Annals of Pure and Applied Mathematics
Vol. 26, No. 2, 2022, 55-66 Annals of

Published on 20 Octber 2020 Pure and Applied

www.researchmathsci.org t =
DOI: http://dx.doi.org/10.22457/apam.v26n2a02885 Ma hematlcs

Analytical Approach to Fractional Fisher Equations by
Laplace-Adomian Decomposition Method
R.K.Bairwa'", Priyanka?, Soniya Bairwa® and Sanjeev Tyagi*

L2Department of Mathematics, University of Rajasthan,
Jaipur - 302004, Rajasthan, India.
3Department of Botany, University of Rajasthan,
Jaipur - 302004, Rajasthan, India.

'Email: pkjakharl7@gmail.com; 2Email: sonibairwa@gmail.com
“‘Department of Mathematics, Government College
Thanagazi- 301022, Rajasthan, India.
E-mail: styagi.jpr.2013@gmail.com
"Corresponding authorEmail: dr.rajendra.maths@gmail.com

Received 31 August 2022; accepted 18 October 2022

Abstract. This article implements the Laplace-Adomian decositign method to obtain
approximate analytical solutions in series form fam-linear time-fractional Fisher's
equations with initial conditions. The fractionatrivatives are given in the sense of
Caputo. In addition, the results of this invesiigatare represented graphically, and they
are simple yet highly accurate and compare favdynaibh the solutions reported in the
earliest literature.
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1. Introduction
Fractional calculus is a powerful tool for solvipgblems in many branches of science and
technology, including control engineering, physgignal processing, mathematical biology,
viscoelasticity, electromagnetics, and mathemagitesics. Fractional partial differential
equations (FPDEs) have lately sparked a signifidgatdrest in mathematics and its
applications. Scientists have used them to moeéta range of chemical, biological, and
physical processes [14,15,16]. Nonlinear FPDESs lmeagolved analytically using a number
of different approaches, such as the Adomian deositipn method (ADM) [22], the
Homotopy perturbation method (HPM) [23], the Honpyterturbationtransformmethod
(HPTM) [8], thedifferential transform methofDTM) [12], the Homotopy analysis method
(HAM) [7], and the iterative Laplace transform medhILTM) [1,18,19] and so on.

In 2001, Khuri [10] presented a novel approachpjoreximating the solution of a
class of non-linear differential equations termbd taplace Adomian decomposition
method (LADM). The Volterra integro-differential eations [21], Burger differential
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equations [13], and Kundu Eckhaus differential ¢igna [5] have been solved using the
LADM method.In order to achieve an approximate analyticaltsmtuof linear and non-
linear fractional diffusion-wave equations, Jaferial. [6] first adopted the LADM
technique. In recent years, the LADM has beenzatlito solve fractional Telegraph
equations [9], fractional Zakharov-Kuznetsov equai[17], and fractional Klien-Gordon
equations [2]. The LADM approach is rid of any shmal large parameters and has
advantages over other approximation approaches asigierturbationLADM requires
neither discretization nor linearization, in costrato other analytical approaches.
Consequently, the outcomes produced by LADM areerefficient and realistic.

As a model for the propagation of a mutant genghéd¥iintroduced the classical
Fisher's equation, a partial differential equatioth constant coefficients as

U, (1) = u, (%, t) +u(xt)(1-uxt)) . 1)

In this model,u(x,t) indicates the population density, an¢u —1) denotes the

logistic form. This equation appears in chemicakkics and population dynamics, which
encompasses problems like the non-linear evolwfanpopulation in a one-dimensional
habitat and the neutron population in a nucleacti@a. In addition, the same equation
arises in models of logistic population growth,nfla propagation, neurophysiology,
autocatalytic chemical reactions, and branchingMBian motion processes.

In this work, the time-fractional model for Fislseg’quation may be represented as

[1]

DIu(x,t) =u, (x,t)+Au(x,t)(1-u(xt)) ,0<a< 1 (2)
where D{u(x,t) denotes the Caputo fractional derivative of ordernd /A is a real
parameter.

The key contribution of this paper is to extend thaplace-Adomian
decomposition technique (LADM) in order to constraie approximate analytical solution
for the non-linear time-fractional Fisher's equiasiovith initial conditions.

2. Preliminaries
In this part, we present the basic definitionsratfional calculus and the sophisticated
properties of the Laplace transform theory.

(@) The fractional derivative ofi(X,t) in the Caputo sense is defined as [11, 14]

1 t
Diu(x,t) =———|[ (t —-7)™"u™ (x,n7)dn,
o) = T oy .
m-1<a<mmUN,
(b) The Laplace transform of a functioin(x), x > 0 is defined as [20]
LLTO9] = F(9 = [ef(xdx (@)
0

wheres is real or complex number.
(c) The Laplace transform of the Caputo fractioraivhtive is defined as [11, 14]
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L[ Dfu (xt)]=s"L[u(xt)] - fu(k) (x,0)s" ™, -

m-1<a<mmQiN,
Whereu(k)(x, 0) is the k-order derivative dfi (x,t) with respect ta att = 0.

3. Basic idea of Laplace-Adomian decomposition nmtebd

To illustrate the fundamental concept of the LaglAcomian decomposition method [6],
we take a general fractional partial differentiqliation that may be expressed in operator
form as

Dfu(x,t)+Ru(xt)+Nu(xt)=g(xt) ,m-1<a<m, mON, (6)
u®(x,0)=h (x), k=0,1,2,..m- 1 @)

where Dt”u(x,t) is the Caputo fractional derivative of ordgr m—1<a < m, defined

by equation (3)R is a linear operator which might include othecfianal derivatives of
order less thawr, N is a non-linear operator which also might includeer fractional

derivatives of order less tham and g (x,t) is a known analytic function.
Applying the Laplace transform to equation (6), vexe

L[ Dfu(x.t) |+ L[ Ru(xt)+Nu(xt)]=L[ g(x.t)]. ®)

Using the equation (5), we get

L{u(x t)] = S_];mz_lsa—l—ku(k)(x 0) +S_%7 |_[ g(x,t)]

L ©)
-—L[Ru(x,t)+ Nu(x,t)].
S
Applying inverse Laplace transform to the equaf@y we obtain
m-1
u(xt)=L" [%(Zs”‘l‘ku“) (x,0)+L[g(x )]ﬂ
S e
k=0 . oL
-t {—a L[Ru(x.t)+ Nu(x,t)]} .
S
The ADM solutionu(x,t) is represented by the following infinite series
u(x,t)=> u, (x.t), (11)
n=0
and the non-linear term is decomposed as follows
Nu(x,t)=>" A , (12)
n=0

where A are the Adomian polynomials given by
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_afd (5, _
ﬂ_n![dAnN(ZAuij:L:Oy n 0,1,2,... 136

i=0

Substituting equations (11) and (13) into equafid), we get
oo m-1
Zun (X,t) =1 {iﬂzsa—l—ku(k) (X, O)+_]¢; L [g (X,t)]}
n=0 S ko S

- L‘lLia L( R(g qu,t)}ZﬁH.

Using the Adomian method, we construct the elef@m of formal recurrence relations
as

(14)

Uy(X,1) = L‘{S—amfs"‘l‘ku(” (x,0)+s—f,L[g(x,t)]]
- (15)

u,,(xt)=-L" [si" L(R(u, (x,t))+ A])} ,n=0,12,...,

Therefore, the approximate analytical solutiongpiaions (6) and (7) in truncated series
form is given by

U(x ) Ofim >, (%), (16)
~® m=0

In general, the solutions in the aforementionedsdorm converge rapidly. The classical
approach to convergence of this type of seriebéas presented by Cherruault and Adomian
[3] and Cherruault al. [4].

4. Implementation of the Laplace-Adomian decomposon method
In this part, the above-mentioned reliable mettoiiiplemented to solve the non-linear
time-fractional Fisher's equations with initial clitions.

Example 1. Consider the following non-linear Fisher's equaticoncerning the time
fractional derivative, given by [1, 12]

P
DtU—¥+6u(1—u), O<a<1, (17)
with the initial condition
u(x,0)=;2, (18)
(1+e)

where D{u(x,t) is the Caputo fractional derivative of order given by equation (3).

Taking the Laplace transform of the above equdti@hand making use of the result given
by equation (18), we have

L[u(x,t)]:E 1 2+—1 L[a—zl:+6u(1—u)J . (19)
s(1+eX) S 0x
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Applying inverse Laplace transform to the equafit®), we obtain
1 4l 1, (0%
u(x,t) = >+l | —L| —+6u(l-u)||. (20)

Substituting the results from equations (11) arg) {ii the equation (20) and making use
of the results given by the equation (15), we deilee the components of the LADM
solution as follows

1
uO(X’t) = 2 (21)
(1+e)
1, (0% 1
u,,(xt)= L= 0|+l =L ,n=0,1,2,... 22
n+1( ) |:Sa ( axz Jj| |:Sa (ﬂ)} ( )
where A, are the Adomian polynomials for the non-linear telu = 6u(1-u).
Now, for n=0,1, 2,...and using equations (13) and (22), we have
_be'(2+€) (2“1 ) (23)
(1+e)
u(xt) =10—° t (24)

(1+ex)3 Ma+1)
_ 60(e3x + EZX _ex) ta -
A~ (1+ex)5 Ma+1) =

50e*(-1+€”) (2

& ) ! 26
Uz(x ) (1+ex) r(2a+1) (26)
— 50e* _ 2%\ ([ % 2% \_ . [ (20! + 1) t2a
5 _(1+ex)6 [6( el &ret)- 12 (a +1)? }F(chl) (27)
“3(“):& 5 6"~ 157 + 20 — 12¢ | (X7 1)2 v (28)
(1+e) (M@+1)° |T(Ba+1)

and so on. The remaining components may be obtaingtarly.
Thus, the series-form approximate analytical sofutian be obtained as

u(X,t) =y (X,) +u (X,t) + U, (X, 1)+ Uy (.t )+ ...
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_ 1 0 e* t” e*(-1+ 2*) t*
\2 +1 N\ T \4
(1+e ) (1+e ) (a+1) (1+e ) r(2a +1)

t3a

r(2a +1) ]
(F@+D) ) (1+e) r(@a+1)

+50e*| 5- 6*- 1%+ 2@* - 12* +...
(29)
Special Cases
(i) The result in (29) was derived by Zhang &nd[23] using the method of HPM.
(i) The resultin (29) was obtained by Bairvid fising ILTM Method.
(i) The result in (29) was deduced by Khatral. [7] by the application of HAM.

(iv) For a =1, the resultin (29) reduces to the following exsaltition
1

(1 +e 8 )2 '
This result was earlier achieved by Wazwaz and @81g2] using the ADM approach.

u(x,t) = (30)

(© (d)

Figure 1: The surface shows the solution of théx,t): (a) approximate solution for
a =0.55, (b) approximate solution far = 0.70,(c) approximate solution forr = 0.85,
(d) approximate solution foor =1.
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wlet)

Figure 2. The surface shows the comparison graph of theiaolu(Xx,t) for different values
of parametersg =0.55,0 = 0.70a=0.850 =1

Example 2. Consider the following non-linear Fisher's equaticoncerning the time
fractional derivative, given by [1, 12]

. _ 0%
DtU—W+u(1—u), O<a<1, (31)

with the initial condition
u(x,0)=2, (32)
where D u(x,t) is the Caputo fractional derivative of ordergiven by (3) and3 be a

constant parameter.
Taking the Laplace transform of equation (31), araking use of the result given

by (32), we obtain

2
Liux 1 =2 +%{L("—Z‘+u(1—u)ﬂ (33)
s s 0X
Applying the inverse Laplace transform to the equa(33) yields
2
u(x,t)=g8+L" {ia L(a—l;+u(1—u)ﬂ. (34)
S ou

Substituting the results of the equations (11)@2Jl in the equation (34) and applying the
equation (15), we determine the components of &ieM solution as follows

U (x1)= B, (35)
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1 (0% 1
u.,.(xt)= L' =L O |+l =L ,n=0,1,2,... 36
() La (axz ﬂ La (A\)} (36)
where A, are the Adomian polynomials for the non-linear teNu = u(1-u).
Now, for n=0,1, 2,...and using equations (13) and (36), we have

A =B(1-5). (37)
I
u(x,t)=4(1 ﬁ)r(a+1)' (38)
- AV t°
A=p(1-p)(1 2ﬂ)|’(a+1)’ (39)
a _ i t20
L0 =F(-B)(1- ) oy (40)
(p_optiamiand Lo (pe_ops, pay 7
A =(B-2p 8- 48 ) (B 28+ﬁ)[r(a+1)]2, (41)
A romiant  aed U0 (2 smsy pd F(2a+1) ¥
uy(xt)=(B-28°+83 4/3)”3“1) (8 28+ﬁ)[|_(a+1)]2|_(3a+1),
(42)
_ 2 3 4 2 3 A M2a+1) >
=(1-28)| (B-56°+ 85°- 48*)=(B*- B°+p ;
a ){( A )[r(‘”l)] }r(gaﬂ) 43)
2 2 3 4 t3a
~2(B-F)(F -2 +'B)F(a+1)r(20/+1)’
—(1_ 2 5 128\ [ p2_ a3, pd [(20+1) t*
u,(x,t) = (1 Zﬂ)[(ﬂ 5+ §5°- 48°) (B $+ﬂ)[r(a+l)]z}r(4a+l)
_ _ 2 2 _ 3 4 r(30'+1) t*
Z(ﬂ ﬂ)(ﬂ 2ﬂJrz'g)r(a+1)r(2a+1)r(4a+1)’
(44)

and so on. The remaining components may be obtaingtarly.

Thus, the series-form approximate analytical sofutican be obtained as
u(Xt) = Uy (%, 1) + U, (X, ) + U, (X,E) + Uy (X, E)+u, (Xt )+ .
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:'3”:3(1‘5’)%*5’(1—[3)(1‘23)%
N S 27T TP o ¢ £ ) I
+(B-28"+8p 4ﬁ)r(3a+1) (o 28Jrﬁ)[r(a+1)]’-‘r(3’a+1)

r(2a +1) t*
[F(a +1)]2 M (4a +1)

r@a+1) t*

+(1-2B)| (B-56°+ §8° - 48*)-(B*- B°+ ")

-2(B-p?)(B?-28°+ 28")

Ma+)r Qo+ )T (4o + 1)+ N

(45)

i)

(@) (b)

() (d)

Figure 3: The surface shows the solution of ti(e,t) : (2) approximate solution for,
a = 0.55, (b) approximate solution far = 0.70, (c) approximate solution fax =
0.85, (d) approximate solution foer =1.

Special Cases
(i) The result in (45) was derived by Zhang and[23] using a method of HPM.

(i) The resultin (45) was deduced by Mirzazafie?] by the application of DTM.
(i) The result in (45) was obtained by Bairwlg {ising ILTM technique.
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(iv) For a =1, the resultin (45) reduces to the following exsaltition

U(X,t) :#ixﬁet . (46)

This result was earlier achieved by Wazwaz angy@se [22] using the ADM approach.

Figure 4: The surface shows the comparison graph of theisolu(x,t) for the different
values of the parameter®,=0.550 = 0.700=0.85a=1

5. Concluding remarks

The analytical approximate solutions to non-lingae-fractional Fisher's equations with

initial conditions were determined using the Lapladomian decomposition technique.

Furthermore, the findings of this study are illagtid graphically using the mathematical
software MATLAB. The results of the investigatidrosv that the suggested method works
very well in terms of simplicity and efficiency, @rnt may be used to examine other
problems in the field of non-linear differentialiegions of fractional order.
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