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Abstract. In this article, we solve the exponential Diophaatequation2” +15' = 72
where X, y and z are non-negative integers. The basic theorems imb¢u theory are

given and applied to find all solutions. The reselteals that there are only three solutions
to the equation.
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1. Introduction

A popular topic in Number theory is the Diophantaggiation. It is known as one equation,
which has two or more unknown variables, and tHg solutions of interest are integers.
Over a decade, many mathematicians have studiegkffanential Diophantine equation

in the forma* +b” = Z?whereaandb are positive integers arx| y, zare non-negative

integers. The example articles involving the edqumatire as follows. In 2007, Acu [1]
proved that the equation wita=2 and b=5 has only two solutions which are

(%, Z)D{(S,O,C‘) ( 2,1,)%. Four years later, Suvarnamani et al. [13] preskivo
equations witha=4 andb =7 or 11. They proved that both equations have no non-

negative solution. From 2012 to 2020, many equationthe forma*+bY = z° were
studied. Some equations were solvable [2, 3, 7,]9HLt some equations were not [4, 5,
12-14]. In 2021, there are many mathematician®tbphantine equation in this form. For
example, Dokchan and Pakapongpun presented [6] Diwphantine equation

p*+(p+20)" =2Z° where p and p+20 are primes. They proved that + 23 = 2*,
has no solution, and applied this result to priasp* +( p+ 20)y =7 has no solution.

In the same year, Paisal and Chayapham [9] studiéd 83 = 7> and 29" + 7% = 7*.
They proved that two equations have the same solutihich is(x, y,z) =(1,1,1Q. In

2022, Thonagnak el al. [15] proved tHat B+ 17 = z° has the unique solution that is
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(x,y,2)=(2,0,10. At present, there is no general method to prireedass of this
equation. The proof of individual equations stékal. In this article, we study the equation

a*+bY = Z°for a=2andb=15. The basic theorems in Number theory and Catalan’s
conjecture are applied to determine and provecaltmegative integer solutions.

2. Preliminary
Lemma 2.1.(Catalan’s conjecture) [8] Le,b,x andy are integers. The Diophantine

equationa* —b” =1with min{a,b,x,y} > lhas a unique solution
(a,b,x,y)=(3,2,2,3.

Lemma 2.25 is not a common divisor of bo(tz+ Zk) and (z—2k)where z,k be non-
negative integers.
Proof: Let 5 be the common divisor of bo(lz+ 2“) and(z—Zk). This implies that

5|(z—2‘) and5|(z+ 2‘) . We can write5|(z+ 2‘)—(2— 2‘) or 5| 2**. This is
impossible. ]

Lemma 2.3If Xis an integer, thex? =0,1mod Z.
Proof: Let X be any integers. There exigt€ Z such thatx=3q+r wherer =0,1or

2. This implies thax =r (mod 3 or x* =r?(modJ. Sincer? =0,1 or 4, it follows
that x* =0,1( mod 3. [

3. Main result
Theorem 3.1. Let x,y,z€ ZTu{0}. The exponential Diophantine equation

2*+15 =7* have only three solutions, which afe,y,z)=(3,0,3 ( 0,1,% and

(6,2,17).
Proof: Let X, yand zbe non-negative integers such that

2+15 =7 . (1)
We consider four cases, including the cas& efy =0, the case ok >0and y =0, the
case ofx=0 and y >0, and the case >0 andy>0.
Case 1 x=y =0 we havez” =2 by (1). This is impossible.
Case 2 x>0andy =0 from (1), we have

7?-2"=1 (2)

If x=1, then (2) becomeg’ =3. This is impossible. I = 2, then it implies

that z= 2. By Lemma 2.1, we obtain =3 and z=3. Hence(X,y,z) =(3,0,3 is the

solution of (1).
Case 3 x=0andy >0 from (1), we have

2
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22-15 =1. ()
If y=1, then (3) becomex® =16. Thus, we must have = 4 . From this case, we obtain
that (x, y,z) =(0,1,4) is the solution of (1). I >1, then (3) has no solution by Lemma

2.1.
Case 4 x>0 andy >0 we consider two subcases, which arelandx >1.

Subcase 4.1x =1from (1), we have2+15' = 7°. Because 015 = 0( mod 3 , this
implies thatz” = 2(mod 3 . By Lemma 2.3, this is impossible.
Subcase 4.2x>1. From (1), we havé-1)" = z*(mod 3. Thenxis even. Let
x =2k, forall k € Z*. From (1), we havd’ = 2> — 2 or

3yE5y=(z—?)(z+ 2‘) (4)
This implies that3|(z—§)(z+ 2‘) . It can be seen th&|z- 2 or3|z+ 2. We

consider for3|z—- 2'and 3| z+ 2.
The case o8|z- 2, it follows that3 | z+ 2. By (4) and Lemma 2.2, we have
two possible cases, namelg—2“=3, z+2 =5 andz-2" =3 [¥, z+2*=1.
) For z—2=3, z+2“ =5, then we have
5 -3 =2, (5)
(5) implies thatl-(-1)"=0(mod4 , so y must be even. Then we lgt= 2t
forallt € Z*, thus (5) become§* — 3 = 2*'or (5t —3)(5 + 3) = Z*'. There are

a,B € Z which are5' -3 =2 and5 +3 = ’where0<a<fB anda+ [ =k+1.
Then we have2[® = 2 + 2 or 2[5 = 2"(1+ 26"’). It can be seen thar =1and
5 =1+ 2°. We have
5-27=1 (6)

If =1, then (6) becomeS' = 2. This is impossible. |8 = 2, then (6) become§' = 3.
This is impossible. | = 3, then (6) becomeS' = 5. We obtaint =1, and it follows that
a =1andk = 3. Consequently, we géi, y,z) =(6, 2,17 is a solution to the equation
(1). If =4, by Lemma 2.1 (6) has no solution .

i) For z-2 =3 [, z+2*=1becausez—2“ < z+ 2, 3 [F < 1. Thisis
impossible.

The case o8|z+ 2 obviously, 3] z— 2. By (4) and Lemma 2.2, we have two
possible cases namelg+2¢ =3, z-2" =%andz+2* =3 ¥, z-2=1.

) For z+2 =3, z—2“ =5, this implies thaz+2* < z—= 2 or 2[2< 0
which is impossible.
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i) For z+2“ =3[, z-2"=1, we havel% —1= Z* . This implies that
2 =0(mod7 , so7| 2** which is impossible.
Hence, the exponential Diophantine equation hasetholutions which are

(xv,2)0{(3,0,3 (0,1,%( 6,2,2F. [

4. Conclusion
In this study, we have applied the basic theoramsumber theory such as the factoring
method, modular method, and Catalan’s conjectusolee the exponential Diophantine

equation 2*+15 =7> . We have found three non-negative integer solstion

(xy.2)0{(3,0,.9 (0,1%( 6,2)f.
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