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1. Introduction

We will discuss the most basic fixed point theoram i
analysis, known as the Banach Contraction Principle
(BCP). It is due to Stefan Banach and appearetin h
Ph.D. thesis 1920, (published in 1922). The Banach
Contraction Principle was first stated and proved by
Banach for the contraction maps in the setting of
complete metric spaces. At the same time, the gdnce
of abstract metric space was introduced by Haugdorf
which then provided the general framework for the
principle for contraction mappings in a complete
metric space. The Banach Contraction Principle can
be applied to mappings which are differentiable, or
more generally, Lipschitz continuous [22].

Stefan Banach (18¢-1945

1.1. Basic definition and examples

Definition 1.1.1. [26]Let (X,d) be a metric space.The mdp X — X is said to be
Lipschitzian if there exists a constarit > 0 (called Lipschitz constant) such that,
d(T(x), T(y)) < kd(x,y), forallx,y € X.
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A Lipschitzian mappingvith a Lipschitz constarit < 1 is calledcontraction

Definition 1.1.2. [22]Let (X, d) be a metric space with= [ 0,1]. A mappingW/ : X X
X xI — X is said to be aonvex structur®n X if for each(x,y,1) e X x X xI and
z € X,We have, d(z,W(x,y,1)) < 2d(z,x) + (1 — 1)d(zy).
Throughout let us writdV/ (x,y,1) = 1x @ (1 — 1)y whenever the choice of the
convexity mapping/V is irrelevant. Moreover, if we haved(% D 69% X, % p @% y) <

%d(x, y), forall p,x,y € X, ThenX is said to be ayperbolic metricspace.

Definition 1.1.3. Let (X,d) be a hyperbolic metric space. We say tkias uniformly
convex(in short, UC) if for anyz € X, for everyr > 0, and for eacls > 0
§(re)= 1nf{1 ——d( X @ ZY.a ) d(x,a) <r,d(y,a) < r,d(xy) = rs} > 0.
These are the following propertles
(@46 (r,0) =0,ands (r,e). Isanincreasing function effor every fixedr.
(b) Forr; < r,, there holds,1 — :—2(1 -5 (rz, )) < 8 (ry, ).

1

(c) If (X, d) isuniformly convexthen(X, d) is strictly convex, That is, whenever
d Gx @D %y, a) = d(x,a) = d(y,a), For any x,y,a € X, then we must have = y.

The concept gb-uniform convexityas used extensively by Xu [239], its nonlineamsian
forp = 2 is as follows:

Definition 1.1.4. [10]The pair(X, d) is said to b&-uniformly convexf
cy =in f{lp (er),r > 0,e> 0} > 0. It's noted tha(X, d) is 2-uniformly conveif and

only if
lf{g(rg) r>0,e > 0}>0.

Definition 1.1.5. A mappingT : ¢ — C (a subset of X) is said to beuniformly
Lipschitzianif there exists a nonnegative numbersuch that d(T"(x),T"(y)) <
kd (x,v), Forallx,y € C,andn > 1.

The smallest such constantvill be denoted byl (T).

Definition 1.1.6.Let X be an abstract set. A famifyof subsets of is called aconvexity
structureif

() The empty setp € X ;

(b) Xe X;

(c) Z is closed under arbitrary intersections.

The notion ohyper convexitys due to Aronszajn and Panitchpakdi;

Definition 1.1.7. [13]The metric space M is said to bgperconvexif for any collection

of points{x,}qer in M and positive numbeg;, }qer such that d(x,,xg) <7, +13
foranya and gin I,
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we must haveN, er B(x, ,7,) # @. Clearly the real line R iByperconvex.

In 1996, Khamsi introduced a new concept callelibcal retract by using the non-
expansive extension as follows;

Definition 1.1.8. [22]Let X be a metric spacd. SubsetN c X is called dl-local retract
of X if for any pointx € X\N, there exists aon-expansive retractioR : X U {x} - N.

Definition 1.1.9. [22]Let (X, d) be a metric space and, 'et X — X be a mapping.

(a) A pointx € X is called a fixed point ofT if x = T(x).

(b) T is called contraction if there exists a fixed canth < 1

Such that d(T(x), T(y)) < hd(x,y), forall x,y € X.... (2.1)

A contraction mapping is also known as Banach eatitin. If we replace the inequality
(2.1) with strict inequality and = 1, thenT is called contractive (or strict contractive).
If (2.1) holds forh = 1, thenT is called nonexpansive; and(.1) holds for fixedh <
oo, ThenT is calledLipschitz continuousClearly, for the mapping’, the following
obvious implications hold:

Contraction= contractive = nonexpansive= Lipschitz continuous

Example 1.1.1 (a) LetT : [0,2] — [0,2] be defined by
_ (0, =xe€[01],
() = {1, x € [1,2].
Then,T?(x) = 0 for allx € [0,2], and soT2is a contraction of0,2] .
Its notedT is not continuous and thus not a contraction map.

Definition 1.1.10. [10](a) A real-valued functiop defined on X is said to dewer semi
continuousat x if for any sequende,} c X, we have x, > x€X = ¢) <

lim info (x,)

?t;)o,z\ single-valued self-mappir@ on a metric spacgX, d) is said to be Caristi mapping
if there exists a lower semi continuous functipn X — R* Such that d(x, T(x)) <
o(x) — (p(T(x)), For allx € X.

Example 1.1.2.Each Banach contraction mappifigon a metric spacg€X, d) is a Caristi
mapping with a functiorp (x) = ﬁd(x, T(x)), for allx € X, Whereh is a contraction
constant. Clearly,p is a continuous real valued function dh and ¢ (Tx) <
%d(x, Tx) = h ¢ (x). Its noted that for alt € X,

d(x,T(x) =1 -h)p @) = ¢ () —h¢ ()< (x)—¢ (Tx),

That is,T is a Caristi mapping.

Definition 1.1.11. Let (X,d) be a metric space. A mappifig: X — X is said to be
contractive if there exists € [0,1) such thatd(Tx,Ty) < rd(x,y)forallx,y € X.
Such a mapping is also calledontractive

In 2010, lemoto, Takahashi and Ying also introduttedfollowing class of mappings of
X into itself. Letp be aw-distanceon X.
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Definition 1.1.12. [23]A mappingT : X — X is calledp-contractivelynon spreading if
there existex € [0,1/2) such thatp(Tx,Ty) < a{p(Tx,y) + p(x,Ty)}Vx,y € X.

Definition 1.1.13. [13]A mappingT : X — X is said to b&annanif there exists
a €0, ) suchthat d(Tx,Ty) < a{d(x,Tx) + d(y,Ty)} forallx,y € X.

Definition 1.1.14. ([24], [23])A mappingT : X — X is said to becontractively non
spreadingif there exists? € [0, %) such thatd(Tx, Ty) < B{d(x,Ty) + d(y,Tx)} for
allx,y € X.

Definition 1.1.15. [10]JA mappingdl : X — X is calledcontractively hybridf there exists
y €10, g) such thatd(Tx, Ty) < r{d(Tx,y) + d(Ty,x) + d(x,y)}Forall x,y € X.

In 1998, Shioji, Suzuki and Takahashi also intraglc the sets
WC,(X),WCy(X), WKy (X), WK,(X) andW K, (X) of mappings oX into itself as follows:

Definition 1.1.16. [20] T € W(,(X) if and only if there exist € W (X) andr € [0,1)
such thatp(Tx,Ty) < rp(y,x) forallx,y € X; T € WC(C,(X) if and only if there exist
p € Wy(X) and r €[0,1) such thatp(Tx,Ty) < rp(x,y) for all x,y € X; T €
WK, (X) if and only if there exisp € W(X) anda € [0,1/2) such thap(Tx, Ty) <
a{p(Tx,x) + p(Ty,y)} forallx,y € X; T € WK,(X) if and only if there exisp €
W(X) anda € [0,1/2) such thap(Tx,Ty) < a{p(Tx,x) + p(y,Ty)} for allx,y €
X; T € WKy(X) if and only if there exisp € W,(X) anda € [0,1/2)

Such that p(Tx,Ty) < a{p(Tx,x) + p(Ty,y)} for all x,y € X. In particular, a
mappingl’ € WK, (X) is calledp-Kannan

Definition 1.1.17.A function p: X x X — R™is called av-distanceonX if it satisfies the
following for anyx,y,z € X:

(w1) p(x,2) < p(x,y) + Py, 2);

(wp) amap(x,.): X - [0,0)islower semi continuoys

(w3) for anye > 0, there exist$ > 0 such that

p(z,x) < dandp(z,y) < §imply d(x,y) < €.

In 2001, Suzuki in generalizing the concepivediistanceintroduced the following notion
of z-distanceon metric spaces.

Definition 1.1.18. [26]A functionp : X x X — R™ is said to be a-distanceonX if it
satisfies the following conditions for anyy,z € X, Such
(1)) pl,2) < pl,y)+pl,z); (r;) n(x,0)=0, andn (x,t) >t for all x €
Xandt = 0,
andn is concaveandcontinuousn its second variable;
(t3)"7 xn = x and “Psup{n(zn, P(2p, x,)):m 2 n} = 0
imply P(u, x) < “Minf P(u,x,) for allu € X;
(ta) "7 sup{P(xp, y): m2n}=0and n(x,ty) =0
implies "I n(yn, tn) = 0;
(ts) Lirr? Nzn P(Zn, x) =0 anoLiTrln N(Zn, Pz, yn) =0
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implies X d(x,, y,) =0

Definition 1.1.19.Let (X, d) be a metric space and Idt: X - 2%,

€) An elementx € X is called a fixed point of multivalued mappind’ if x € T(x).

We denote Fix(T)={x€X: x e T(x)}.

(b) A sequencéx, }in X is said to be aiterative sequence df at x, € X

If x, € T(x,,_,) foralln € N.

(c) T is said to be aontractionif for a fixed constant < 1 and for each,y € X,
H(T(x), T(¥)) < hd (x,y).

Such a mapping is also known abladler contraction

Definition 1.1.20.Let X be a metric space. A functi@h: X — R is said to béower semi
continuousat a pointx € X if T(x) < lim inf T(x,) whenevet, — x asn - . T is
n—-oo

said to bdower semi continuousnX if it is lower semi continuouat each point o. A
function T : X - R is said to beupper semi continuouat a pointx € X If T(x) =
lim sup T(x,) wheneverx, — x asn — oo.

n—->oo

T is said to beipper semi continuowmn X if it is upper semi continuolet each point o .

Definition 1.1.21.For a givens > 0, an elemenk, is said to be an approximate-
solutionof the following minimization problend®,T(x), if &' T < (x.) < ¥ T +¢,
Where? T = "0 T(x).

Definition 1.1.22.Let X be a metric space. A functidh: X — R U {40} is said to be
lower semi continuoufrom above at a point € X if x,, > xasn —» oo andT(x;) =
T(xp) 2 T(xn) 20

imply that T(x) < Y0T(x,,) .

Definition 1.1.23.Let (X, d) be a metric space. For anyy € X, thesegmenbetweent
andy is defined by [x,y]={z€ X : d(x,z) +d(z,y) = d(x,y)}

Definition 1.1.24.Let (X, d) be a metric space. A mappifigg X — X is said to be a
directional contractiorif

() T is continuous, and

(i) There existsa € (0,1) such that for anyx € X with T(x) # x, There existx €
[x, T(x)]\{x} suchthatd(T(x),T(z)) < ad(x,z).

Definition 1.1.25.Let K be a nonempty seff,: K X K — R be a bifunction and > 0 be
given. The element € K is said to be an-solutionof Ekeland’s Principal if T (x,y) >
—¢ed(x,y) forally € K. It is called strictlye -solution of Ekeland’s Principal if the
above inequality is strictfor alt = y.

1.2. Some fixed point results in complete metric sjge

In 1922, the following theorems of Banach Cont@ttPrinciple were first stated and
proved by Banach for the contraction maps in tligngeof complete metric spaces.
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Theorem 1.2.1. ([4], [22])(Banach Contraction Princip)e Let (X,d) be a complete

metric space, then each contraction rfiapX — X has a unique fixed point.

Proof: Let h be a contraction constant of the mappifigWe will explicitly construct a

sequence converging to the fixed point. tgbe an arbitrary but fixed element

Define a sequence of iterafes }in X byx, = T(x,_1) (= T"(xy)), for alln = 1. Since

T is a contraction, we have d(x,,xp.1) = d(T(xn_1), T(xn)) < hd(x,_1, xp,), for

anyn > 1.

Thus, we obtaind (x,, x,+1) < h"d(xg, x,), for alln > 1.

Hence, for anym > n, we have d(x,, x,) < (A" + "1 +- +h™ D) d(xg,x;) <
2 d(xo, 1),

We deduce thdtx, } is Cauchy sequence in a complete space X.

Let x, » p € X. Now using the continuity of the mah we get = ,'Mx, =
2m T (x,_1) = T(p). Finally, to showl" has at most one fixed pointin

Let p andgq be fixed points ofT. Then,d(p,q) = d(T(p),T(q)) < hd(p, q). Sinceh <
1, we must haven = q. This completes the proof.

Theorem 1.2.2Let (X, d) be a complete metric space andllet X — X be a contraction
mapping, with Lipschitz constaht < 1. Then, T has a unique fixed pointin X, and for
each x € X,

We have )!I—I;Iolo T™(x) = w. Moreover for eachx € X, We have, d(T"(x),w) <

kn
T AT (%), x).
An easy implication of the Banach Contraction Hplecare the following theorem [22].

Theorem 1.2.3.Suppos€X, d) is a complete metric space and suppo%e X - X is a
mapping for whicl'V is a contraction mapping for some positive inteljee 1. ThenT
has a unique fixed point.

The following theorem is related to complete mespace.

Theorem 1.2.4.Let (X, d) be a compact metric space withX — X satisfying
d(T(x),T(y)) < d(x,y)Forx,y € X andx # y. ThenT has a unique fixed point iX.

Theorem 1.2.5.Let (X, d) be a complete metric space and

let B(xqy, ) = {x € X : d(x,x9) < r}, wherex, € X and x > 0.

It may be the case th&t: X — X is not a contraction on the whole spa&Géut rather a
contraction on some neighborhood of a given pdinthis case the result as follows [22]:

Theorem 1.2.6.Let (X,d)be a complete metric space and IBt{(y)={x € X:
d(x,y) < r}, wherey € Xandr > 0. Let f : B.(y) » X be a contraction map with
contraction constartt < 1.further, assume that(y,T(y)) < r(1 —h). Then,T has a
unique fixed point inB,.(y).

In 1930, Caccioppoli extended the Banach Contrad®idncipal as follows;
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Theorem 1.2.7. [22]Let (X,d) be a complete metric space andTlet X — X be a
mapping such that for eaah> 1, there exists a constantsuch tha‘d(T”(x), T”(y)) <
cp,d(x,y), forall x,y € X,

where Y5, ¢, < . Then,T has a unique fixed point.

In 1968, Bryant extended Banach Contraction Priadg follows ;

Theorem 1.2.8. [26]Let (X,d) be a complete metric space andTletX - X be a
mapping such that for some positive integeIT™ is contraction onX, then T has a
unique fixed point.

Theorem 1.2.9Let (X, d) be a complete metric space. A mBpX — X (not necessarily
continuous).
Suppose the following condition holds:

{foreach € > 0 thereis a §(¢) > 0 suchthat if d(x,T(x)) < 6(e), thenT(B(x, e))

C B(x,€); hereB(x,e) ={y € X :d(x,y) < E}}
If for some u€X we have Limd (T"(w),T""*(w)) =0, then the sequence
{T™(u)}converges to a fixed point &Tw

In 1962E.Rakotch first generalization of Banach @astion Principle as follows;

Theorem 1.2.10. [10Let (X, d) be a complete metric space, and supposeTthaX —
X, satisfies  d(T (x), T (v)) <n(d(x,y))d(x,y), for allx,y € X, Wheren is a
decreasing function o® + to [0,1).

Then,T has a unique fixed point.

In 1969, Boyd D.W. and Wong J. S. W. more genegdliezorem as follows;
Theorem 1.2.11. [4) et (X, d) be a complete metric space, And supposelthak — X

satisfied(T (x), T (y)) < y¥(d(x,¥)), For all x,y € X, Wherey : R - [0,) is upper
semi continuoufrom the right, That is, for any sequenggl t = 0 = lim supy (t,) <
n—oo

Y(t). And satisfied < y(t) < t fort > 0, then,T has a unique fixed point.

In 1969 Meir A. and Keeler E. extended Boyd and @/treorem is as follows;
Theorem 1.2.12. [22) et (X, d) be a complete metric space, and supposdthat — X
satisfies the condition: For eaegh> 0, there exists§ > 0. Such that for all, y € X, € <
dx,y)<e +4§

= d(T(x),T(y)) < & Then,T has a unique fixed point.

In 1974, Ciric has generalized Banach Contractidmciple as follows;

Theorem 1.2.13.Let (X, d)be a complete metric space, and et X — X be a quasi-
contraction, that is, for a fixed constant
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h < 1,d(T(x), T»)) < hmax{d(x,y),d(x,Tx),d(y, Ty), d(x, Ty),d(y, Tx)},
For allx,y € X. Then, T has a unique fixed point.

In 1975, Matkowski extended by replacing Theorem 2.2.11 as follows;

Theorem 1.2.14. Let (X, d) be a complete metric space, and suppose thatX — X
Satisfiesd(T (x), T (y)) <y (d(x, y)), for all x,y € X, wherey: (0,0) — (0,) is
monotone non decreasing and satisﬂ_e}go Y™ (t) = Oforallt > 0. ThenT has a unique
fixed point

In 1976, Caristi proved a unique Fixed Point Resiitcomplete metric space
related to Banach Contraction Principle as follows;

Theorem 1.2.15. [10]Let (X, d) be a complete metric space. Then, each CaristiTmap
X - X has a fixed point.

In 2001, Rhoades extended and improved in metacesjpf the generalization of Alber
[22] in Hilbert space as follows;

Theorem 1.2.16. [3]Let (X, d)be a complete metric space, and supposeTthaX — X
satisfies the following inequalit(T(x), T(y)) < d(x,y) — ¥(d(x,y)), for allx,y € X,
wherey : [0,00) — [0,0) is a continuous and nondecreasing function suah/t(t) =
0 ifand only ift = 0. Then, T has unique fixed point.

In 2003, Kirk W.A. obtained the asymptotic versmfrBoyd and Wong [4] as follows;

Theorem 1.2.17. [13]Let (X, d) be a complete metric space, and suppos& that —» X
Satisfiesd (T™(x), T™(¥)) < ¥n(d(x,¥)), for all x,y € X, where y,,: [0,%) - [0,)
are continuous ang,, — ¥ € ¥ uniformly. Further, assume that some orbit @f is
bounded. Therf, has a unique fixed point.

In 2008, Dutta P. N. and Chaudhary B. S. genemlizeeorem 2.2.15 is as follows;

Theorem 1.2.18. [20]Let (X, d) be a complete metric space, and suppose tThak —

X satisfies the following inequalityp (d(T(x),T(y))) < ¢ (d(x,y) =y (d&xy),
For all x,y € X, where both the functiong ,y : [0,0) — [0, ) are continuous and
nondecreasing such that,(t) =0 = ¢(t) If and only if t = 0. Then, T has unique
fixed point.

In 2011, Choudhury, Konarb, Rhoades and Metiyabisteed more general result is as
follows:

Theorem 1.2.19. [4]Let (X,d)be a complete metric space, and supposeTthak —
X satisfies the following inequality

¢@(T (x), T ()) < d(m(x,¥)) — ¢ (max{d(x, ), dy, T (¥)}),
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where m(x, y) = max {d(x, y),d(x,T(x)), d(y,T(y)),% [d(x,T(y)) + d(y,T(x))]}
For allx,y € X, and¢ ,y: [0,0) — [0,0) Are functions such thap is alternating
distance andp is continuous withp(t) = 0 If and only ift = 0. Then,T has unique
fixed point.

A direct consequence of the Theorem 1.2.19 is $Helkbows;

Corollary 1.2.1. [22] Let (X, d) be a complete metric space, and supposeTtha — X
satisfies the following inequality for all y € X,

¢ (1), 1"3))) ¢ ((max{d(x,y),d(x, T*()), d(y, ")), 5 [d(x, T"»)) +

d(y, T} - Y(max{d(x,y), d(y, T"3)})

wheren is a positive integer. Andg, : [0,00) — [0,2). Are functions such thap
alternating distance and is continuous withy(t) = 0 If and only if t = 0.
Then, T has unique fixed point.

In 2008, T. Suzuki gave a new type of generaliratibthe Banach Contraction Principle
as follows,

Theorem 1.2.20. [20et(X, d) be a complete metric space, and suppos& that — X.
Define a non-increasing functiap: [0,1) - (1/2,1] by

1 if OshS@,
_J1-n _(V5-1) 1
w(h)_<7 lfT<h<ﬁ,
1 1
1+—h lfﬁﬁh<1.

Assume that there exigt€ [0,1), Such that

l,l)(h)d(x,T(x)) <d(x,y) = d(T(x),T(y)) <d(x,y), For alk,y € X.
Then,T has a unique fixed point.

2. Conclusion

The fixed point theory in metric space with differecontraction condition and its
generalized form are important as extension of fasy®anach contraction principals and
for its applications to other disciplines.
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