disconnected, we must include all 
vertices of 90 . Then �V  =  {�=, �;, . . . , �0, �=, �d, . . . �J`;, �J`=} is geodetic set and the 
subgraph < �(�)  − �1V > =  (5 −  2)9= which is disconnected. Now �(�} , ��)  = 2, �(�1 , �})  =  1, �(�1, ��)  =  1, �(�f, �})  =  1, �(�f, ��)  =  1, �(�1 , �f)  =  1 where �f, �} ∈  �1V and hence the shortest distance between any two vertices in �1V is 2.  It follows 
that ��
�(<J  +  90)  =  0. The result follows from cases 1 and 2. 
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Theorem 3.19. For cycle <0 of even order 5 ≥  6, ��
�(<0) = 0
��(�>)  +  1 where �i(<0) 

is the vertex covering number of �. 
Proof: Let �= �; . . . �0 �= be the cycle  <0 of even order 5 and let �i(<0) be the vertex 
covering number of �. Clearly � =  {�1, �1 [>\} is a minimum geodetic set of <0. We have 

by Theorem 3.6, ��
�(<0)  =  3. Also vertex covering number �i(<0) = 0
;. Hence 

��
�(<0) = 0>\  +  1 = 0
��(�>)  +  1. 

 
Theorem 3.20. Let ,(<0) be the line graph of <0 of even order 5. Then ��
�(,(<0))  =  3 
for 5 ≥  6. 
Proof: We have ,(<0)  =  <0. The result follows from Theorem 3.6. 
 
Theorem 3.21. Let ,("0) be the line graph of "0. Then ��
�(,("0))  =  3 for 5 ≥  9. 
Proof: We have ,("0)  =  "0`=. By Theorem 3.8, ��
�(,("0))  =  ��
�("0`=)  =  3 for 5 − 1 ≥  8 and hence 5 ≥  9. 
 
Theorem 3.22. Let ,(9=,0) be the line graph of 9=,0. Then ��
�(,(9=,0))  =  0. 
Proof: We have ,?9=,0@  =  90. By Theorem 3.11, ��
�(,(9=,0))  =  ��
�(90) hence ,(9=,0)  =  0. 
 
4. Conclusion  
In this paper, we have found the relatively prime split geodetic number of some standard 
graphs like cycle graph, path graph, wheel graph, double fan graph, 1-pan graph, jewel 
graph, and complete bipartite graph. 
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