
Annals of Pure and Applied Mathematics 
Vol. 26, No. 1, 2022, 39-48 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 28 September 2022 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/apam.v26n1a07873 
1 

 
 

39 
 

Split Feasibility Problem and Fixed Point Problem for 
Asymptotically Strictly Pseudo Nonspreading Mapping 

Hemlata Bhar1 and Apurva Kumar Das2*  
1Department of Mathematics, Govt. Engineering College 
Bilaspur (C.G.), India. E-mail: 5hemlata5@gmail.com 

2Department of Mathematics, Govt. Polytechnic 
Khairagarh (C.G.), India.  

*Corresponding author. E-mail: apurvadas1985@gmail.com 

Received 12 August 2022; accepted 27 September 2022 

Abstract. The purpose of this paper is to introduce an iterative algorithm for finding a 
common element of the solution set of split feasibility problem and the fixed point set of a 
asymptotically strictly pseudo nonspreading  mapping in the Hilbert Space. 

Keywords: Split feasibility, Asymptotically strictly pseudo nonspreading  mapping, Hilbert 
space 

AMS Mathematics Subject Classification (2010): 47J20, 49J40, 49J52 

1. Introduction  
The Split feasibility problem was originally introduced by Censor and Elfving [7] for 
modeling phase retrieval problems and it later was studied extensively as an extremely 
powerful tool for the treatment of a wide range of inverse problem, such as medical image 
reconstruction and intensity modulated radiation therapy problems.  For example we may 
refer to [8-10]. Let � and � be two nonempty closed convex subset of real Hilbert spaces 
��  and ��  respectively and  � ∶  �� → ��  be a bounded linear operator. The Split 
Feasibility Problem (SFP) is to find a point 
 such that 

                                           
 ∈ �, �
 ∈ �                                                 (1.1) 
 

Throughout the paper, we denote by Г, the solution set of the split feasibility problem that 
is 

Г 
  �
 ∈ � ∶ �
 ∈ � 
  � ∩ ������� 
 
Finding the common solution of a Split Feasibility Problem and fixed point problem is one 
of the core interest of many researchers. Recently Ceng et. al. [5] introduced a relaxed 
extragradient method with regularization for finding a common solution set of SFP and the 
set of ��
���  of the fixed point of nonexpansive mapping � . Recently Deepho [6] 
introduced and analyzed a relaxed extragradient method with regularization for finding a 
common element of the solution set Г of the Split Feasibility Problem and fixed point set 
��
 of an uniformly Lipschitz continuous and asymptotically quasi nonexpansive mapping 
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in the setting of real Hilbert space. Very recently Ansari et al. [2] deals with the weak 
convergence of the relaxed extragradient method with regularization for computing a 
common element of the solution set of Split Feasibility Problem and fixed point set of 
asymptotically � strict pseudo contractive mapping in intermediate sense.  
 
2. Some definitions 
Definition 2.1. [4] Let � be real Hilbert Space and � be a non empty closed convex subset 
of �, a mapping � ∶  � → � is said to be nonspreading if 

2�|
 − �|�� ≤ �|�
 − �|�� + �|�� − 
|��
 ∀ 
, � ! � 

the above inequality is equivalent to 

�|
 − �|�� ≤ �|
 − �|�� + 2 < 
 − �
, � − �� > ∀ 
, � ! � 
 
Definition 2.2. [4] Let � be real Hilbert Space. A mapping � ∶ $(�)  ⊂ � → � is said to 
be � strict pseudo nonspreading mapping if there exist � ![0, 1) such that 

�|�
 − ��|�� ≤ �|
 − �|�� + ��|
 − �
 − (� − ��)|�� + 2 < 
 − �
, � − �� > ∀ 
, � ! $(�) 
Every nonspreading mapping is � strict pseudo nonspreading mapping. 
 
Definition 2.3. [4] Let � be real Hilbert Space. A mapping �: $(�)  ⊂ � → � is said to 
be � asymptotically strictly pseudo nonspreading mapping if there exists � ![0, 1) and a 
sequence �* ⊂ [1, ∞) with �* → 1(, → ∞) such that 

�|�*
 − �*�|�� ≤ �*�|
 − �|�� + ��|
 − �*
 − (� − �*�)|�� + 2 < 
 − �*
, � − �*� > ∀ 
, � ! $(�) 
 
It is easy to see that the class of � asymptotically strictly pseudo nonspreading mapping is 
more general than the class of �  strictly pseudo nonspreading mapping and � 
asymptotically strictly pseudo contraction mapping. 
 
3. Preliminaries 
Let � be a real Hilbert Space whose inner product and norm are denoted by <. , . > and ||. || respectively. We denote the strong convergence and weak convergence of a sequence {
*} to a point 
 !. by 
* → 
 and 
* ⇀  
 respectively. Let 0  be a nonempty closed 
convex subset of real Hilbert Space � for every point 
 ! �, there exist a unique nearest 
point of 0 , denoted by 12
, such that ‖
 − 12
‖ = ‖
 − �‖ ∀ 
, � ! 0 . Such a 12  is 
called the metric projection from � onto 0. It is well known that 12 is firmly nonexpansive 
mapping from � onto �, i.e., 

�|12
 − 12�|�� ≤< 12
 − 12�, 
 − � > ∀ 
, � ! � 
 
Proposition 3.1 [2]. For a given 
 ! � and 4 ! 0, we have 
(1) 4 = 12
 if and only if < 
 − 4, 4 − � ≥ 0   ∀ � ! 0; 
(2) 4 = 12
 if and only if �|
 − 4|�� ≤ �|
 − �|�� − ||� − 4||�    ∀ � ! 0; 

(3) < 12
 − 12� > ≥ �|12
 − 12�|�� ∀ � ! 0. 
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Let 0 be a non empty closed and convex subset of � and � ∶ 0 → � be a mapping. The 
Variational inequality problem (VIP) is to find 
 ! 0 such that  < �
, � − 
 >≥ 0 ∀ � ! 0                                             (3.1) 
the solution of VIP is denoted by 78(0, �). It is well known that 
! 78(0, �) ⇔ 
 = 12(
 −   :�
) ∀  : > 0 
 
A set valued mapping � ∶ � → 2; called monotone if < 
 −  �, < –  > >≥  0 whenever < ∈ �
, > ∈ ��. It is said to be maximal monotone if, in addition, the graph ?(�) ={(
, <) ∈ � × �: < ∈ �
}  of �  is not properly contained in the graph of any other 
monotone operator. It is well known that a monotone mapping � is maximal if and only if, 
for (
, <) ∈ � × �, < 
 − �, < − > >≥ 0  for every (�, >) ∈ ?(�)  ⇒   < ∈ �
 
 
Let � ∶ 0 → �  be a monotone that is < �
 −  ��, 
 –  � >≥ 0 <BC DEE 
, � ∈ 0  and � 
lipschitz continuous mapping, let FGH be the normal cone to 0 at H ∈ 0, that is 
 FG H = {I! �: < H − J, K >≥ 0 <BC DEE J! 0} 
Define  
 

�H =  L �H + FG H        , �< H! 0M              , BNℎPCK�QP 

Then � is maximal monotone set valued mapping. It is well known that if 0 ! �H then −�H! FGH,  which is further equivalent to the variational inequality. 
 
Proposition 3.2. [5] Let � and � be nonempty closed subsets of Hilbert space �� and �� 
respectively and � ∶ ��  → ��  be a bounded linear operator. For given
∗ ! �� , the 
following statement are equivalent 
(1) 
∗ solves the SFP; 
(2) 
∗ solves the Fixed point equation 1S(8 − :�∗T8 − 1UV�)
∗ = 
∗; 
(3) 
∗  solves the VIP of finding 
∗! �  such that < ∇<(
∗), 
 − 
∗ >≥ 0 for all 
 ! � 
where ∇< = �∗T8 − 1UV� and �∗ is the adjoint of �. 
 
Lemma 3.3. [2] Let � be real Hilbert space.Then for all 
, �! � we have 

• ‖
 − �‖� ≤ ‖
‖� + ‖�‖� 

• �|:
 − �1 − :��|�
�


 :�|
|�
�

+ �1 − :��|�|�
�

− :�1 − :��|
 − �|�
�

, for all : ! [0,1] 
 
Lemma 3.4. [4] Let 0 be a non empty closed convex subset of a real Hilbert space � and 
let � ∶ 0 → 0 be a continuous � asymptotically strictly pseudo nonspreading mapping if �(�) ≠ Z, then it is a closed and convex subset. 
 
Lemma 3.5. [4] Let 0 be a non empty closed convex subset of a real Hilbert space � and 
let � ∶ 0 → 0  be a continuous �  asymptotically strictly pseudo nonspreading mapping 
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then �8 −  �) is demiclosed at 0 that is , if 
* ⇀ 
∗and E�[QJ\]→^ E�[QJ\*→^ ||(8 −
�])
*‖ = 0  then  ||(8 − �)
∗‖ = 0. 
 
Lemma 3.6. [3] Let 0 be a non empty closed convex subset of a real Hilbert space � and 
let � ∶ 0 → 0  be a continuous �  asymptotically strictly pseudo nonspreading mapping 
and uniformly _ Lipschitzian mapping then for any sequence 
*in 0 converging weakly 
to a point p and {‖
* − �
*‖} converging strongly to 0, we have \ =  �\. 
 

Motivated by the above, the purpose of this paper is to is to introduce an iterative 
algorithm for finding a common element of the solution set of split feasibility problem and 
the fixed point set of a asymptotically strictly pseudo nonspreading  mapping in the Hilbert 
Space which improve and extends the results of  [1].  
 
4. Main result  
Theorem 4.1. Let � be a nonempty closed convex subset of a real Hilbert space � and � ∶
� → � be an uniformly _ lipschitzian and � asymptotically strictly pseudo nonspreading 
mapping such that ��
(�) ∩  Г ≠ Z. 


`! � 
�* = 1a(8 − :*∇ <(bc)(xe)) 


*f� = (1 − g*)
* + g*�*(�*) 
Assume that the sequence {h*}, {g*}, {:*}, {�*} satisfy the following conditions, 
(1) ∑ h**̂j� < ∞; 

(2) {:*} ⊂ &D, kX for some D, k ! l0, �
�|m|�no , ∑ :**̂j� < ∞; 

(3) {p <(bc)(
*)}*j�^  is bounded sequence; 

(4) {βe} ⊂ &r, PX for some r, P !(0, 1); 
(5) {�*} ⊂ &1, ∞), � !&0, 1). 
Then both the sequence {
*} and {�*} converges weakly to an element
∗! ��
(�) ∩ Г. 
Proof. Let \! ��
(�) ∩ Г be arbitrary chosen, then we have �(\) =  \ ! � and �\ ∈ �. 
Therefore, 

1a(\) = \ and 1U(�\) = �\ 
 
Since 1a is nonexpansive, we have 

‖�* − \‖� = ‖1a l8 − :*∇ <(bc)(xe)o − 1a(\)‖� 

≤ ‖(
* − 1) − :*∇ <(bc)(xe)‖� 
 

                                            ‖�* − \‖� ≤ ‖
* − \‖� + :*� s∇ <(bc)(xe)s�
                 (4.1) 

Since �*! � and �*�*!  �, we have 

‖�* − �*�*‖� = ‖1a l8 − :*∇ <(bc)(xe)o − 1a(�*�*)‖� 
                                            ≤ ‖(
* − �*�*) − :*∇ <(bc)(xe)‖� 

 
                       ‖�* − �*�*‖� ≤ ‖(
* − �*�*‖ + :*� ‖∇ <(bc)(xe)‖�                           (4.2) 
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By � asymptotically strictly pseudo nonspreading mapping of �, by Lemma (3.3), (4.1) 
and (.4.2) ‖
*f� − \‖� = ‖(1 − g*)
* + g*�*(�*) − \‖� = ‖
* − g*
* + g*�*(�*) − g*\ + g*\ − \‖� = ‖
* − g*
*)+g*(�*(�*) − \) + (g*\ − \‖� = ‖(1 − g*)
*+g*(�*(�*) − \) + (g* − 1)\‖� = ‖(1 − g*)(
* − \)+g*(�*(�*) − \)‖� = (1 − g*)‖
* − \‖�+g*‖�*(�*) − \‖� − g*(1 − βe)‖
* − \ − �*� − \‖� 

= (1 − g*)�|
* − \|��+g*�|�*(�*) − \||� − g*(1 − g*)�|
*f� − \||�||�*� − 
*||� 

= (1 − g*)�|
* − \|��+g* t�*�|�* − \|� + ��|�* − �*�*|��u �|(�*�* − \)�|� −
(1 − g*)�|�*� − 
*|��

  

= (1 − g*)�|
* − \|��+g* v�*{�|
* − \|�� + |:*|� wx∇ <(bc)(
*)xw�}
+ ��|�* − �*�*|��y − g*(1 − g*)�|�*� − 
*|��

 

=(1 − g*)�|
* − \|��+g*�*�|
* − \|��+g*�*:*� wx∇ <(bc)(
*)xwz +g*��|�* −
�*�*|�� − g*(1 − g*)�|�*� − 
*|��

 

= (1 − g* + g*�*)�|
* − \|��+g*�*:*� wx∇ <(bc)(
*)xwz +g*��|�* − �*�*|��

− g*(1 − g*)�|�*� − 
*|��
 

= (1 − g* + g*�*)�|
* − \|��+g*�*:*� wx∇ <(bc)(
*)xwz +g*�(�|
* − �*�*|��

+ |:*|� wx∇ <(bc)(
*)xw�) − g*(1 − g*)�|�*� − 
*|��
 

= (1 − g* + g*�*)�|
* − \|��+g*�*:*� wx∇ <(bc)(
*)xwz +g*��|
* − �*�*|��

+ |:*|�g*� wx∇ <(bc)(
*)xw� − g*(1 − g*)�|�*� − 
*|��
 

= (1 − g* + g*�*)�|
* − \|��
+(|:*|�g*� + g*�*:*� ) wx∇ <(bc)(
*)xwz

 

+g*��|
* − �*�*|�� − g*(1 − g*)�|�*� − 
*|��
 

= (1 + g*(�* − 1))�|
* − \|��
+(|:*|�g*(� + �*){ 

+�|
* − �*�*|��(g*� − g*(1 − g*)) 
 

�|
*f� − \|�� ≤ (1 + g*(�* − 1))�|
* − \|��
+(|:*|�g*(� + �*){ 

                              +�|
* − �*�*|��(g*� − g*(1 − g*))                             (4.3) 
 

�|
*f� − \|�� ≤ (1 + g*(�* − 1))�|
* − \|�� + k* 
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∑ g*��* − 1) < ∞*̂j�   and ∑ :**̂j� < ∞, 0 < � < 1. We have ∑ k**̂j� < ∞ and 
E�[*→^�|
* − \|�  exists. Also, E�[*→^�|�* − \|� P
�QNQ. 
Thus from (4.3), we obtain  

�|
*f� − \|�� ≤ (1 + g*(�* − 1))�|
* − \|��
+(|:*|�g*(� + �*){ 

                               +�|
* − �*�*|��(g*� − g*(1 − g*)) 
 

�|
* − �*�*|��(g*� − g*(1 − g*)) ≤ (1 + g*(�* − 1))�|
* − \|��
+(|:*|�g*(� +

�*){ − �|
*f� − \|��
 

 
Using limiting conditions of { and �, we get, 
                                            E�[*→^�|�*�* − 
*|� = 0                                                (4.4) 

 
                                             E�[*→^�|�*�* − �*|� = 0                                                (4.5) 
 
By (4.4), 

�|
*f� − 
*|� = �|(1 − g*)
* + g*�*(�*) − 
*|�  

= �|(
* − g*
*) + g*�*(�*) − 
*|��
 

= �|(
* − g*
*) + g*�*(�*) − 
*|��
 

= E�[*→^g*�|�*�* − 
*|� → 0 . 
                                       �|
*f� − 
*|� → 0                                                           (4.6) 

Since �* = 1a l
* − :*∇ <(bc) (xe)o and by proposition 3.1, we have 

�|�* − \|�� ≤ wx
* − :*∇ <(bc)(xe) − \xw� − x|
* − :*∇ <(bc)(xe) − �*|x 
= �|
* − \|�� − �|
* − �*|�� + 2:* < p <(bc) (xe), \ − �* > 

= �|
* − \|�� − �|
* − �*|�� + 2:* < p <(bc) (xe), \ − 
* > +2:*< p <(bc)(xe), 
* − �* > 

= �|
* − \|�� − �|
* − �*|�� + 2:* < p <(bc) (xe) − ∇ <(bc) (p), \ − 
* > +2:*< p <(bc)(\), \ − 
* > +2:* < p <(bc) (xe), 
* − �* > 

= �|
* − \|�� − �|
* − �*|�� + 2:* < p <(bc) (\), \ − 
* > +2:*< p <(bc)(xe), 
* − �* − \ + \ > 

= �|
* − \|�� − �|
* − �*|�� + 2:* < p <(\) + (h*)\, \ − 
* > +2:*< p <(bc)(xe), 
* − \ > +< 2:* < p <(bc)(xe) + �* − \ > 
 

= �|
* − \|�� − �|
* − �*|�� + 2:* < p <(\), \ − 
* > +2:* < h*\, \ − 
* > +2:*< p <(bc)(xe), 
* − \ > +2:* < p <(bc)(xe), �* − \ > 
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 �|
* − \|�
�

− �|
* − �*|�
�

+ 2:* < h*\, \ − 
* > +2:* < p <(bc)(xe), 
* − \
> +2:* < p <(bc)(xe), �* − \ > 

 

�|�* − \|�� ≤ �|
* − \|�� − �|
* − �*|�� + 2:*h*�|\|��|\ − 
*|� 
+2:* x|∇ <(bc)(xe)|x ||
* − \|| + 2:* x|∇ <(bc)(xe)|x ||�* − \||                    (4.7) 

 
Now using Lemma (3.3) and (4.4), 

�|
*f� − 
*|�� = �|(1 − g*)
* + g*�*(�*) − \|��
 

 

�|(
*) − (g*)
* + g*�*(�*) − \ + (g*\) − (g*\)|��
 

= �|(1 − g*)
* + g*(�*�* − \) − \(1 − g*)|��
 

= �|(1 − g*)(
* − \) + g*(�*�* − \)|��
 

= �|(1 − g*)(
* − \) + g*(�*�* − \)|�� − g*(1 − g*)�|�*�* − 
*|��
 

= (1 − g*)||
* − \||� + g*{�*�|�* − \|�� + ��|�* − �*�*|��
− g*(1 − g*)�|�*�* − 
*|��

 

= (1 − g*)||
* − \||� + g*�*�|�* − \|�� + g*��|�* − �*�*|��
− g*(1 − g*)�|�*�* − 
*|��

 

= (1 − g*)||
* − \||� + g*�*{�|
* − \|�� − �|
* − �*|�� + 2:*h*||\||||\ − 
*||
+ 2:*| x∇ <(bc)(xe)x |||
* − \|| + 2:* wx∇ <(bc)(xe)xw �|�* − \|��}
+ g*��|�* − �*�*|�� − g*(1 − g*)�|�*�* − 
*|��

 
 
Taking limit both sides and using conditions , we obtain  

E�[*→^�|
* − �*|� = 0  
 
Now, 

�|�*f� − �*|� = ||1a l8 − :*f�∇ <(bc}~)(xef�)o − 1a l8 − :*∇ <(bc)(xe)o | 
≤ l
*f� − :*f�∇ <(bc}~)(xef�)o − l
* − :*∇ <(bc)(xe)o 

≤ ��|
*f� − 
*| + :*f� � x∇ <(bc}~)(xef�)x |�� + �:* wx∇ <(bc)(xe)xw��  

Taking limit both the sides 
 lim*→^ ||�*f� − �*|| = 0                                                (4.8) 

Since ||�*f� − �*|| → 0 , ‖�*�* − �*|| → 0  as n→ ∞ . �  is uniformly Lipschitz by 
Lemma (3.6),  ||��* − �*|| → 0 as n→ ∞. Since {
*} is bounded sequence, there exist 
a subsequence {
*�} of  {
*}that converges weakly to 
∗ i.e., 
* ⇀ 
∗.  
Let {
*�} of {
*} such that converges weakly to 
∗ i.e., 
*� ⇀ 
∗.  
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Assume 
′ ≠ 
∗.   By Opial’s condition  
lim

*→^ ||
* − 
∗|| = 0 

 
lim*→^�,< ||
*� − 
∗|| < lim*→^ ||
*� − 
�|| 
lim*→^�,< ||
*� − 
�|| = lim*→^ ||
*� − 
�|| 
< lim�→^ ||
*� − 
∗|| = lim*→^ ||
* − 
∗|| 

 
This contradict to our assumption 
′ ≠ 
∗.    
Hence  
*� ⇀ 
∗, 
* ⇀ 
∗. For all < ∈ �, <(
*) → <(
∗) 
Next we show that  �* ⇀ 
∗ 
 

�|<(�*) − <(
∗)|� = �|<(�*) + <(
*) − <(
*) − <(
∗)|� 
≤ �|<(�*) − <(
*)|| + ||<(
*) − <(
∗)|� 

lim*→^�|<(�*) − <(
∗)|� = 0 for all < ∈ �, <(
*) → <(
∗) , �* ⇀ 
∗ 

 
By lemma 3.5, 
∗ ∈ ��
(�). 
 
Now we show that 
∗ ∈ Г 

�I� = L :*∇ <�~ + FaI�           �< I� ∈ �
∅                                    BNℎPCK�QP   

 
FaI� = {4 ∈ �: < I� − J, 4 >≥ 0  for all J ∈ � 
 
To show that 
∗ ∈ Г it is sufficient to show that 0 ∈ �
∗ 
Let (I� , 4) ∈ ?(�).  
We have, 4 ∈ �I� − :*∇ <�~ + FaI� 
And, 4 − :*∇ <�~ ∈ FaI� 
So we have  < I� − J, 4 − :*∇ <�~ >≥  0  for all J ∈ � 
 Since  

I� ∈ � 
We have �* =   1a(8 − :*∇ <(bc))(xe) 
 
And by Proposition 3.1, 
< (
* − :*∇ <(bc)(xe) − �*, �* − I� >≥  0 

< I� − �*, �* − 
* + :*∇ <(bc)(xe) >≥  0 
 
4* + :*∇ <�~ ∈ FaI� and �*� ∈ C. It follows that  
< I� − �*� , 4 >≥< I� − �*�  , ∇ <�~ > 
 ≥< I� − �*�  , :*�∇ <�~ > −< I� − �*� , �*� − 
*� + :*�∇ <(bc�)
*� > 

 ≥ 〈I� − �*�  , :*�∇ <�~ > −< I� − �*�  , �*� − 
*� + :*�∇ f
*� > −:*�(h*�)
< I� − �*�  , :*�〉 
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=〈I� – �*�  , :*�∇ <�~ – :*�∇ f�*� > −< I� – �*�  , :*�∇ f
*� > −< I� − �*�  , �*� − 
*� >
−:*�(h*�) < I� − �*�  , :*�〉  ≥ 〈I� − �*�  , :*�∇ <�~ − :*�∇ <�c� > −< I� − �*�  , �*� − 
*� > −:*�(h*�)

< I� − �*�  , 
*�〉 
Taking limit as � → ∞, we obtain < I� − 
∗, 4 >≥ 0  as � → ∞ 
 
Since < I� − 
∗, 4 − 0 >≥ 0 for every  (I� , 4) ∈ ?(�).  
Therefore the maximality of � implies that 0 ∈ �
∗. 
Thus we have, 
∗ ∈ 78(�, ∇ f) finally, proposition [5] implies that 
∗ ∈ Г. This completes 
the proof.  
 
Remark 2.6. Theorem [10] improve and extends [1] in the following aspects: 

1. The technique of proving weak convergence in [10] is different from that in [1] 
because of our technique to use � asymptotically strictly pseudo nonspreading 
mapping and the property of maximal monotone mappings. 

2. The problem of finding a common element of ��
(� ∩ Г) for � asymptotically 
strictly pseudo nonspreading mappings which is more general than that for 
nonexpansive mappings and the problem of finding a solution of the SFP in [1]. 

3. The problem of finding a common element of  ��
(� ∩ Г) for � asymptotically � 
strictly pseudo nonspreading mappings which is more general than that for 
asymptotically � strict pseudo contractive mappings and the problem of finding a 
solution of the SFP in [2]. 
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