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1. Introduction
The Split feasibility problem was originally intraded by Censor and Elfving [7] for
modeling phase retrieval problems and it later ataslied extensively as an extremely
powerful tool for the treatment of a wide rangemferse problem, such as medical image
reconstruction and intensity modulated radiatiardpy problems. For example we may
refer to [8-10]. LeC andQ be two nonempty closed convex subset of real Hikgaces
H; and H, respectively and A: H; —» H, be a bounded linear operator. The Split
Feasibility Problem (SFP) is to find a poinsuch that

x €C,Ax €Q AL

Throughout the paper, we denotelhyhe solution set of the split feasibility probléhat
is

Ir'={x€C:4x €Q = CnNn(A71Q)}

Finding the common solution of a Split Feasibifsoblem and fixed point problem is one
of the core interest of many researchers. Rece&ldlyg et. al. [5] introduced a relaxed
extragradient method with regularization for finglia common solution set of SFP and the
set of Fix(T) of the fixed point of nonexpansive mappifig Recently Deepho [6]
introduced and analyzed a relaxed extragradienhadetvith regularization for finding a
common element of the solution Fedf the Split Feasibility Problem and fixed poiet s
Fix of an uniformly Lipschitz continuous and asymptally quasi nonexpansive mapping
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in the setting of real Hilbert space. Very recemtlysari et al. [2] deals with the weak
convergence of the relaxed extragradient methotl veégularization for computing a
common element of the solution set of Split FedigibiProblem and fixed point set of
asymptoticallyk strict pseudo contractive mapping in intermedsaese.

2. Some definitions
Definition 2.1. [4] Let H be real Hilbert Space artdbe a non empty closed convex subset
of H, amapping : C — C is said to be nonspreading if
2 2 2
2||x —y|| < ||Tx —y|| + ||Ty —x|| Vx,yeC
the above inequality is equivalent to
|Ix—y||2 < ||JC—y||2 +2 <x—Tx,y—-Ty>Vx,yeC

Definition 2.2. [4] Let H be real Hilbert Space. A mappifigg D(T) € H — H is said to
bek strict pseudo nonspreading mapping if there éxigD, 1) such that
||Tx —Ty||2 < ||x —y||2 + k||x —Tx—(y— Ty)||2 +2<x—-Tx,y—Ty >
Vx,yeD(T)
Every nonspreading mappingkistrict pseudo nonspreading mapping.

Definition 2.3. [4] Let H be real Hilbert Space. A mappifigD(T) € H — H is said to
be k asymptotically strictly pseudo nonspreading magpirthere exists €[0,1) and a
sequencé, c [1, ) with k,, = 1(n = o) such that

I77x = Ty < kel = y1|* + ke|lx = T = (v = T)I|* +
2<x—T"x,y—T"y >Vx,yeD(T)

It is easy to see that the classcadsymptotically strictly pseudo nonspreading magjisn
more general than the class bf strictly pseudo nonspreading mapping and
asymptotically strictly pseudo contraction mapping.

3. Preliminaries

Let H be a real Hilbert Space whose inner product anchraze denoted by.,.> and

|- || respectively. We denote the strong convergencevaa#t convergence of a sequence
{x,} to a pointx eX by x, —» x andx,, = x respectively. LeK be a nonempty closed
convex subset of real Hilbert Spaddor every pointc € H, there exist a unique nearest
point of K, denoted byPxx, such thaflx — Pxx|| = |lx —y|| Vx,y € K. Such aPy is
called the metric projection froii ontoK. It is well known thaPy is firmly nonexpansive
mapping fromH ontocC, i.e.,

||PKx—PKy||2 S<Pyx—Pyy,x—y>Vx,yeH

Proposition 3.1 [2].For a giverx € H andz € K, we have
(1) z=Pgxifandonlyif<x—z,z—y >0 VyeKk;

(2) z = Pex if and only if|[x — z||* < |lx = yI|* = lly — zI|? VyeKk;
(B)< Pxx — Pyy > = ||PKx—PKy||2VyeK.
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Let K be a non empty closed and convex subsét afdF : K — H be a mapping. The
Variational inequality problem (VIP) is to finde K such that
<Fx,y—x>>0VyekK (3.2)
the solution of VIP is denoted B4/ (K, F). It is well known that
xeVI(KK,F) © x =Px(x — AFx)V 1 >0

A set valued mapping : H — 2 called monotone & x — y, f - g >=> 0 whenever

f €Tx,g €Ty. It is said to be maximal monotone if, in additidghe graphG(T) =
{(x,f)eEHxH:feTx} of T is not properly contained in the graph of any pthe
monotone operator. It is well known that a monotoragpingT is maximal if and only if,
for

(x,f)eEHxH,<x—y,f—g>=0 forevery(y,g) EG(T) = f €Tx

Let F: K — H be a monotone that is Fx — Fy,x- y >=> 0 forallx,y € K andk
lipschitz continuous mapping, I&} v be the normal cone 6 atv € K, that is

Nyv={weH:<v—uw>=0 forall ue K}
Define

{Fv+Nkv Jif veK

Tv = .

Q , otherwise

ThenT is maximal monotone set valued mapping. It is welbwn that if0 e Tv then
—Fve N,v, which is further equivalent to the variationaedguality.

Proposition 3.2. [5]Let € andQ be nonempty closed subsets of Hilbert sgacandH,
respectively andd : H; —» H, be a bounded linear operator. For gixém H,, the
following statement are equivalent

(1) x* solves the SFP;

(2) x* solves the Fixed point equati®(l — A4*(I — Py)A)x* = x*;

(3) x* solves the VIP of finding*e C such thak Vf(x*), x —x*>=0 for allxe C
whereVf = A*(I — Py)A andA* is the adjoint ofd.

Lemma 3.3. [2]Let H be real Hilbert space.Then for ajlye H we have
© x-ylP< I|x|I22+ lIyll? , , ,
o NIx=@ =2yl =AIxl|"+ A =Dyl =22 = D|lx—yl|", for all
1€[0,1]

Lemma 3.4. [4]Let K be a non empty closed convex subset of a reakHiipaceé! and
letT : K — K be a continuouk asymptotically strictly pseudo nonspreading magpin
F(T) + ¢, then it is a closed and convex subset.

Lemma 3.5. [4]Let K be a non empty closed convex subset of a reakHiipaceé! and
letT : K — K be a continuous asymptotically strictly pseudo nonspreading magpin
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then(I — T)is demiclosed ab that is , ifx, = x*andlimsup,,_,« limsup,.« ||(I —
T™)x,|| =0 then||(I — T)x*|| = 0.

Lemma 3.6. [3]Let K be a hon empty closed convex subset of a reakHiipaceé! and
letT : K — K be a continuoug asymptotically strictly pseudo nonspreading magpin
and uniformlyL Lipschitzian mapping then for any sequenrgi K converging weakly
to a point p and||x, — Tx,||} converging strongly t6, we havep = Tp.

Motivated by the above, the purpose of this papéo is to introduce an iterative
algorithm for finding a common element of the simntset of split feasibility problem and
the fixed point set of a asymptotically strictlyepslo nonspreading mapping in the Hilbert
Space which improve and extends the results aof [1]

4. Main result
Theorem 4.1.Let C be a nonempty closed convex subset of a real Hitipaced andT :
C - C be an uniformly lipschitzian andc asymptotically strictly pseudo nonspreading
mapping such thatix(T) N T # ¢.
xo€ H
Yo =Pc(I =2,V f(an) (Xn))
Xnt1 = (1= Bp)xn + ﬁnTn(yn)
Assume that the sequence.$, {8,.}, {1,.}, {k,} satisfy the following conditions,
D) Yo ap < o

(2) {1} < [a, b] for somea, b € (0 !

.W). Yin=14n < ©;

3 {v fian (xn)}m=1 is bounded sequence;

(4) {Bn} < [d, e] for somed, e €(0, 1);

(5) {kn} € [1,0), k €[0,1).

Then both the sequenge,} and{y,} converges weakly to an elemetd Fix(T) N T.
Proof. Letpe Fix(T) N T be arbitrary chosen, then we h&@) = p e C and4p € Q.
Therefore,

Pc(p) = p andPy(Ap) = Ap

SinceP. is nonexpansive, we have
Iy =PI = 1Pz (1 = 207 fiay, () ) = Pe (@I
= ”(xn - P) - Anv f(an)(xn)llz

2

1y = DI < Ity = pIIZ + 22 ||V fiayy () (4.1)
Sincey,e C andT™y,e C, we have
llyn — Tnynllz = ||P¢ (I — AV f(an)(xn)) - PC(Tnyn)llz
S 1Gop = Typ) — A,V f(an) (Xn)llz
Iy = T"Vall® < 1Cen = T™all + 22NV fiay,, G II? (4.2)
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By k asymptatically strictly pseudo nonspreading magmufir, by Lemma (3.3), (4.1)
and (.4.2)
”xn+1 - p”2 =[(1- ﬂn)xn + ﬂnTn(yn) - p”2
1, = Bnxn + BT (Yn) — Bnp + Bnp — p”2
”xn - ﬂnxn)'{'ﬂn(Tn(yn) - p) + (ﬂnp - p”2
= ”(1 - ﬂn)xn-l'ﬁn(Tn(yn) - p) + (ﬁn - 1)[?”2
= 1(1 = Br) (xn — D) B (T" () — DI
=1 = Bpllxn — pl|2+zﬁnI|T”(yn) = pl? = Bn(1 = Bl —p — Ty — plI?
= (1= B)|lxn = pl| +Ba|IT"O) = P11 = Bu (L = B Ixnss = PIIT"Y = 12
= (1 - ﬁn)“xn - p||2+ﬂn {kn“yn - p|| + k“yn - Tnynllz} ||(Tnyn - p)“z -

1= B)|IT"y = xyl|*

2
= (1—ﬁn)||xn—p||2+ﬁn{kn{||xn—p||2 + 12012 {|7 fra, Gen)|| 3
+k||yn—Tnyn||2}—ﬁn<1—ﬁn)||Tny—xn||2
2
:(1 - ﬁn)“xn - p||2+ﬁnkn||xn - p||2+ﬁnkn)‘% |Vf(an)(xn)| +.Bnk||yn -

TYal|” = B = B|IT™y = x|

= (1= B + Bukn) |1 = P +Bnkn 22 ||V fia,) Cin)|
— Bl = B|IT"y = x|’

= (1= B + Bkl = I +Bukn2 ||V Frary G| Bl — T30

2 2
) = Bu(1 = B|IT™y = x|

z 2
+ﬁnk||yn - Tnyn”

2

12l {|7 Fray Con)|
2
= (1= B+ Bukn) |1 = I Bk ||V fray Cad|| +Bukel e = Tyl|°
2
+ 12nlBak ||V fram, Cen)|| = Bl = BTy = 24|

2

= (1= B+ Bukn) |1 = DI +(An 2Bk + BuknA3) {|V fiay, Con)|
+Bk12n = Thyl|” = Bu(1 = B|ITMy — x|

=1+ Bplky — 1))||xn - p||2+(|)‘n|2ﬁn(k + kn)M

12 = Tyl (Buk = Bn(1 = B))

[xne1 = pI|* < (4 + Bulln, — 1)|Ix = pI|*+( A 2Bk + k)M
e = Tl |* Buk — B (1 = B)) (4.3)

||xn+1 _p||2 < (1 +ﬁn(kn - 1))||xn - pllz + bn
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Yoe1 Py —1) < oo and)Y =11, < 0,0 <k < 1. We havey;-; b, < o0 and
limn_,oo||xn — p|| exists. AISO,limn_,OOHyn — p|| exists.
Thus from (4.3), we obtain

[tne1 = pI|* < (4 + Bulln — 1|12 — pI|*+( A 2Bk + k)M
12 = TVl |* Buk = Bn(1 = o))

||xn - Tn)’n”z(ﬁnk - ﬁn(l _ﬁn)) <1+ Bn(kn — 1))||xn - p||2+(|/1n|2ﬂn(k +
kM = |21 = pl|”

Using limiting conditions oM andk, we get,

limn_m“Tnyn — xn|| =0 .4
limn—mo“Tnyn - ynll =0 04-5
By (4.4),
||xn+1 - xnll = ||(1 = Brn)xn +ﬁnTn(yn) - xnll

= ||(xn - ﬂnxn) + ﬁnTn(yn) - xn||2
= ||(xn - ﬂnxn) + ﬁnTn(yn) - xn||2
= limn—mo,BnllTnyn - xnll - 0.
|1Xns1 = xl| = 0 (4.6)

Sincey,, = P, (xn -,V f(an) (xn)) and by proposition 3.1, we have

17 = 2I° < || = 20V fiay (a) —p||2 — 12 = 2nY Fiatgy ) = Yl

= |l = PII* = 1t = Yl|* + 220 <V fray, Gn) P — ¥ >

= |l = PII* = |1 = yl|* + 220 <V fiap, Gn)o P = 2% > +22,
<V flan &n)s Xn = yn >

= |l = 21" = 1% = Yl|* + 220 <V fay n) = V fia 0,0 = X > +22,
<V flany®)p = Xp > +22 <V fa, (xn), Xn = yn >

= |l = DII* = [1X = Yl|* + 220 <V fra, @)D = %0 > +2,
<V flanyEn) Xn =¥ —p +p >

2 2
=||xn_p|| _||xn_yn|| +21n<Vf(p)+(an)p;p_xn>+21n
< Vf(an)(xn)'xn —p>+< 2/171 < Vf(an)(xn) t+Yn—p>

2 2
=||xn_p|| _||xn_yn|| + 22, <V f(P)p—xp > 122, < app,p — X > +21,
< Vf(an)(xn):xn —-p>+21, < Vf(an)(xn):Yn -p>
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2 2
=||xn_p|| _||xn_yn|| +21n<anp:p_xn>+2/1n<|7f(an)(xn):xn_p
> +21, < Vf(an) (Xn), Yn — P >

19 = 2I° < [ = pII* = [ = Yl + 220 1] [1p = x|
+220 IV Framy )| 112 = P + 220 IV frary )| 11y = (4.7)

Now using Lemma (3.3) and (4.4),
2 2
||xn+1 - xn” = ||(1 - ﬁn)xn + ﬁnTn(yn) - p||

1Gcn) = (B + BuT ™) — P + (Bup) — Bud)I”

= 11 = B)xn + Bu(T™yn — D) —p(1 = BI|

= [I(1 = B) (n = D) + Bu(T™y — DI|°

= 11 = B (n = D) + Bu(T™n = DI|* = Bu(L = BTy — xal|”

= (1 = BIxn — PII? + Bulknlyn — Pl + K1y — Tyl |
— B = B|ITy = xu|*

= (1 = BIxn = PIIZ + Bukn|lyn =PI + Buk|1yn — T"ynl|”
— Ba(1 = B|IT™y = xal|”

= (1 = B)lIxn = PIIZ + Buknd|lxn = I|* = |1 = yul|* + 220 anlIpll11p = %]
+ 2] | fram, G| 11 = D11 + 220 ||V fray || 13 = 21}

+ Brklyn — Tl |” = Bu @ = BD|IT ¥y — x|

Taking limit both sides and using conditions , vietain
limn—>00||xn - yn|| =0

Now,
||yn+1 - yn|| = ”PC (1 - An+1vf(0{n+1) (Xn+1)) - PC (1 - Anv f(an)(xn)) |

< (xn+1 — A1V f(an+1) (Xn+1)) - (xn — AV f(an) (Xn)>
)

< (||xn+1 — Xp| + Ans1 | |vf(“n+1)(xn+1)| |2) * (An
1im 111 = yull = 0 (48

Taking limit both the sides

Since ||[YVns1 = Ynll 2 0, IT™ym — ]l 2 0 @s n> . T is uniformly Lipschitz by
Lemma (3.6), ||Tyn — ||l = 0 as > . Since{x,} is bounded sequence, there exist
a subsequende,, } of {x,}that converges weakly td" i.e.,x, — x".

Let {xn,-} of {x,} such that converges weakly:td i.e.,xnj - x*.

19 fran, Gin)
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Assumex’ # x*. By Opial’s condition
lim [|x, —x*|| =0
n—oo

liminf ||x,, —x*|| < lim ||x,, —x'||
n—-oo i n—oo 4

liminf ||x,, — x'|| = lim ||x,, — x'||

n-oo n—oo

< 1im [xn, = x*|| = lim ||, — x°]]
joo J n—-oo

This contradict to our assumpti@h= x*.
Hence x,, — x*, x, = x*. Forallf € H, f(x,) = f(x")
Next we show thaty,, — x*

[If Q) = FOOIN| = [If On) + £ () = £ Ct) = £
< |If Q) = FOI + 11 Cen) = FON
lim [If ) = fF(e)I| = 0forall f € H, f () = F(x") , yn = x*

By lemma 3.5x € Fix(T).

Now we show that* € T
Sa)l _ {Aanwl + Nc(l)l lf wq € C

0) otherwise
New, ={z€H:<w; —u,z>=0 foralluec

To show thak™ € T it is sufficient to show thai € Sx*
Let (w,,2) € G(C).
We havez € Sw; — 4,V f,,, + Ncw;
And,z — 1,V f,,, € New,
So we have< w; —w,z— 1,V f, >= 0 forallu € C
Since
w, EC
We havey, = Pc(I — 1,V f(an))(xn)

And by Proposition 3.1,
< (xn - ﬂ-nv f(an) (Xn) —YnpYn — W1 >2 0
<W; —YnYn—Xpt Anv f(an)(xn) >= 0

Zn + A,V f,, € New; andyy,; € C. It follows that

<W; = YnpZ>2< W1 — Y, oV foo, >

=2<w; — Yn, 'Anivfwl > —<w; — YnpVn; — Xny + ﬂ-nivf(ocni)xni >

= <w1 — Iny 'ﬂ-nivfwl > —<w; — Yng» Yng — Xny + ﬂ-niv fxni > _Ani(ani)
<w; — Yn; 'Ani)
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:<(1)1 ~In; :Anivfwl _Aniv fyni > =< wy =~ In; :Aniv fxni > —<w; — Yng »Yn; — Xny >
_Ani(ani) < w1 — ynl- 'Ani)
= ((1)1 — Yn; :Anivfwl - Anivfxni >—<w; — Yni»Yng — Xy > _Ani(ani)

< Wy = Yy Xny)
Taking limit asi - oo, we obtaink w; —x*,z >> 0 asi » ©

Since< w; —x*,z— 0 >= 0 for every (wq,2) € G(S).

Therefore the maximality &f implies thatd € Sx*.

Thus we havex™ € VI(C,V f) finally, proposition [5] implies that™ € T. This completes
the proof.

Remark 2.6. Theorem [10] improve and extends [1] in the folilogvaspects:

1. The technique of proving weak convergence in [$Qdifferent from that in [1]
because of our technique to usasymptotically strictly pseudo nonspreading
mapping and the property of maximal monotone magpin

2. The problem of finding a common elementFak(T n T) for k asymptotically
strictly pseudo nonspreading mappings which is mgeeeral than that for
nonexpansive mappings and the problem of findieglation of the SFP in [1].

3. The problem of finding a common element®fc(T N I') for k asymptoticallyk
strictly pseudo nonspreading mappings which is mgeeeral than that for
asymptoticallyk strict pseudo contractive mappings and the prola&finding a
solution of the SFP in [2].
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