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1. Introduction 
We will discuss the most basic fixed point theorem in 
analysis, known as the Banach Contraction Principle 
(BCP). It is due to Stefan Banach and appeared in his 
Ph.D. thesis 1920, (published in 1922). The Banach 
Contraction Principle was first stated and proved by 
Banach for the contraction maps in the setting of 
complete metric spaces. At the same time, the concept 
of abstract metric space was introduced by Hausdorff, 
which then provided the general framework for the 
principle for contraction mappings in a complete 
metric space. The Banach Contraction Principle can 
be applied to mappings which are differentiable, or 
more generally, Lipschitz continuous [22]. 
 

 
 
 

1.1. Basic definition and examples 
Definition 1.1.1. [26] Let ��, �� be a metric space.The map � ∶  � → � is said to be 
Lipschitzian if there exists a constant 
 �  0 (called Lipschitz constant) such that, 
����
�, ����� � 
��
, ��, for all 
, � ∈ �. 

Stefan Banach (1892-1945) 
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A Lipschitzian mapping with a Lipschitz constant 
 <  1 is called contraction. 
 
Definition 1.1.2. [22] Let (�, �) be a metric space with � = [ 0,1]. A mapping � ∶  � ×� × � → � is said to be a convex structure on X if for each (
, �, � ) ∈ � × � × �    and   � ∈ �, We have,     �(�, �(
, �, � )) ≤  � �(�, 
) + (1 −  � )�(�, �). 
Throughout let us write �(
, �, � ) =  � 
 ⊕ (1 −  � )� whenever the choice of the 

convexity mapping  � is irrelevant. Moreover, if we have    �( �  ! ⊕ �  
, �  ! ⊕ �  �) ≤
 � �(
, �), for all   !, 
, � ∈ �, Then � is said to be a hyperbolic metric space. 

 
Definition 1.1.3. Let (�, �) be a hyperbolic metric space. We say that � is uniformly 
convex (in short, UC) if for any " ∈ �, for every # >  0, and for each $ >  0 

% (#, $ ) = inf )1 − 1 # � *1 2 
 ⊕ 1 2 �, ", ;  �(
, ") ≤ #, �(�, ") ≤   #, �(
, �) ≥ #$ / >  0. 
These are the following properties, 
(a) % (#, 0) = 0, and % (#, $ ).   Is an increasing   function of $ for every fixed #. 

(b) For #� ≤ # , there holds,  1 − 0102 31 − % 4# , $ 020156 ≤  % (#�, $ ). 
(c) If (�, �) is uniformly convex, then (�, �) is strictly convex, That is, whenever  � 4� 
 ⊕ � �, "5 =  �(
, ") = �(�, "), For any   
, �, " ∈ �, then we must have 
 =  �. 
 
The concept of p-uniform convexity was used extensively by Xu [239], its nonlinear version 
for ! =  2 is as follows: 
 
Definition 1.1.4. [10] The pair (�, �) is said to be 2-uniformly convex if  78  = inf 9: (0,; )01;1 ; # >  0 , $ > 0< > 0.  It’s noted that (�, �) is 2-uniformly convex if and 

only if   =>? 9@ (0,; ) ;1 ; # >  0 , $ >  0< > 0 . 
 
Definition 1.1.5. A mapping � ∶  A → A (a subset of   �) is said to be uniformly 
Lipschitzian if there exists a nonnegative number 
 such that   �(�B(
), �B(�)) ≤
� (
, �),  For all 
, � ∈ A, and  > ≥ 1. 
The smallest such constant 
 will be denoted by � (�). 
 
Definition 1.1.6. Let � be an abstract set. A family C of subsets of � is called a convexity 
structure if 
(a) The empty set   ∅ ∈  C ; 
(b)  � ∈  C ; 
(c) C is closed under arbitrary intersections. 
The notion of hyper convexity is due to Aronszajn and Panitchpakdi; 
 
Definition 1.1.7. [13] The metric space M is said to be hyperconvex if for any collection 
of points {
F}F∈H in  M and positive numbers {#F}F∈H such that    �(
F , 
I) ≤ #F   + #I 
for any J ">� K in   L ,  
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we must have  ⋂ N�
F , #F) ≠ ∅.P ∈ H  Clearly the real line R is hyperconvex. 
 
In 1996, Khamsi introduced a new concept called 1-local retract, by using the non-
expansive extension as follows; 
 
Definition 1.1.8. [22] Let � be a metric space. Q Subset  R ⊂  � is called a 1-local retract 
of � if for any point 
 ∈  �\R, there exists a non-expansive retraction U ∶  � ∪ {
} → R. 
 
Definition 1.1.9. [22] Let (�, �) be a metric space and, let � ∶  � → � be a mapping. 
(a) A point 
 ∈ � is called a fixed point of   �   if    
 =  �(
). 
(b) � is called contraction if there exists a fixed constant ℎ <  1 
Such that   �X�(
), �(�)Y ≤ ℎ �(
, �),   for all   
, � ∈ �. …  (2.1) 
A contraction mapping is also known as Banach contraction. If we replace the inequality (2.1) with strict inequality and ℎ =  1, then � is called contractive (or strict contractive). 
If (2.1) holds for ℎ =  1, then � is called nonexpansive; and if (2.1) holds for fixed ℎ < ∞, Then � is called Lipschitz continuous. Clearly, for the mapping  �, the following 
obvious implications hold:   
Contraction ⇒ contractive  ⇒  nonexpansive  ⇒  Lipschitz continuous 
 
Example 1.1.1. (a) Let � ∶  [0,2] → [0,2] be defined by 

�(
) = )0,      
 ∈ [0,1],1,      
 ∈ [1,2]. 
Then, � (
) = 0 for all 
 ∈ [0,2], and so, � is a contraction on [0,2] . 
Its noted � is not continuous and thus not a contraction map. 
 
Definition 1.1.10. [10] (a) A real-valued function \ defined on X is said to be lower semi 
continuous at x if for any sequence {
B}  ⊂ �, we have  
B → 
 ∈ �  ⇒ \(
)  ≤limB→∞ =>?\ (
B) 
(b)A single-valued self-mapping � on a metric space (�, �) is said to be Caristi mapping 
if there exists a lower semi continuous function _ ∶  � → U` Such that  �X
, �(
)Y ≤\(
) − \X�(
)Y,  For all
 ∈ �.  
 
Example 1.1.2. Each Banach contraction mapping � on a metric space (�, �) is a Caristi 

mapping with a function  \ (
) = ��ab �X
, �(
)Y,   for all 
 ∈ �, Where  ℎ is a contraction 

constant. Clearly, \ is a continuous real valued function on � and   \ (�
) ≤b�ab �(
, �
) = ℎ \ (
). Its noted that for all 
 ∈ �, �X
, �(
)Y = (1 − ℎ)_ (
) =  _ (
) − ℎ _ (
) ≤ _ (
) − _ (�
), 
That is, � is a Caristi mapping. 
 
Definition 1.1.11. Let (�, �) be a metric space. A mapping � ∶  � →  � is said to be 
contractive if there exists # ∈  [0,1) such that �(�
, ��)  ≤  # �(
, �) for all 
, � ∈  �. 
Such a mapping is also called r-contractive. 
In 2010, Iemoto, Takahashi and Ying also introduced the following class of mappings of � into itself. Let ! be a w-distance on  �. 
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Definition 1.1.12. [23] A mapping � ∶  � →  � is called p-contractively non spreading if 
there exists J ∈ [0,1/2) such that  !(�
, ��) ≤  J{!(�
, �) +  !(
, ��)} ∀
, � ∈  �. 
 
Definition 1.1.13. [13] A mapping � ∶  � →  � is said to be Kannan if there exists  J ∈ 0, � )  such that     �(�
, ��) ≤  J{�(
, �
) +  �(�, ��)} for all 
, � ∈  �. 

 
Definition 1.1.14. ([24], [23]) A mapping � ∶  � →  � is said to be contractively non 

spreading if there exists K ∈ [0, � ) such that �(�
, ��) ≤  K{�(
, ��) +  �(�, �
)} for 

all 
, � ∈  �.  
 
Definition 1.1.15. [10] A mapping � ∶  � →  � is called contractively hybrid if there exists e ∈ [0, �f) such that  �(�
, ��) ≤  #{�(�
, �) +  �(��, 
) +  �(
, �)}Forall  
, � ∈  �. 

In 1998, Shioji, Suzuki and Takahashi also introduced the sets �A (�), �Ag(�), �h�(�), �h (�) and �hg(�) of mappings of � into itself as follows: 
 
Definition 1.1.16. [20]   � ∈  �A (�) if and only if there exist ! ∈  �(�) and # ∈ [0,1) 
such that   !(�
, ��) ≤  #!(�, 
) for all 
, � ∈  �; � ∈  �Ag(�) if and only if there exist ! ∈ �g(�) and # ∈ [0,1) such that !(�
, ��) ≤  #!(
, �) for all 
, � ∈  �; � ∈ �h�(�) if and only if there exist ! ∈  �(�) and J ∈ [0,1/2)  such that !(�
, ��) ≤ J{!(�
, 
) +  !(��, �)} for all 
, � ∈  �;  � ∈  �h (�) if and only if there exist ! ∈ �(�) and J ∈ [0,1/2) such that !(�
, ��) ≤  J{!(�
, 
) +  !(�, ��)}   for  all 
, � ∈ �; � ∈  �hg(�) if and only if there exist ! ∈ �g(�) and J ∈ [0,1/2) 
Such that    !(�
, ��) ≤  J{!(�
, 
) +  !(��, �)} for all 
, � ∈  �. In particular, a 
mapping � ∈  �h�(�) is called p-Kannan. 
 
Definition 1.1.17. A function  !: � × � → U`is called a j-distance on � if it satisfies the 
following for any 
, �, � ∈ �: 
(j�)  !(
, �) ≤  !(
, �) + !(�, �); 
(j )  a map !(
, . ) ∶  � → [0, ∞) is lower semi continuous; 
(jf) for any $ >  0, there exists % >  0 such that !(�, 
) ≤  % and !(�, �) ≤  % imply     �(
, �) ≤  $ .  
In 2001, Suzuki in generalizing the concept of w-distance, introduced the following notion 
of τ-distance on metric spaces. 
 
Definition 1.1.18. [26] A function ! ∶  � × � →  U` is said to be a τ-distance on �  if it 
satisfies the following conditions for any  
, �, � ∈ �, Such 
   ( k�)     !(
, �) ≤  !(
, �) + !(�, �);  (k )   l (
, 0) = 0, and l (
, m)  ≥ m for all 
 ∈ � and m ≥  0, 
and η is concave and continuous in its second variable; (kf)   
B = 
 B    nop  and  sup{l(�B, t(�B, 
B)): u ≥ >B  nop } = 0  
imply t(v, 
) ≤  =>? t(v, 
B)B   nop  for all v ∈ �; (τx)    sup{t(
B, �B):   u ≥ >B  nop } = 0 and    l(
B, mB)B  nop = 0 
implies   l(�B, mB)B     nop = 0; 
(ky)   l(�B, t(�B, 
B)B      nop = 0 and    l(�B, t(�B, �B)B  nop = 0 



Historical Development of some Fixed Point Results in Metric Space 

83 
 

implies    �(
B, �B)B  nop = 0 
 
Definition 1.1.19. Let (�, �) be a metric space and let   � ∶  � → 28. 
(a) An element 
 ∈ � is called a fixed point of a multivalued mapping  � if   
 ∈ �(
). 
We denote      z=
(�) = {
 ∈ � ∶  
 ∈ �(
)}. 
(b) A sequence {
B}in � is said to be an iterative sequence of � at  
g ∈  � 
If 
B ∈ �(
Ba�) for all > ∈ R. 
(c)  � is said to be a contraction if for a fixed constant ℎ <  1 and for each 
, � ∈ �, {(�(
), �(�)) ≤ ℎ� (
, �). 
Such a mapping � is also known as Nadler contraction. 
 
Definition 1.1.20. Let � be a metric space. A function � ∶  � → U is said to be lower semi 
continuous at a point 
 ∈ � if  �(
) ≤ limB→| =>?  �(
B) whenever
B  → 
 as > → ∞. � is 

said to be lower semi continuous on � if it is lower semi continuous at each point of  �. A 
function � ∶ � → U is said to be upper semi continuous at a point 
 ∈ � If  �(
) ≥limB→| }v!  �(
B) whenever   
B  → 
 as > → ∞. � is said to be upper semi continuous on � if it is upper semi continuous at each point of  �. 
 
Definition 1.1.21. For a given $ >  0, an element 
; is said to be an approximate ε -

solution of the following minimization problem �(
)~∈8oB� , if    � ≤  (
;) ≤     �8   oB� + $,8   oB�  

Where   �8   oB� =   �(
).~∈8oB�  
 
Definition 1.1.22. Let � be a metric space. A function � ∶  � →  ℝ ∪ {+∞} is said to be 
lower semi continuous from above at a point 
 ∈ � if 
B → 
 "} > → ∞ and �(
�) ≥ �(
 ) ≥··· �(
B) ≥··· 
imply that   �(
) ≤  �(
B)~→|�op  . 
 
Definition 1.1.23. Let (�, �) be a metric space. For any  
, � ∈ �, the segment between 
 
and � is defined by    [
, �] = {� ∈ � ∶  �(
, �) + �(�, �) = �(
, �)}. 
 
Definition 1.1.24. Let (�, �) be a metric space. A mapping � ∶  � → �  is said to be a 
directional contraction if 
(i)  T is continuous, and 
(ii) There exists J ∈ (0,1) such that for any 
 ∈ � with  �(
) ≠  
, There exists � ∈[ 
, �(
)]\{
}  such that   �(�(
), �(�)) ≤  J �(
, �). 
 
Definition 1.1.25. Let K be a nonempty set, � ∶ h × h → U be a bifunction and $ > 0 be 
given. The element 
̅ ∈ h is said to be an ε -solution of Ekeland’s Principal if   �(
̅, �) ≥− $ �(
̅, �) ?�# "�� � ∈ h. It is called strictly ε -solution of Ekeland’s Principal if the 
above inequality is strictfor all  
 ≠  �. 
 
1.2. Some fixed point results in complete metric space 
In 1922, the following theorems of Banach Contraction Principle were first stated and 
proved by Banach for the contraction maps in the setting of complete metric spaces. 
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Theorem 1.2.1. ([4], [22]) (Banach Contraction Principle). Let ��, �) be a complete 
metric space, then each contraction map � ∶  � → � has a unique fixed point. 
Proof: Let ℎ be a contraction constant of the mapping  �. We will explicitly construct a   
sequence converging to the fixed point. Let 
g be an arbitrary but fixed element in  �. 
Define a sequence of iterates {
B}in � by 
B  =  �(
Ba�) (= �B(
g)), for all > ≥ 1. Since � is a contraction, we have   �(
B, 
B`�) = �X�(
Ba�), �(
B)Y ≤ ℎ�(
Ba�, 
B), for 
any > ≥ 1. 
Thus, we obtain   �(
B, 
B`�) ≤ ℎB�(
g, 
�), for all > ≥ 1. 
Hence, for any   u >  >, we have  �(
B, 
p) ≤ (ℎB + ℎB`�  +··· +ℎpa�)�(
g, 
�) ≤   b�

�ab �(
g, 
�). 
We deduce that {
B} is Cauchy sequence in a complete space X. 
Let   
B →  ! ∈ �. Now using the continuity of the map  �, we get ! =  
BB→|�op =   �(
Ba�)B→|�op  = �(!). Finally, to show � has at most one fixed point in �, 
Let ! and � be fixed points of   �. Then, �(!, �) = �(�(!), �(�)) ≤ ℎ�(!, �). Since  ℎ <1, we must have  ! =  �. This completes the proof. 
 
Theorem 1.2.2. Let (�, �) be a complete metric space and let � ∶  � → � be a contraction 
mapping, with Lipschitz constant 
 <  1. Then, T has a unique fixed point � in �, and for 
each   
 ∈ �, 
We have lim~→| �B(
) = �. Moreover for each 
 ∈ �, We have,      �(�B(
), �) ≤
��

�a� �(�(
), 
). 

An easy implication of the Banach Contraction Principle are the following theorem [22]. 
 
Theorem 1.2.3. Suppose (�, �) is a complete metric space and suppose     � ∶ � → � is a 
mapping for which �� is a contraction mapping for some positive integer  R ≥ 1. Then � 
has a unique fixed point. 
 
The following theorem is related to complete metric space. 
 
Theorem 1.2.4. Let (�, �) be a compact metric space with �: � → � satisfying �X�(
), �(�)Y < �(
, �)For 
, � ∈ � and 
 ≠ �. Then � has a unique fixed point in  �. 
 
Theorem 1.2.5. Let (�, �) be a complete metric space and 
let  N(
g, #) = {
 ∈ � ∶ �(
, 
g) < #}, where 
g ∈ � and   
 > 0.  
It may be the case that � ∶  � → � is not a contraction on the whole space �, but rather a 
contraction on some neighborhood of a given point. In this case the result as follows [22]: 
 
Theorem 1.2.6. Let (�, �) be a complete metric space and Let N0(�) = {
 ∈  � ∶ �(
, �)  <  #}, where � ∈ � and # >  0. Let ? ∶  N0(�) → � be a contraction map with 
contraction constant ℎ <  1.further, assume that �(�, �(�))  <  #(1 − ℎ). Then, � has a 
unique fixed point in  N0(�). 
 
In 1930, Caccioppoli extended the Banach Contraction Principal as follows; 
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Theorem 1.2.7. [22] Let ��, �) be a complete metric space and let � ∶  � →  � be a 
mapping such that for each > ≥ 1,  there exists a constant 7Bsuch that �X�B(
), �B(�)Y ≤7B �(
, �), ?�# "�� 
, � ∈ �, 
where   ∑ 7B|B�� < ∞. Then, � has a unique fixed point. 
 
In 1968, Bryant extended Banach Contraction Principle as follows ; 
 
Theorem 1.2.8. [26] Let (�, �) be a complete metric space and let � ∶  � → � be a 
mapping such that for some positive integer  >, �B is contraction on  �,  then  � has a 
unique fixed point. 
 
Theorem 1.2.9. Let (�, �) be a complete metric space. A map  �: � → � (not necessarily 
continuous). 
Suppose the following condition holds: 9?�#�"7ℎ � > 0 mℎ�#�=} " %(�) > 0  }v7ℎmℎ"m =? �X
, �(
)Y < %(�),   mℎ�>�XN(
, �)Y

⊆  N(
, �);  ℎ�#�N(
, �) = {� ∈ � ∶ �(
, �) < �}< 
If for some v ∈ � we have   LimB→∞ � X�B(v), �B`�(v)Y = 0, then the sequence {�B(v)}converges to a fixed point of  �. 
 
In 1962E.Rakotch first generalization of Banach Contraction Principle as follows; 
 
Theorem 1.2.10. [10] Let (�, �) be a complete metric space, and suppose that � ∶  � →�, satisfies   �( � (
), � (�))  ≤ l(�(
, �))�(
, �), for all
, � ∈ �, Where η is a 
decreasing function on  U +  m� [0,1). 
Then, �  has a unique fixed point. 
 
In 1969, Boyd D.W. and Wong J. S. W. more generalize theorem as follows; 
 
Theorem 1.2.11. [4] Let (�, �) be a complete metric space, And suppose that � ∶  � → � 
satisfie �( � (
), � (�))  ≤ �(�(
, �)), For all  
, � ∈ �, Where � ∶  U →  [0,∞) is upper 
semi continuous from the right, That is, for any sequence  mB ↓ m ≥  0 ⇒ limB→∞ }v!� (mB) ≤�(m). And satisfies 0 ≤ �(m) < m for m >  0, then, � has a unique fixed point. 
 
In 1969 Meir A. and Keeler E. extended Boyd and Wong theorem is as follows; 
 
Theorem 1.2.12. [22] Let (�, �) be a complete metric space, and suppose that � ∶  � → �   
satisfies the condition: For each  $ > 0, there exists  % > 0. Such that for all
, � ∈ �, $ ≤�(
, �) ≤ $ + %  
 ⇒ �X�(
), �(�)Y ≤ $. Then, � has a unique fixed point. 
 
In 1974, Ciric has generalized Banach Contraction Principle as follows; 
 
Theorem 1.2.13. Let (�, �)be a complete metric space, and let  � ∶  � → � be a quasi-
contraction, that is, for a fixed constant  
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ℎ < 1, �X�(
), �(�)Y ≤ ℎ u"
{�(
, �), �(
, �
), �(�, ��), �(
, ��), �(�, �
)},  
For all 
, � ∈ �. Then,  � has a unique fixed point. 
 
In 1975, Matkowski extended by replacing   �  Theorem 2.2.11 as follows; 
 
Theorem 1.2.14.  Let (�, �) be a complete metric space, and suppose that   � ∶  � → �  
Satisfies �( � (
), � (�))  ≤ � (d(x, y)), for all  
, � ∈  �, where �: (0, ∞)  → (0, ∞) is 
monotone non decreasing and satisfies limB→∞�B(m) =  0 for allm > 0. Then,� has a unique 

fixed point. 
In 1976, Caristi proved a unique Fixed Point Results in complete metric space 

related to Banach Contraction Principle as follows; 
 
Theorem 1.2.15. [10] Let (�, �) be a complete metric space. Then, each Caristi map � ∶ � → �  has a fixed point. 
 
In 2001, Rhoades extended and improved in metric space of the generalization of Alber 
[22] in Hilbert space as follows; 
 
Theorem 1.2.16. [3] Let (�, �)be a complete metric space, and suppose that � ∶  � → � 
satisfies the following inequality �X�(
), �(�)Y ≤ �(
, �) − �X�(
, �)Y, for all 
, � ∈ �, 
where � ∶  [0,∞)  → [0,∞)  is a continuous and nondecreasing function such that �(m) = 0  if and only if m =  0. Then,  � has unique fixed point. 
 
In 2003, Kirk W.A. obtained the asymptotic version of Boyd and Wong [4] as follows; 
 
Theorem 1.2.17. [13]  Let (�, �) be a complete metric space, and suppose that� ∶  � → � 
Satisfies �X�B(
), �B(�)Y ≤ �BX�(
, �)Y,   for all  
, � ∈ �, where   �B:  [0,∞) → [0,∞) 
are continuous and �B → � ∈ �  uniformly. Further, assume that some orbit of   � is 
bounded. Then, �  has a unique fixed point. 
 
In 2008, Dutta P. N. and Chaudhary B. S. generalized Theorem 2.2.15 is as follows; 
 
Theorem 1.2.18. [20]  Let (�, �) be a complete metric space, and suppose that   � ∶ � →� satisfies the following inequality, \ 4�X�(
), �(�)Y5 ≤  \ X�(
, �)Y − � X�(
, �)Y, 
For all   
, � ∈ �, where both the functions \ , � ∶  [0, ∞) → [0, ∞) are continuous and 
nondecreasing such that, � (m) = 0 =  \(m) If and only if   m =  0. Then, T has unique 
fixed point.  
 
In 2011, Choudhury, Konarb, Rhoades and Metiya established more general result is as 
follows: 
 
Theorem 1.2.19. [4] Let (�, �)be a complete metric space, and suppose that � ∶  � →�  satisfies the following inequality    
       _(�( � (
), � (�))) ≤ _(u(
, �)) − � (u"
{�(
, �), �(�, � (�))}) ,   
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where  u�
, �) = u"
 9�(
, �), �X
, �(
)Y, �X�, �(�)Y, �  [�X
, �(�)Y + �(�, �(
))]< 

For all 
, � ∈ �,  and _ , � ∶  [0,∞)  → [0,∞) Are functions such that _  is alternating 
distance and � is continuous with �(m) =  0  If and only if m =  0. Then, � has unique 
fixed point. 
 
A direct consequence of the Theorem 1.2.19 is the as follows; 
 
Corollary 1.2.1. [22] Let (�, �) be a complete metric space, and suppose that  � ∶  � → � 
satisfies the following inequality for all 
, � ∈ �,  _ 4�X�B(
), �B(�)Y5 _  4(u"
 9�(
, �), �X
, �B(
)Y, �X�, �B(�)Y, � ��X
, �B(�)Y +
�(�, �B(
)}� −  �(max {�(
, �), �(�, �B(�)<5  
where n is a positive integer. And  _, � ∶  [0,∞) → [0,∞). Are functions such that _  
alternating distance and �  is continuous with �(m) =  0   If and only if m =  0. 
Then,  �  has unique fixed point. 
In 2008, T. Suzuki gave a new type of generalization of the Banach Contraction Principle 
as follows, 
 
Theorem 1.2.20. [20] Let(�, �) be a complete metric space, and suppose that� ∶  � → �. 
Define a non-increasing function � ∶  [0,1) → (1/2,1] by    

�(ℎ) =
⎩⎪⎪
⎨
⎪⎪⎧1                   =?       0 ≤ ℎ ≤ X√5 − 1Y2 ,

1 − ℎℎ             =? X√5 − 1Y2 < ℎ < 1√211 + ℎ                         =? 1√2 ≤ ℎ < 1.
, 

Assume that there existsℎ ∈ [0,1), Such that �(ℎ)�X
, �(
)Y ≤ �(
, �)   ⇒ �X�(
), �(�)Y ≤ �(
, �), For all
, � ∈ �. 
Then, � has a unique fixed point. 
 
2. Conclusion 
The fixed point theory in metric space with different contraction condition and its 
generalized form are important as extension of famous Banach contraction principals and 
for its applications to other disciplines. 
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