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Abstract. This study presents proof and solutions of all negative integrals of the
Diophantine equatiop* + (2p — 1)¥ = z2 whenp and 2p — 1 are primes. This proof
uses the prediction of Catalan’s conjecture anatedltheories in proving by separating
p=2,p=3 andp>3. It shows that ifp =2, the Diophantine equatiop* +
(2p — 1)Y = zZ%isin the form oR* + 3 = z2 which has three solution§0,1,2), (3,0,3)
and (4,2,5) and ifp = 3 then(1,0,2) is the solutions of equati@f + 5¥ = z? when
considering the value qof > 3, the Diophantine equatiop* + (2p — 1)¥ = z% has no
solutions.

Keywords:Diophantine equations, exponential equations
AMS Mathematics Subject Classification (201@)1D61

1. Introduction

Many studies claim that the Diophantine equatiorone of the classic problems in
elementary number theory and algebraic number yhéoi 844, Catalan [2] proved that
a conjectured, b, x,¥) = (3, 2, 2, 3) is a unique solution of the Dioptiae equationa® —
bY = 1 wherea, b, x andy are integers with mirg, b, x, y} > 1.

Later in 2012, Sroysang [8] proved that The Diogimenequatior8* + 57 = z2
has a unique non-negative integer solution. Thatisol (x, y, 2) is (1, 0, 2).

In 2013, Sroysang [9] studied solutions to the Diptine equatiod* + 3 = z2,
(0,1,2), (3,0,3) and (4,2,5) are only three sohgifor wherex, y andz are non-negative
integers. and in 2014, show that the Diophantingatgn 7* + 31Y = z? has no non-
negative integer solution where x, y and z are megative integers.

In 2014, Suvarnamani [1], found that, €, X, ¥, 2 = (3, 5, 1, 0, 2) is a unique
solution of the Diophantine equatiph + g¥ = z? wherep is an odd prime number which
q —p = 2 andx, y andz are non-negative integers.

In 2017, Burshtein [3] showed that the Diophantmgiationp® + q” = z2 has
infinitely many solutions whep = 2 and also whep is prime.

Additionally, in 2018, Kumar et al. [6,7] showedathon the non-linear
Diophantine equatiop® + (p + 6)¥ = z2, whenp andp + 6 both are primes witp =
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6n+1 has no solution, whersey, andz are non-negative integer ands a natural number
on the Non-Linear Diophantine equatién,* + 67¥ = z? and 67* + 73 = z?2

Moreover, Fernando [5] also showed that the Diagiha equation
p* + (p + 8)Y = z% whenp > 3 andp + 8 are primes has no solutioq ¥, 2) in positive
integers.

In 2020, Burshtein [4] showed that the Diophantgeatiorp® + (p + 5)¥ = z?2
when p is prime wherg + 5 = 22% has no solutionx( y, 2) in positive integers.

In 2021, Vipawadee [10] showed that the Diophangquatiop™ + (p + 4™)Y =
z? has no solutions, wherex, y, z are non-negative integers apd>3 andp + 4" are
primes.

Because of this open problem, the author is thezeftterested in studying the
Diophantine equatiom* + (2p — 1)¥ = z? whenp and2p — 1 are primes ang, y, z are
non-negative integers.

2. Preliminaries

Proposition 2.1. [1] (Catalan’s conjecture3,2,2,3) is a unique solutioifa, b, x, y) for
the Diophantine equation* — bY = 1 wherea, b, x andy are integers such that min
{a,b,x,y} > 1.

Lemma 2.1. (2,3,3) and(3,1,2) are solutior{p, x, z} for the Diophantine equatiop* +
1 = z2 wherex andz are non-negative integers, gnés a positive prime number.
Proof. Letp be a positive prime number amdz are non-negative integers.
If x = 0, Thenz? = 2 which is impossible. then > 1.
We consider 3 cases includipg= 2,p = 3 andp > 3

Case l If p =2, then 2¥ = (z — 1)(z + 1). Thus there exist non-negative integers
a, 8 such that2® = z + 1 andp? = z — 1, wherea > f anda + 8 = x.
Therefore2f(2¢7F — 1) = 2. This implies thatg = 1 and 2¢7# = 2. Thena = 2, then
(2,3,3) is a solution(p, x, z) for the Diophantine equatigrt + 1 = z2.

Case2. If p =3, thenitfollows thatp* = (z —1)(z + 1).
Hencep? (p*# — 1) = 2 wherea > f anda + f = x.
This implies that = 0 andp* — 1 = 2.
Thus,p = 3 andx = 1, which yield the solutiofip, x, z) = (3,1,2).

Case3. If p > 3, thenp = 1(mod 4) orp = —1 = 3(mod 4).
Sincez is even and? = 0(mod 4).

Subcase 1. Suppose thap = 1(mod 4). Thenp”* + 1 = 2(mod 4) which is a
contradiction since? = 0(mod 4).
Subcase 2. Suppose that = —1 = 3(mod 4).
If x = 2k, k > 1, thenp* + 1 = z2 = 2(mod 4).
which is a contradiction sincZ = 0(mod 4).
If x=2k+1, k=0, thenl+p?*1 =22 p?k*1 =z -1 (z+ 1) ,

Thus there exist non-negative integerg such thap® = z + 1 andpf =z — 1,
wherea > > 0anda + f = x =2k + 1.
Thereforep? (p*~# — 1) = 2. This implies thap = 0 andp?**1 — 1 = 2,
Thenp?k*1 = 3 which is impossible.
Hence, the Diophantine equatipii + 1 = z? has no solutions whege> 3.
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Lemma 2.2. (2,1,2) is a unique solutiorfp, y,z) for the Diophantine equatioh+
(2p — 1)¥ = z? wherep and 2p — 1 are primes angl, z are non-negative integers.

Proof. Suppose thap — 1)Y + 1 = z2.
thenz2is even which implies that® = 0(mod 4).
We consider 3 cases.
Casel. If y = 0, Thenz? = 2 which is impossible.
Case2.If y >1andp = 2, Thusz? = 3Y + 1 > 4, that isz = 2. Hence,
min {p,y,z} > 1, then(2,1,2) is a unique solutiokp, x, z) for the Diophantine equation
2p—-1)Y +1 =22
Case3.If y >1and> 3, Thusz? = (2p — 1)Y > 5, thatisz > 2.
we have(2p —1)Y = (z— 1)(z + 1).
Supposex > 8 = 0 are integers such that + 8 = y.
Therefore2 = (2p — 1)* — 2p — 1)f = (2p - DA[@2p - D*F - 1].
This implies thajg = 0 and(2p — 1)¥ = 3 which is impossible. Hence, the Diophantine
equationl + (2p — 1)Y = z? has no solutions whege> 3.

3. Main result
Theorem 3.1. [8] (0,1,2), (3,0,3) and(4,2,5) are only three solutions for the Diophantine
equation2* + 3¥ = z? wherex, y andz are non-negative integers.

Theorem 3.2. [9] (1,0,2) is a unique solutiofw, y, z) for the Diophantine equation
3* + 5Y = z2 wherex, y andz are non-negative integers.

Theorem 3.3. (2,3,3), (3,1,2), (2,1,2),(0,1,2), (3,0,3), (4,2,5) and(1,0,2) are only seven
solutions for the Diophantine equatipfi + (2p — 1)¥ = z? wherep and 2p —1 are

prime andx, y andz are non-negative integers.

Proof. Let p and 2p — 1 be prime, and, y andz are non-negative integers.

Suppose that p*+ (2p —1)Y = 2?2 (1)
thenz2is even which implies that® = 0(mod 4).

We consider 3 cases includimg= 0 andx > 1.

Casel. If x = 0 andy = 0 Thenz? = 2 which is impossible.

If =0,y = 1,then(2,3,3) and (3,1,2) are solutior(p, y, z) for the Diophantine
equationl + (2p — 1) = z? wherey andz are non-negative integers gmds a positive
prime number (by Lemma 2.2).

Case2. If x = 1andy = 0 then (2,1,2) is a unique solutiofp, y, z) for the Diophantine
equationp* + 1 = z? wherep is a positive prime number andz are non-negative
integers (by Lemma 2.1).

Case3.If x = 1,y = 1 From (1), then we consider three subcases inclydiag,
p =3 andp > 3.

Subcase 1: [9] Supposep = 2, Then (0,1,2),(3,0,3) and (4,2,5) are only three
solutions for the Diophantine equatign® + (2p — 1)¥ = z? wherex,y andz are non-
negative integers (by Theorem 3.1).
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Subcase 2: [8] Suppose = 3, the Diophantine equatign® + (2p — 1)¥ = z% has a
unique non-negative integer solution. The solutiory, z) is (1,0,2) (by Theorem 3.2).
Subcase 3: Supposep > 3, wherep = +1(mod 4). From (1), it follows thatz? =
0 =(—1)*+1 (mod 4), thenp = —1(mod 4) orp = 4N + 3 andx is odd, so we let
x = 2n + 1 wheren is non-negative integers.
We separate the subcase proofg as2m andy = 2m + 1.
(a): If y = 2m, where m is positive integers.
we havep® + (2p — 1)?™ = z?2 it is written as

p*=-Cp-1DMz+2p-1D™) 2

From (2), yield (3) and (4).

p*=z+Q@2p-D" ©)

and pP=z—Q2p-—1)" (4)

where0 < <a<xanda+pf=x=2n+1.
From (3) and (4), we haye® (p*# — 1) =2(2p — D™
This implies thatg = 0, then p?™*t —1 = 2(2p — 1)™
Forn =0, we obtainp — 1 =22p — 1)™.
Then p=202p-1Dm+1 (5)
wherep = —1(mod 4) orp = 4N + 3. from (5),
we havetN + 3 = 2(2(4N +3))" + 1.

Hence,2N + 1 = (2(4N +3))™ which is impossible.
Forn > 1, we havep?™*1 — 1 =2(02p — 1)™
Then (p—DP*+p*" 1+ +p+1)=20Qp—-1™
It follows that p— 1 is an even positivéivisor of2(2p — 1)™,
Thatisp — 1 = 2(2p — 1)/, where j is an integer such that @< m.
For j =0, p = 3 which contradicts the fact that B.
For 1<j<m, we obtair2(2p — 1)) = 2p—1) —p or
2(2p — 1)) + p = 2p — 1, which is impossible.
(b): If y = 2m + 1, wherem is positive integers.

From (1), we have? = (2p — 1)¥(mod p). (6)
Since2p — 1 andp = 4N + 3 are prime. Such that + (2p — 1).

Since 2p—1)Y = -1 = z%(mod p)

Therefore z? +1 = 0(mod p)

Let z,2 be any solution af? + 1 = 0(mod p), so that;? = —1(mod p). Because 1 z;,
from Fermat’s theorerh = z,P~1 = (212)@21) = (—1)% (mod p).

The possibility thap = 4N + 3 for some N does not arise. If it did, we would &av
(_1)(p—1)/2 — (_1)2N+1 =-1

Therefore,1 = —1(mod p). The net result of this is that2, which is patently false.

Hence, the Diophantine equatiph+ (2p — 1)¥ = z2 wherep and 2p — 1 are prime and

x,y andz are non-negative integers. has no solution wheses.

Corollary 3.4. The Diophantine equatiop* + (2p — 1)¥ = u?" has no solution.

wherep > 3, p and 2p — 1 are primes and, y andu are non-negative integers amds a
positive number.
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Proof. Letu™ = z wherez are non-negative integers.
thenp® + (2p — 1)” = u?™ = z%has no solution by Theorem 3.3.

Corollary 3.5. The Diophantine equatiorp® + (2p — 1)¥ = u?"*2 has no solution
wherep >3, p and 2p — 1 are prime and;, y,u are non-negative integers and n is a
natural number.

Proof. Letu™*! = z wherez are non-negative integers.

thenp* + (2p — 1)¥ = u?™*2 = z2, which has no solution by Theorem 3.3.

Corollary 3.6. The Diophantine equatiop® — (2p — 1)” = z2 has no solution where
p >3 and p = 4N + 3 is a positive prime ang, y , z are non-negative integers alds
a natural number.

Proof: Suppose thap* — (2p — 1)¥ = z2, sincep t z andp + (2p — 1).

Thenz? = —(2p — 1)Y = —1(mod p).

Therefore z? 4+ 1 = 0(mod p)

Let b2 be any solution 0£2 + 1 = 0(mod p), so thath? = —1(mod p). Becausep } b,

(p-1) (p-1)
from Fermat’s theorem, is= bP~1 = (b%) z =(-1) z (modp).

The possibility thap = 4N + 3 for some N does not arise. If it did, we would &éav
(_1)(1)—1)/2 — (_1)2N+1 =1

Therefore,1 = —1(mod p). The net result of this is that2, which is patently false.

Hence, the Diophantine equatiph — (2p — 1)” = z2 wherep and 2p — 1 are prime and

x,y andz are non-negative integers, has no solution vwhen3.
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