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Abstract. In this article, we study and establish one theorem of the exponential Diophantine 

equation 25 2 3x y z− ⋅ =  where ,x y and z are non-negative integers. The study reveals 
that the equation is solvable.    
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1. Introduction  
A challenging problem for mathematical researchers is the exponential Diophantine 
equation. They were interested in only integer solution, and tried to find how many 
solutions there were. In 1844, Eugne Charles Catalan suggested that the only one solution 

in natural number of 1x ya b− =  with , , , 1a b x y >  is  ( ) ( ), , , 3,2,2,3a b x y = . This 

conjecture was proved by Mihailescu [5] in 2004. In the last decade, a number of researches 
involving the exponential Diophantine equation have been studied. For example, Acu [1] 

proved that 22 5x y z+ =  has two non-negative integer solutions, which are 

( ) ( ), , 3,0,3x y z = and ( )2,1,3 . In 2011, Suvanamanee [10] proved that two exponential 

Diophantine equations, including 24 7x y z+ =  and 24 11x y z+ = have no solution. From 
2012 to 2018, many mathematical articles, which involve the exponential Diophantine 
equation were released [2-4, 6-9]. In 2019, Thongnak et al. [11]  studied the exponential 

Diophantine equation 22 3x y z− = . The result revealed that ( ) ( ), , 1,0,1x y z = and 

( )2,1,1 are only two non-negative integers to the equation. Two years later, they also 

proved that the equation 27 5x y z− =  has only one trivial solution equation 

( ) ( ), , 0,0,0x y z =  [12]. In 2022, they also studied the equations 27 2x y z− =  and 
211 3 11x y z⋅ + = [13,14]. They found that both equations have a unique solution. The 

previous works indicate that the proof of individual equation is necessary because there is 
no general method to prove the class of the equation. In this paper, we studied the non-
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negative solution of the exponential Diophantine equation 25 2 3x y z− ⋅ = . The basic 
knowledge in Number theory is applied to obtain the solution.      

 
2. Preliminary  
Lemma 2.1.  If x  is integer, then 2 0mod 4x ≡ or 2 1mod 4x ≡ .   
Proof: Let x be an integer. There is, � ∈ ℤ such that 4x q r= + where 0,1,2,3r = . We 

have mod 4x r≡ which yields 2 2 mod 4x r≡ . 

 If 0r = , we have 2 0mod 4x ≡ . 

 If 1r = , we have 2 1mod 4x ≡ . 

If 2r = , we have 2 0mod 4x ≡ . 

If 3r = , we have 2 1mod 4x ≡ . 

Therefore, 2 0mod 4x ≡  or 2 1mod 4x ≡ .                                                                      
 
Lemma 2.2.  3 is not a common divisor of both 5k z−  and 5k z+ where k  and z are 
non-negative integers.  

Proof: We suppose that 3 is the common divisor of both 5k z− and 5k z+ . It implies that 

3| 5k z−  and 3| 5k z+ . Then we have ( ) ( )3 | 5 5k kz z− + +  or 3| 2 5k⋅ . This is a 

contradiction because 3 | 2 5k⋅/ .   
 
Lemma 2.3. If  x is an integer, then ( )2 0,1 mod3x ≡ .  

Proof: Let x  be any integers. There exists � ∈ ℤ such that 3x q r= +  where 0,1r = or 

2 . This implies that ( )mod3x r≡  or ( )2 2 mod3x r≡ . Since 2 0,1r =  or 4 , it has 

followed that ( )2 0,1 mod3x ≡ .  

 
3. Main result 
Theorem 3.1. The exponential Diophantine equation 25 2 3x y z− ⋅ =  where , ,x y z are 
non-negative integers has no solution.   
Proof: Let �, �, � ∈ ℤ� ∪ {0} such that 

                             25 2 3x y z− ⋅ = .                                                (1) 
We consider four cases, including the case of 0x y= = , case of 0x > and 0y = , case 

of 0x =  and 0y > , and case of , 0x y > . 

Case 1: 0x y= =  obviously, (1) has no solution because 2 1z = −  is impossible. 

Case 2: 0x > and 0y =  (1) becomes 25 2x z− = . Then we have ( )2 1 mod 4z ≡ −  or          

( )2 3 mod 4z ≡ . By Lemma 2.1, this is impossible. 

Case 3: 0x = and 0y >  (1) becomes 21 2 3y z− ⋅ = .  This implies that 2 0z < which is 
impossible.  
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Case 4: 0x > and 0y >  we obtain that ( ) ( )2 1 mod3
x

z ≡ − from (1), and by Lemma 

2.3, this implies that x  is even. We let 2x k=  , for all  � ∈ ℤ�. The equation (1) 

becomes                     2 25 2 3k yz− = ⋅  or 
                 ( )( )5 5 2 3k k yz z− + = ⋅ .                                         (2) 

By Lemma 2.2, we get four possible subcases including, the case of 5 1k z− = and 

5 2 3k yz+ = ⋅ , the case of 5 2k z− = and 5 3k yz+ = , the case of 5 3k yz− = and 

5 2k z+ = , and the case of 5 2 3k yz− = ⋅ and 5 1k z+ = . 

Subcase 4.1: 5 1k z− = and 5 2 3k yz+ = ⋅ then we have 2 3 1 2 5y k⋅ + = ⋅ or 

( )2 5 3 1k y− =  which is impossible.  

Subcase 4.2: 5 2k z− = and 5 3k yz+ = we have 2 5 2 3k y⋅ = + or ( )2 5 1 3k y− = which 

is impossible. 

Subcase 4.3: 5 3k yz− = and 5 2k z+ = we have 2 5kz = − . Since 0k > , it yields 0z <
.  This is impossible. 

Subcase 4.4: 5 2 3k yz− = ⋅ and 5 1k z+ = we have 1 5kz = − . Obviously, if  0k > , then 
0z < . This is impossible. 

 Therefore, 25 2 3x y z− ⋅ =  has no non-negative solution.                     
 
4. Conclusion  
We have proved the exponential Diophantine equation 25 2 3x y z− ⋅ =  where , ,x y z are 

non-negative integers. We have four cases namely: 0x y= = ,  0x > and 0y = , 0x =  

and 0y > , and , 0x y > . The basic knowledge used in this proof is given. We have shown 
that the equation is unsolvable.    
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