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Abstract. This study presents proof and solutions of all non-negative integrals of the 
Diophantine equation � � �2� � 1�� 
 �� when � and  2� � 1 are primes. This proof 
uses the prediction of Catalan’s conjecture and related theories in proving by separating 
� 
 2, � 
 3  and � � 3. It shows that if � 
 2, the Diophantine equation � �

�2� � 1�� 
 �� is in the form of 2 � 3� 
 �� which has three solutions;  �0,1,2�, �3,0,3� 
and �4,2,5� and if � 
 3  then �1,0,2� is the solutions of equation 3 � 5� 
 �� when 
considering the value of � � 3, the Diophantine equation � � �2� � 1�� 
 �� has no 
solutions. 
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1. Introduction 
Many studies claim that the Diophantine equation is one of the classic problems in 
elementary number theory and algebraic number theory. In 1844, Catalan [2] proved that 
a conjecture (a, b, x, y) = (3, 2, 2, 3) is a unique solution of the Diophantine equation  � �

 �� 
 1 where a, b, x and y are integers with min{a, b, x, y} > 1. 
Later in 2012, Sroysang [8] proved that The Diophantine equation 3 � 5� 
 �� 

has a unique non-negative integer solution. The solution (x, y, z) is (1, 0, 2).  
In 2013, Sroysang [9] studied solutions to the Diophantine equation 2 � 3� 
 ��. 

(0,1,2), (3,0,3) and (4,2,5) are only three solutions for where x, y and z are non-negative 
integers. and in 2014, show that the Diophantine equation 7 � 31� 
 �� has no non-
negative integer solution where x, y and z are non-negative integers. 

In 2014, Suvarnamani [1], found that (p, q, x, y, z) = (3, 5, 1, 0, 2) is a unique 
solution of the Diophantine equation � � �� 
 �� where p is an odd prime number which 
� � � 
 2 and �,   and � are non-negative integers. 

In 2017, Burshtein [3] showed that the Diophantine equation � � �� 
 �� has 
infinitely many solutions when � 
 2 and also when � is prime.  

Additionally, in 2018, Kumar et al. [6,7] showed that on the non-linear 
Diophantine equation � � �� � 6�� 
 ��, when p and p + 6 both are primes with p = 
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6n+1 has no solution, where x, y, and z are non-negative integer and n is a natural number 
on the Non-Linear Diophantine equation, 61 + 67� = �� and  67 + 73� = �� 
 Moreover, Fernando [5] also showed that the Diophantine equation 
 � + �� + 8�� = �� when p > 3 and p + 8 are primes has no solution (x, y, z) in positive 
integers. 
 In 2020, Burshtein [4] showed that the Diophantine equation � + �� + 5�� = ��  
when p is prime where  � + 5 = 2�# has no solution (x, y, z) in positive integers. 
 In 2021, Vipawadee [10] showed that the Diophantine equation � + �� + 4$�� =
�� has no solutions,  where x, y, z are non-negative integers and p >3 and � + 4$ are 
primes. 

Because of this open problem, the author is therefore interested in studying the 
Diophantine equation; � + �2� − 1�� = �� when � and 2� − 1 are primes and �,  , � are 
non-negative integers.  
 
2. Preliminaries 
Proposition 2.1. [1] (Catalan’s conjecture) �3,2,2,3� is a unique solution ��, �, �,  � for 
the Diophantine equation � − �� = 1  where �, �, � and   are integers such that min 
.�, �, �,  / > 1. 
 
Lemma 2.1. �2,3,3� and �3,1,2� are solution .�, �, �/ for the Diophantine equation  � +
1 = �� where � and � are non-negative integers, and � is a positive prime number.  
Proof. Let � be a positive prime number and �, � are non-negative integers. 
If � = 0, Then �� = 2 which is impossible. then � ≥ 1.  
We consider 3 cases including � = 2, � = 3 and � > 3 
 Case 1. If � = 2, then  2 = �� − 1��� + 1�. Thus there exist non-negative integers 
1, 2 such that  23 = � + 1 and �4 = � − 1, where  1 > 2 and 1 + 2 = �.  
Therefore, 2452364 − 17 = 2. This implies that  2 = 1 and  2364 = 2. Then 1 = 2, then 
�2,3,3� is a solution ��, �, �� for the Diophantine equation � + 1 = ��. 
 Case 2. If  � = 3 , then it follows that  � = �� − 1��� + 1�. 
Hence, �45�364 − 17 = 2  where 1 > 2  and 1 + 2 = �.  
This implies that  2 = 0 and � − 1 = 2.  
Thus, � = 3 and � = 1, which yield the solution ��, �, �� = �3,1,2�. 
  Case 3. If  � > 3, then � ≡ 1�9:; 4� or � ≡ −1 ≡ 3�9:; 4�.  
Since � is even and �� ≡ 0�9:; 4�. 

Subcase 1. Suppose that � ≡ 1�9:; 4�. Then � + 1 ≡ 2�9:; 4� which is a 
contradiction since �� ≡ 0�9:; 4�. 

Subcase 2. Suppose that � ≡ −1 ≡ 3�9:; 4�. 
   If � = 2<, < ≥ 1, then � + 1 = �� ≡ 2�9:; 4�.  
which is a contradiction since �� ≡ 0�9:; 4�.  
    If � = 2< + 1, < ≥ 0, then 1 + ��=>? = ��,  ��=>? = �� − 1��� + 1� , 
Thus there exist non-negative integers 1, 2 such that �3 = � + 1  and �4 = � − 1,  
where 1 > 2 ≥ 0 and 1 + 2 = � = 2< + 1.  
Therefore �45�364 − 17 = 2.  This implies that 2 = 0 and ��=>? − 1 = 2,   
Then ��=>? = 3  which is impossible.  
Hence, the Diophantine equation � + 1 = ��  has no solutions where � > 3. 
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Lemma 2.2.  �2,1,2� is a unique solution ��,  , �� for the Diophantine equation 1 +
�2� − 1�� = �� where � and  2� − 1 are primes and  , � are non-negative integers. 
 
Proof. Suppose that �2� − 1�� + 1 = ��. 
then ��is even which implies that �� ≡ 0�9:; 4�. 
We consider 3 cases. 
 Case 1. If  = 0, Then �� = 2 which is impossible. 
 Case 2. If  ≥ 1 and � = 2 , Thus �� = 3� + 1 ≥ 4 , that is � ≥ 2. Hence,  
min .�,  , �/ > 1, then �2,1,2� is a unique solution ��, �, �� for the Diophantine equation 
�2� − 1�� + 1 = ��. 
 Case 3. If  ≥ 1 and ≥ 3 , Thus �� = �2� − 1�� ≥ 5 , that is � ≥ 2.  
we have �2� − 1�� = �� − 1��� + 1�. 
Suppose 1 > 2 ≥ 0 are integers such that  1 + 2 =  .  
Therefore, 2 = �2� − 1�3 − �2� − 1�4 = �2� − 1�4@�2� − 1�364 − 1A. 
This implies that 2 = 0 and �2� − 1�� = 3 which is impossible. Hence, the Diophantine 
equation 1 + �2� − 1�� = ��  has no solutions where � ≥ 3.  
 
3. Main result 
Theorem 3.1. [8] �0,1,2�, �3,0,3� and �4,2,5� are only three solutions for the Diophantine 
equation 2 + 3� = �� where �,   and � are non-negative integers. 
 
Theorem 3.2. [9] �1,0,2� is a unique solution ��,  , �� for the Diophantine equation 
 3 + 5� = �� where �,   and � are non-negative integers.   
 
Theorem 3.3. �2,3,3�, �3,1,2�, �2,1,2�, �0,1,2�, �3,0,3�, �4,2,5� and �1,0,2� are only seven 
solutions for the Diophantine equation � + �2� − 1�� = �� where � and  2� − 1 are 
prime and �,   and � are non-negative integers. 
Proof. Let  � and  2� − 1 be prime, and �,   and � are non-negative integers.  
Suppose that   � + �2� − 1�� = ��                  (1) 
then ��is even which implies that �� ≡ 0�9:; 4�. 
We consider 3 cases including � = 0 and � ≥ 1. 

Case 1. If � = 0 and  = 0 Then �� = 2 which is impossible.  
 If = 0,  ≥ 1, then �2,3,3� and  �3,1,2� are solution ��,  , �� for the Diophantine 

equation 1 + �2� − 1�� = �� where   and � are non-negative integers and � is a positive 
prime number (by Lemma 2.2). 

Case 2. If � ≥ 1 and  = 0 then  �2,1,2� is a unique solution ��,  , �� for the Diophantine 
equation � + 1 = �� where � is a positive prime number and �, � are non-negative 
integers (by Lemma 2.1).  

Case 3. If � ≥ 1,  ≥ 1 From (1), then we consider three subcases including � = 2, 
 � = 3 and � > 3. 
 Subcase 1: [9] Suppose � = 2, Then �0,1,2�, �3,0,3� and �4,2,5� are only three 
solutions for the Diophantine equation  � + �2� − 1�� = �� where �,   and � are non-
negative integers (by Theorem 3.1). 
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 Subcase 2: [8] Suppose � 
 3, the Diophantine equation � + �2� − 1�� = �� has a 
unique non-negative integer solution. The solution ��,  , �� is �1,0,2� (by Theorem 3.2).  
 Subcase 3: Suppose � > 3, where � = ±1�9:; 4�. From (1), it follows that �� ≡
0 ≡ �−1� + 1 �9:; 4�, then � ≡ −1�9:; 4� or � = 4C + 3 and � is odd, so we let 
� = 2D + 1 where D  is non-negative integers.  
We separate the subcase proofs as  = 29 and  = 29 + 1. 
 (a): If  = 29, where m is positive integers.  
we have � + �2� − 1��E = �� it is written as 
� = �� − �2� − 1�E��� + �2� − 1�E�                 (2) 
From (2), yield (3) and (4). 
�3 =  � + �2� − 1�E                     (3) 
and                     �4 =  � − �2� − 1�E                                  (4) 
where  0 ≤ 2 < 1 ≤ � and 1 + 2 = � = 2D + 1. 
From (3) and (4), we have �45�364 − 17 = 2�2� − 1�E. 
This implies that  2 = 0, then  ��$>? − 1 =  2�2� − 1�E 
 For D = 0, we obtain � − 1 = 2�2� − 1�E.   
Then       � = 2�2� − 1�E + 1                       (5) 
where � ≡ −1�9:; 4� or � = 4C + 3.  from (5),  

we have 4C + 3 = 252�4C + 3�7
E

+ 1.  
Hence,  2C + 1 = 52�4C + 3�7

E,
 which is impossible. 

 For D ≥ 1, we have ��$>? − 1 = 2�2� − 1�E  
Then   �� − 1����$ + ��$6? + ⋯ + � + 1� = 2�2� − 1�E  
It follows that p − 1 is an even positive divisor of 2�2� − 1�E,  
That is  � − 1 = 2�2� − 1�I, where j is an integer such that 0 ≤ j < m. 
 For j = 0, p = 3 which contradicts the fact that p > 3.  
 For 1 ≤ j < m, we obtain 2�2� − 1�I = �2� − 1� − � or 
 2�2� − 1�I + � = 2� − 1, which is impossible.  
 (b): If  = 29 + 1, where 9 is positive integers.  
From (1), we have �� ≡  �2� − 1���9:; ��.                     (6) 
Since 2� − 1 and � = 4C + 3 are prime. Such that  � ∤ �2� − 1�. 
Since   �2� − 1�� ≡ −1 ≡ ���9:; �� 
Therefore       �� + 1 ≡ 0�9:; ��  
Let �?

� be any solution of �� + 1 ≡ 0�9:; ��, so that �?
� ≡ −1�9:; ��. Because � ∤ �?, 

from Fermat’s theorem 1 ≡ �?
K6? ≡ ��?

��
�LMN�

O ≡ �−1�
�LMN�

O  �9:; ��. 
The possibility that � = 4C + 3 for some N does not arise. If it did, we would have  

�−1��K6?�/� = �−1��Q>? = −1 
Therefore, 1 ≡ −1�9:; ��. The net result of this is that �|2, which is patently false. 
Hence, the Diophantine equation � + �2� − 1�� = �� where � and  2� − 1 are prime and 
�,   and � are non-negative integers. has no solution where � > 3. 
 
Corollary 3.4.  The Diophantine equation  � + �2� − 1�� = S�$  has no solution. 
where � > 3, � and  2� − 1 are primes and �,   and S are non-negative integers and D is a 
positive number. 
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Proof. Let S$ = � where � are non-negative integers.    
then � + �2� − 1�� = S�$ = ��has no solution by Theorem 3.3.  
 
Corollary 3.5.  The Diophantine equation  � + �2� − 1�� = S�$>�  has no solution 
where � > 3 , p and  2� − 1 are prime and �,  , S are non-negative integers and n is a 
natural number. 
Proof. Let S$>? = � where � are non-negative integers.    
then � + �2� − 1�� = S�$>� = ��, which has no solution by Theorem 3.3. 
Corollary 3.6.  The Diophantine equation  � − �2� − 1�� = ��  has no solution where  
� > 3 and  � = 4C + 3 is a positive prime and �,   , � are non-negative integers and C is 
a natural number. 
Proof: Suppose that  � − �2� − 1�� = ��, since � ∤ � and � ∤ �2� − 1�. 
Then �� ≡ −�2� − 1�� ≡ −1�9:; ��.  
Therefore       �� + 1 ≡ 0�9:; ��  
Let �� be any solution of �� + 1 ≡ 0�9:; ��, so that �� ≡ −1�9:; ��. Because � ∤ �, 

from Fermat’s theorem, is 1 ≡ �K6? ≡ ����
�LMN�

O ≡ �−1�
�LMN�

O  �9:; ��. 
The possibility that � = 4C + 3 for some N does not arise. If it did, we would have  

�−1��K6?�/� = �−1��Q>? = −1 
Therefore, 1 ≡ −1�9:; ��. The net result of this is that �|2, which is patently false. 
Hence, the Diophantine equation � − �2� − 1�� = �� where � and  2� − 1 are prime and 
�,   and � are non-negative integers, has no solution when � > 3. 
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