Study of Open Sets in Bi-generalized Topological Spaces

R. Rishanthini ${ }^{l^{*}}$ and P. Elango ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Faculty of Science, Eastern University, Sri Lanka
${ }^{2}$ Email: elangop@esn.ac.lk
*Corresponding author. ${ }^{1}$ Email: rishanthini119@gmail.com

Received 30 September 2022; accepted 1 November 2022

Abstract

In this paper, we study all kinds of open sets introduced in bi-generalized topological spaces, namely, $\mu_{(m, n)}$-semi open sets, $\mu_{(m, n)}$-pre open sets, $\mu_{(m, n)}$-regular open sets, $\mu_{(m, n)}-\alpha$-open sets, $\mu_{(m, n)}-\beta$-open sets, $\bar{\mu}_{(m, n)}$-open sets, (m, n)-open sets and quasi generalized open sets and investigate some of their properties. We choose $\mu_{(m, n)}{ }^{-}$ semi open set as the bases open set for our investigation and compare the relationships between the $\mu_{(m, n)}$-semi open sets and other open sets in this bi-generalized topological spaces.

Keywords: Generalized topological spaces, Bi-generalized topological spaces, Open sets.
AMS Mathematics Subject Classification (2010): 54A05, 54A10, 54E55

1. Introduction

Kelly [17] initiated the concept of bi-topological spaces (briefly, Bi-TS) in 1963 and thereafter many mathematicians generalized the topological ideas into bi-topological settings. Some open and closed sets in Bi-TS were defined by several authors [$1,14,25,26,28,30]$. Császár [7] introduced the concept of generalized neighborhood systems and generalized topological spaces (briefly, GTS). Research in GTS is still a hot area of research in which researchers introduced several types of continuity, compactness, homogeneity, and sets are extended from ordinary topological spaces to include GTS. As a generalization of Bi-TS, Boonpok [4] introduced the concept of bi-generalized topological spaces (briefly, Bi-GTS) and studied (m, n)-closed sets and (m, n)-open sets in Bi-GTS. Also, several authors [3,8,11,12,16,23,27] further extended the concept of various types of closed sets in Bi-GTS.

In the literature, different types of open sets in Bi-GTS were defined by several authors [5,15,21]. Murugalingam and Gnanam [22] introduced the boundary set on Bi-GTS. Further, Sompong [29] defined the dense set in Bi-GTS. Zakari [32] defined the almost homeomorphism on Bi-GTS. Also, the authors [9,18] introduced the various types of continuous functions in Bi-GTS. Gnanam [13] introduced a new kind of connectedness in $B i-G T S$. In this Bi-GTS, separation axioms were defined by several authors [10,19,24,31]. Recently, Ghour [2] introduced certain covering properties and minimal sets in Bi-GTS.

R. Rishanthini and P. Elango

In this paper, we studied all kind of open sets introduced in Bi-GTS namely, $\mu_{(m, n)^{-}}$ semi open sets, $\mu_{(m, n)}$-pre open sets, $\mu_{(m, n)}$-regular open sets, $\mu_{(m, n)^{-}} \alpha$-open sets, $\mu_{(m, n)^{-}}$ β-open sets, $\bar{\mu}_{(m, n)}$-open sets, (m, n)-open sets and quasi generalized open sets and investigated some of their properties. Also we investigated the relationships between the $\mu_{(m, n)}$--semi open sets and other open sets in Bi-GTS.

2. Preliminaries

Definition 2.1. [7] Let X be a non-empty set and let we denote $\mathcal{P}(X)$ be the power set of X. A subset μ of $\mathcal{P}(X)$ is said to be a generalized topology (briefly, $G T$) on X, if it satisfying the following axioms:
(1) $\emptyset \in \mu$.
(2) An arbitrary union of elements of μ belongs to μ.

If μ is a $G T$ on X, then (X, μ) is called a generalized topological space (briefly, GTS). The elements of μ are called μ-open sets and the complements of μ-open sets are called μ closed sets.

Definition 2.2. [6] Let (X, μ) be a $G T S$ and $A \subseteq X$. Then, the μ-interior of A, denoted by $\operatorname{int}_{\mu}(A)$, is the union of all μ-open sets contained in A. The μ-closure of A, denoted by $c l_{\mu}(A)$, is the intersection of all μ-closed sets containing A.

Theorem 2.1. [6] Let (X, μ) be a $G T S$ and $A \subseteq X$. Then,
(1) $c l_{\mu}(A)=X-i n t_{\mu}(X-A)$.
(2) $\operatorname{int}_{\mu}(A)=X-c l_{\mu}(X-A)$.

Proposition 2.1. [20] Let (X, μ) be a $G T S$ and $A, B \subseteq X$. Then, the following properties holds:
(1) $c l_{\mu}(X-A)=X-\operatorname{int}_{\mu}(A)$ and $\operatorname{int}_{\mu}(X-A)=X-c l_{\mu}(A)$.
(2) If $(X-A) \in \mu$, then $c l_{\mu}(A)=A$ and if $A \in \mu$, then $\operatorname{int}_{\mu}(A)=A$.
(3) If $A \subseteq B$, then $c l_{\mu}(A) \subseteq c l_{\mu}(B)$ and $i n t_{\mu}(A) \subseteq \operatorname{int}_{\mu}(B)$.
(4) If $A \subseteq c l_{\mu}(A)$ and $i n t_{\mu}(A) \subseteq A$.
(5) $c l_{\mu}\left(c l_{\mu}(A)\right)=c l_{\mu}(A)$ and $\operatorname{int}_{\mu}\left(i n t_{\mu}(A)\right)=\operatorname{int}_{\mu}(A)$.

Definition 2.3. [6] A subset A of a $G T S(X, \mu)$ is called
(1) μ-regular open if $A=\operatorname{int_{\mu }}\left(c l_{\mu}(A)\right)$.
(2) μ-pre open if $A \subseteq \operatorname{int}_{\mu}\left(c l_{\mu}(A)\right)$.
(3) μ-semi open if $A \subseteq c l_{\mu}\left(\right.$ int $\left._{\mu}(A)\right)$.
(4) μ - α-open if $A \subseteq \operatorname{int}_{\mu}\left(c l_{\mu}\left(\right.\right.$ int $\left.\left._{\mu}(A)\right)\right)$.
(5) μ - β-open if $A \subseteq c l_{\mu}\left(i n t_{\mu}\left(c l_{\mu}(A)\right)\right)$.

Definition 2.4. [4] Let X be a non-empty set and μ_{1}, μ_{2} be generalized topologies on X. The triple (X, μ_{1}, μ_{2}) is said to be Bi-generalized topological space (briefly, Bi-GTS).
The elements of μ_{m} are called μ_{m}-open sets, where $m \in\{1,2\}$.

Definition 2.5. [4] Let (X, μ_{1}, μ_{2}) be a $B i-G T S$ and A be a subset of X. Then, μ_{m}-interior of A with respect to μ_{m}, denoted by int $_{\mu_{m}}(A)$, is the union of all μ_{m}-open sets contained in A. The μ_{m}-closure of A with respect to μ_{m}, denoted by $c l_{\mu_{m}}(A)$, is the intersection of all μ_{m}-closed sets containing A.

3. Open sets in bi-generalized topological spaces

3.1. $\mu_{(m, n)}$-semi open sets

Definition 3.1. [4] Let (X, μ_{1}, μ_{2}) be a $B i-G T S$ and A be a subset of X. Then, A is said to be a $\mu_{(m, n)}$-semi open set if $A \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$, where $m, n \in\{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m, n)}$-semi open sets is denoted by $\sigma_{(m, n)}(\mu)$.
Example 3.1. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{a\},\{b\},\{a, b\}\}$ and $\mu_{2}=\{\varnothing,\{a\},\{c\},\{a, c\}\}$. Then, $\sigma_{(1,2)}(\mu)=\{\varnothing,\{a\},\{b\},\{a, b\}\}$.

Lemma 3.1. If A and B are $\mu_{(m, n)}$-semi open sets, then $A \cup B$ is a $\mu_{(m, n)}$-semi open set.
Proof: Suppose that A and B are $\mu_{(m, n)}$-semi open sets. Then, $A \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$ and B $\subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(B)\right)$. Since $c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right) \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A \cup B)\right)$ and $c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(B)\right) \subseteq$ $c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A \cup B)\right)$, we get $A \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A \cup B)\right)$ and $B \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A \cup B)\right)$. Therefore, $A \cup B \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A \cup B)\right)$. Thus, $A \cup B$ is a $\mu_{(m, n)}$-semi open set.

Remark 3.1. If A and B are $\mu_{(m, n)}$-semi open sets, then in general, $A \cap B$ need not be a $\mu_{(m, n)}$-semi open set. This can be seen in the following example:

Example 3.2. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mu_{1}=\{\emptyset,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\mu_{2}=$ $\{\emptyset,\{a\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{a, b, d\}\}$. If $A=\{\mathrm{a}, \mathrm{c}\}, B=\{\mathrm{b}, \mathrm{c}\}$, then, $A \cap B=\{\mathrm{c}\}$ $\notin \sigma_{(1,2)}(\mu)$.

Proposition 3.1. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a $B i-G T S$ and A be a subset of X. If A is $\mu_{(m, n)}$-semi open set, then $c l_{\mu_{n}}(A)=c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$.
Proof: Suppose that A is a $\mu_{(m, n)}$-semi open set. Then, $A \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. This implies that $c l_{\mu_{n}}(A) \subseteq c l_{\mu_{n}}\left(c l_{\mu_{n}}\left(\right.\right.$ int $\left.\left._{\mu_{m}}(A)\right)\right)=c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$ and so $c l_{\mu_{n}}(A) \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$. Since $\left.\operatorname{int}_{\mu_{m}}(A)\right) \subseteq A$, we get $c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right) \subseteq c l_{\mu_{n}}(A)$. Thus, $c l_{\mu_{n}}(A)=c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$.

Theorem 3.3. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a $B i-G T S$. If $A \subseteq B \subseteq c l_{\mu_{n}}(A)$ and A is $\mu_{(m, n)}$ - semi open set, then B is a $\mu_{(m, n)}$-semi open set.
Proof: Suppose that A is a $\mu_{(m, n)}$-semi open set. Then, by Proposition 3.1, we get $c l_{\mu_{n}}(A)$ $=c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. So $B \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$. Since $A \subseteq B$, we get $c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right) \subseteq$ $c l_{\mu_{n}}\left(i n t_{\mu_{m}}(B)\right)$. Therefore, $B \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(B)\right)$. Thus, B is $\mu_{(m, n)}$-semi open set.

Proposition 3.2. Every μ_{m}-open set in (X, μ_{m}) is a $\mu_{(m, n)}$-semi open set in (X, μ_{1}, μ_{2}).
Proof: Suppose that A is a μ_{m}-open set. Then, $A=i n t_{\mu_{m}}(A)$. Since $A \subseteq c l_{\mu_{n}}(A)=$ $c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$, we get $A \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$. Therefore, A is $\mu_{(m, n)}$-semi open set in (X, μ_{1}, μ_{2}).

R. Rishanthini and P. Elango

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.4. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\varnothing,\{a, b\},\{c\}, X\}$. Where $\{\mathrm{a}, \mathrm{b}\}, X$ are $\mu_{(1,2)}$-semi open sets, but these are not μ_{1}-open sets in $\left(X, \mu_{1}\right)$.

3.2. $\mu_{(m, n)}$-pre open set

Definition 3.2. $([4,15])$ Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a Bi-GTS and A be a subset of X. Then, A is said to be a $\mu_{(m, n)}$-pre open set if $A \subseteq i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$, where $m, n \in\{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m, n)}$-pre open sets is denoted by $\pi_{(m, n)}(\mu)$.

Example 3.5. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mu_{1}=\{\emptyset,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\mu_{2}=\{\varnothing,\{a\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{a, b, d\}\}$.Then, $\pi_{(1,2)}(\mu)=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.

Lemma 3.2. If A and B are $\mu_{(m, n)}$-pre open sets, then $A \cup B$ is $\mu_{(m, n)}$-pre open set.
Proof: Suppose that A and B are $\mu_{(m, n)}$-pre open sets. Then, $A \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$ and $B \subseteq$ $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(B)\right)$. Since $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right) \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$ and $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(B)\right) \subseteq$ $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$, we get $A \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$ and $B \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$. Therefore, $A \cup B \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$. Thus, $A \cup B$ is a $\mu_{(m, n)}$-pre open set.

Remark 3.2. If A and B are $\mu_{(m, n)}$-pre open sets, then in general, $A \cap B$ need not be a $\mu_{(m, n)}$-pre open set. This can be seen in the following example:

Example 3.6. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mu_{1}=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\mu_{2}=$ $\{\varnothing,\{a\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{a, b, d\}\}$. If $A=\{\mathrm{a}, \mathrm{c}\}, B=\{\mathrm{b}, \mathrm{c}\}$, then, $A \cap B=\{\mathrm{c}\}$ $\notin \pi_{(1,2)}(\mu)$.

Proposition 3.3. Every μ_{m}-open set in $\left(X, \mu_{m}\right)$ is a $\mu_{(m, n)}$-pre open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
Proof: Suppose that A is a μ_{m}-open set. Then, $A=\operatorname{int}_{\mu_{m}}(A)$. Since $A \subseteq c l_{\mu_{n}}(A)$, we get $\operatorname{int}_{\mu_{m}}(A) \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$. Therefore, $A \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$. Thus, A is a $\mu_{(m, n)}$-pre open set in $\left(X, \mu_{1}, \mu_{2}\right)$.

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.7. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a, b\},\{a, c\}, X\}$ and $\mu_{2}=\{\varnothing,\{b\},\{c\},\{b, c\}\}$ where $\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}$ are $\mu_{(1,2)}$-pre open sets, but these are not μ_{1}-open sets in $\left(X, \mu_{1}\right)$.

3.3. $\mu_{(m, n)}$-regular open sets

Definition 3.3. [4] Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a Bi-GTS and A be a subset of X. Then, A is said to be a $\mu_{(m, n)}$-regular open set if $A=\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$, where $m, n \in\{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m, n)}$-regular open sets is denoted by $\gamma_{(\mathrm{m}, \mathrm{n})}(\mu)$.

Example 3.8. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a, b\},\{a, c\}, X\}$ and $\mu_{2}=\{\varnothing,\{b\},\{c\},\{b, c\}\}$. Then, $\gamma_{(1,2)}(\mu)=\{\varnothing,\{a, b\},\{a, c\}, X\}$.

Lemma 3.3. If A and B are $\mu_{(m, n)}$-regular open sets, then $A \cup B$ is a $\mu_{(m, n)}$-regular open set.
Proof: Suppose that A and B are $\mu_{(m, n)}$-regular open sets. Then, $A=i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$ and B $=\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(B)\right)$. Since $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right) \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$ and $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(B)\right) \subseteq$ $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$, we get $A \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$ and $B \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$. Therefore, $A \cup B \subseteq i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$. And it is clear that $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right) \subseteq A \cup B$. Therefore, $A \cup B=i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)$. Thus, $A \cup B$ is a $\mu_{(m, n)}$-regular open set.

Remark 3.3. If A and B are $\mu_{(m, n)}$-regular open sets, then in general, $A \cap B$ need not be a $\mu_{(m, n)}$-regular open set. This can be seen in the following example:

Example 3.9. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{a, b\},\{a, c\}, X\}$ and $\mu_{2}=\{\varnothing,\{b\},\{c\},\{b, c\}\}$. If A $=\{\mathrm{a}, \mathrm{b}\}, B=\{\mathrm{a}, \mathrm{c}\}$, then, $A \cap B=\{\mathrm{a}\} \notin \gamma_{(1,2)}(\mu)$.

Proposition 3.4. let A be a μ_{n}-closed set in $\left(X, \mu_{n}\right)$. Then, A is a $\mu_{(m, n)}$-regular open set in $\left(X, \mu_{1}, \mu_{2}\right)$ if and only if A is a μ_{m}-open set in $\left(X, \mu_{m}\right)$.
Proof: Suppose that A is a $\mu_{(m, n)}$-regular open set. Then, $A=\operatorname{int} \mu_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$. Since A is μ_{n}-closed set, we get $c l_{\mu_{n}}(A)=A$. Therefore, $A=\operatorname{int} t_{\mu_{m}}(A)$. Hence A is a μ_{m}-open set in (X, μ_{m}).

Conversely, suppose that A is a μ_{m}-open set. Then, $A=\operatorname{int} \mu_{\mu_{m}}(A)$. Since A is μ_{n}-closed set, we get $A=c l_{\mu_{n}}(A)$. Therefore, $A=\operatorname{int} \mu_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$. Hence A is a $\mu_{(m, n)}$-regular open set.

3.4. $\mu_{(m, n)}-\alpha$-open sets

Definition 3.4. [4] Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a Bi-GTS and A be a subset of X. Then, A is said to be a $\mu_{(m, n)^{-}} \alpha$-open set if $A \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\right.\right.$ int $\left.\left._{\mu_{m}}(A)\right)\right)$, where $m, n \in\{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m, n)^{-}}$- -open sets is denoted by $\alpha_{(m, n)}(\mu)$.

Example 3.10. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{a, b\},\{a, c\}, X\}$ and $\mu_{2}=\{\varnothing,\{a\},\{c\},\{a, c\}\}$. Then, $\alpha_{(1,2)}(\mu)=\{\varnothing,\{a, b\},\{a, c\}, X\}$.

Lemma 3.4. If A and B are $\mu_{(m, n)^{-}} \alpha$-open sets, then $A \cup B$ is a $\mu_{(m, n)^{-}} \alpha$-open set.
Proof: Suppose that A and B are $\mu_{(m, n)^{-}-\alpha \text {-open sets. Then, } A \subseteq i n t_{\mu_{m}}\left(c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)\right)}$ and $B \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}(B)\right)\right)$. Since $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}(A)\right)\right) \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}(A \cup\right.\right.$ $B))$) and $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}(B)\right)\right) \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}(A \cup B)\right)\right)$, we get $A \subseteq$ $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A \cup B)\right)\right)$ and $B \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A \cup B)\right)\right)$. Therefore, $A \cup B \subseteq$ $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\right.\right.$ int $\left.\left._{\mu_{m}}(A \cup B)\right)\right)$. Thus, $A \cup B$ is a $\mu_{(m, n)^{-}} \alpha$-open set.

Remark 3.4. If A and B are $\mu_{(m, n)^{-}}$-open sets, then in general, $A \cap B$ need not be a $\mu_{(m, n)^{-}}$ α-open set. This can be seen in the following example:

R. Rishanthini and P. Elango

Example 3.11. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a, b\},\{a, c\}, X\}$ and $\mu_{2}=\{\emptyset,\{a\},\{c\},\{a, c\}\}$. If $A=\{\mathrm{a}, \mathrm{b}\}, B=\{\mathrm{a}, \mathrm{c}\}$, then, $A \cap B=\{\mathrm{a}\} \notin \alpha_{(1,2)}(\mu)$.

Proof: Suppose that A is a μ_{m}-open set. Then, $A=\operatorname{int}_{\mu_{m}}(A)$. Since $A \subseteq c l_{\mu_{n}}(A)=$ $c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$, we get $\operatorname{int}_{\mu_{m}}(A) \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)\right)$. Therefore, $A \subseteq$ $\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\right.\right.$ int $\left.\left._{\mu_{m}}(A)\right)\right)$. Hence A is a $\mu_{(m, n)^{-}} \alpha$-open set in $\left(X, \mu_{1}, \mu_{2}\right)$.

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.12. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{a\},\{a, b\},\{b, c\}, X\}$ and $\mu_{2}=\{\varnothing,\{a, b\},\{a, c\}, X\}$. Then, $\alpha_{(1,2)}(\mu)=\{\varnothing,\{a\},\{a, b\},\{a, c\},\{b, c\}, X\}$. Therefore, $\{\mathrm{a}$, c\} is $\mu_{(1,2)}-\alpha$-open set, but this is not a μ_{1}-open set in $\left(X, \mu_{1}\right)$.

3.5. $\mu_{(m, n)}-\beta$-open sets

Definition 3.5. [4] Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a Bi-GTS and A be a subset of X. Then, A is said to be a $\mu_{(m, n)}-\beta$-open set if $A \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)\right)$, where $m, n \in\{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m, n)}-\beta$-open sets is denoted by $\beta_{(m, n)}(\mu)$.

Example 3.13. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mu_{1}=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\mu_{2}=$ $\{\emptyset,\{a\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{a, b, d\}\}$. Then, $\beta_{(1,2)}(\mu)=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.

Lemma 3.5. If A and B are $\mu_{(m, n)^{-}} \beta$-open sets, then $A \cup B$ is a $\mu_{(m, n)}-\beta$-open set.
Proof: Suppose that A and B are $\mu_{(m, n)}-\beta$-open sets. Then, $A \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)\right)$ and $B \subseteq c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(B)\right)\right)$. Since $c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)\right) \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)\right)$ and $c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(B)\right)\right) \subseteq c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)\right)$, we get $A \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)\right)$ and $B \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)\right)$. Therefore, $A \cup B \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A \cup B)\right)\right)$. Thus, A $\cup B$ is a $\mu_{(m, n)}-\beta$-open set.

Remark 3.5. If A and B are $\mu_{(m, n)}-\beta$-open sets, then in general, $A \cap B$ need not be a $\mu_{(m, n)^{-}}$ β-open set. This can be seen in the following example:

Example 3.14. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mu_{1}=\{\emptyset,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\mu_{2}=$ $\{\varnothing,\{a\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{a, b, d\}\}$. If $A=\{\mathrm{a}, \mathrm{c}\}, B=\{\mathrm{b}, \mathrm{c}\}$, then, $A \cap B=\{\mathrm{c}\}$ $\notin \beta_{(1,2)}(\mu)$.

Proposition 3.6. Every μ_{m}-open set in $\left(X, \mu_{m}\right)$ is a $\mu_{(m, n)}-\beta$-open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
Proof: Suppose that A is a μ_{m}-open set. Then, $A=\operatorname{int}_{\mu_{m}}(A)$. Since $A \subseteq c l_{\mu_{n}}(A)$, we get A $\left.=\operatorname{int}_{\mu_{m}}(A)\right) \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$, So $c l_{\mu_{n}}(A) \subseteq c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)\right)$. Therefore, $A \subseteq$ $c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)\right)$. Hence A is a $\mu_{(m, n)}-\beta$-open set in $\left(X, \mu_{1}, \mu_{2}\right)$.

Study of Open Sets in Bi-generalized Topological Spaces

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.15. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\emptyset,\{a, b\},\{c\}, X\}$. Then, $\beta_{(1,2)}(\mu)=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}, X\}$. Therefore, $\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}$ are $\mu_{(1,2)^{-}} \beta$-open sets, but these are not μ_{1}-open sets in (X, μ_{1}).

3.6. $\bar{\mu}_{(m, n)}$-open sets

Definition 3.6. [5] Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a Bi-GTS and A be a subset of X. Then, A is said to be a $\bar{\mu}_{(m, n)}$-open set if there exists a μ_{m}-open set U of X such that $U \subseteq A \subseteq c l_{s_{\mu_{n}}}(U)$, where $c l_{s_{\mu_{n}}}(U)$ is the intersection of all μ_{n}-semi closed sets containing U. That is, the smallest μ_{n}-semi closed set containing U, where $m, n \in\{1,2\}$ and $m \neq n$.

Example 3.16. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\emptyset,\{a, b\},\{c\}, X\}$. Then, $\varnothing,\{a\},\{c\},\{a, c\},\{a, b\}, X$ are $\bar{\mu}_{(1,2)}$-open sets.

Lemma 3.6. If A and B are $\bar{\mu}_{(m, n)}$-open sets, then $A \cup B$ is $\bar{\mu}_{(m, n)}$-open set.
Proof: Suppose that A and B are $\bar{\mu}_{(m, n)}$-open sets. Then, there exists a μ_{m}-open set U of X such that $U \subseteq A \subseteq c l_{s_{\mu_{n}}}(U)$ and $U \subseteq B \subseteq c l_{s_{\mu_{n}}}(U)$. This implies that $U \subseteq A \cup B \subseteq c l_{s_{\mu_{n}}}(U)$. Thus, $A \cup B$ is a $\bar{\mu}_{(m, n)}$-open set.

Remark 3.6. If A and B are $\bar{\mu}_{(m, n)^{-}}$open sets, then in general, $A \cap B$ need not be a $\bar{\mu}_{(m, n)^{-}}$ open set. This can be seen in the following example:

Example 3.17. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a, b\},\{b, c\}, X\}$ and $\mu_{2}=\{\varnothing,\{b\},\{c\},\{b, c\}\}$. If $A=\{\mathrm{a}, \mathrm{b}\}, B=\{\mathrm{b}, \mathrm{c}\}$, then, $A \cap B=\{\mathrm{b}\} \notin \bar{\mu}_{(1,2)}$-open set.

Theorem 3.18. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a Bi-GTS and A be a subset of X. Then, A is said to be a $\bar{\mu}_{(m, n)}$-open set if and only if $A \subseteq c l_{s_{\mu_{n}}}\left(i n t_{\mu_{m}}(A)\right)$.
Proof: Let A be a $\bar{\mu}_{(m, n)}$-open set. Then, there exists a μ_{m}-open set U such that $U \subseteq A \subseteq$ $c l_{s_{\mu_{n}}}(U)$. Since U is μ_{m}-open set, we get $U=i n t_{\mu_{m}}(U) \subseteq i n t_{\mu_{m}}(A)$. This implies that $A \subseteq$ $c l_{s_{\mu_{n}}}(U) \subseteq c l_{s_{\mu_{n}}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. Thus, $A \subseteq c l_{s_{\mu_{n}}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$.

Conversely, let $A \subseteq c l_{s_{\mu_{n}}}\left(\operatorname{int}_{\mu_{m}}(A)\right)$ and take $U=\operatorname{int}_{\mu_{m}}(A)$. Then, $\operatorname{int}_{\mu_{m}}(A) \subseteq A \subseteq$ $c l_{s_{\mu_{n}}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. Hence A is $\bar{\mu}_{(m, n)}$-open set.

Proposition 3.7. Every μ_{m}-open set in $\left(X, \mu_{m}\right)$ is a $\bar{\mu}_{(m, n)}$-open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
Proof: Suppose that A is a μ_{m}-open set. Then, $A=\operatorname{int}_{\mu_{m}}(A)$. Since $A \subseteq c l_{s_{\mu_{n}}}(A)$, we get A $\subseteq c l_{s_{\mu_{n}}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. Therefore, by Theorem 3.18, we get A is $\bar{\mu}_{(m, n)}$-open set in $\left(X, \mu_{1}, \mu_{2}\right)$.

The converse of the above proposition need not be true in general. This can be seen in the following example:

R. Rishanthini and P. Elango

Example 3.19. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\varnothing,\{a, b\},\{a\}, X\}$. Then, $\{\mathrm{a}, \mathrm{b}\}, X$ are $\bar{\mu}_{(1,2)}$-open sets, but these are not μ_{1}-open sets in $\left(X, \mu_{1}\right)$.

3.7. (m, n)-open sets

Definition 3.7. [4] Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a Bi-GTS and A be a subset of X. Then, A is said to be a (m, n)-open set if $A=\operatorname{int}_{\mu_{m}}\left(\right.$ int $\left._{\mu_{n}}(A)\right)$, where $m, n \in\{1,2\}$ and $m \neq n$.

Example 3.20. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{b\},\{a, b\}\}$ and $\mu_{2}=\{\varnothing,\{a, b\},\{c\}, X\}$. Then, (1, 2)-open set is $\{a, b\}$.

Lemma 3.7. If A and B are (m, n)-open sets, then $A \cup B$ is a (m, n)-open set.
Proof: Suppose that A and B are (m, n)-open sets. Then, $A=\operatorname{int}_{\mu_{m}}\left(\right.$ int $\left._{\mu_{n}}(A)\right)$ and $B=$ $\operatorname{int}_{\mu_{m}}\left(\operatorname{int}_{\mu_{n}}(B)\right)$. Since $\operatorname{int}_{\mu_{m}}\left(\operatorname{int}_{\mu_{n}}(A)\right) \subseteq \operatorname{int}_{\mu_{m}}\left(\operatorname{int}_{\mu_{n}}(A \cup B)\right)$ and $\operatorname{int}_{\mu_{m}}\left(\operatorname{int}_{\mu_{n}}(B)\right) \subseteq$ $\operatorname{int}_{\mu_{m}}\left(\right.$ int $_{\mu_{n}}(A \cup B)$), we get $A \subseteq \operatorname{int}_{\mu_{m}}\left(\right.$ int $\left._{\mu_{n}}(A \cup B)\right)$ and $B \subseteq \operatorname{int}_{\mu_{m}}\left(\operatorname{int}_{\mu_{n}}(A \cup B)\right)$. Then, $A \cup B \subseteq \operatorname{int}_{\mu_{m}}\left(\operatorname{int}_{\mu_{n}}(A \cup B)\right)$. Since $\operatorname{int}_{\mu_{n}}(A \cup B) \subseteq A \cup B$, we get $\operatorname{int}_{\mu_{m}}\left(\right.$ int $_{\mu_{n}}(A$ $\cup B)) \subseteq \operatorname{int}_{\mu_{m}}(A \cup B) \subseteq A \cup B$. Therefore, $A \cup B=\operatorname{int}_{\mu_{m}}\left(\operatorname{int}_{\mu_{n}}(A \cup B)\right)$. Thus, $A \cup B$ is a (m, n)-open set.

Remark 3.7. If A and B are (m, n)-open sets, then in general, $A \cap B$ need not be a (m, n) open set. This can be seen in the following example:

Example 3.21. Let $X=\{a, b, c\}, \mu_{1}=\{\varnothing,\{a, b\},\{b, c\}, X\}$ and $\mu_{2}=\{\varnothing,\{a, b\},\{b, c\}, X\}$. If $A=\{a, b\}, B=\{b, c\}$, then, $A \cap B=\{\mathrm{b}\} \notin(1,2)$-open set.

Proposition 3.8. let A be a subset of a $\operatorname{Bi-GTS}\left(X, \mu_{1}, \mu_{2}\right)$ and A is μ_{n}-open set in $\left(X, \mu_{n}\right)$. Then, A is a (m, n)-open set in $\left(X, \mu_{1}, \mu_{2}\right)$ if and only if A is a μ_{m}-open set in $\left(X, \mu_{m}\right)$.
Proof: Suppose that A is a (m, n)-open set. Then, $A=i n t_{\mu_{m}}\left(\right.$ int $\left._{\mu_{n}}(A)\right)$. Since A is μ_{n}-open set, we get $A=i n t_{\mu_{n}}(A)$. This implies that $A=i n t_{\mu_{m}}(A)$. Hence A is a μ_{m}-open set in $(X$, μ_{m}).

Conversely, suppose that A is a μ_{m}-open set. Then, $A=\operatorname{int} t_{\mu_{m}}(A)$. Since A is μ_{n}-open set, we get $A=\operatorname{int}_{\mu_{n}}(A)$. This implies that $A=\operatorname{int}_{\mu_{m}}\left(\operatorname{int}_{\mu_{n}}(A)\right)$. Hence A is a (m, n)-open set.

3.8. Quasi generalized open sets

Definition 3.8. [21] Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a Bi-GTS and A be a subset of X. Then, A is said to be a quasi generalized open set (briefly, q_{μ}-open set) if for every $x \in A$, then there exist a μ_{1}-open set U such that $x \in U \subseteq A$, or a μ_{2}-open set V such that $x \in V \subseteq A$.

Example 3.22. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mu_{1}=\{\emptyset,\{a, b\}\}$ and $\mu_{2}=\{\varnothing,\{a, c\}\}$. Then, q_{μ}-open set is $\{a, b, c\}$.

Lemma 3.8. If A and B are q_{μ}-open sets, then $A \cup B$ is a q_{μ}-open set.
Proof: Suppose that A and B are q_{μ}-open sets. Then, for every $x \in A$ and $x \in B$, then there exist a μ_{1}-open set U such that $x \in U \subseteq A$ and $x \in U \subseteq B$, or a μ_{2}-open set V such that $x \in$

Study of Open Sets in Bi-generalized Topological Spaces

$V \subseteq A$ and $x \in V \subseteq B$. This implies that for every $x \in A \cup B$, then there exist a μ_{1}-open set U such that $x \in U \subseteq A \cup B$, or a μ_{2}-open set V such that $x \in V \subseteq A \cup B$. Thus, $A \cup B$ is a q_{μ}-open set.

Remark 3.8. If A and B are q_{μ}-open sets, then in general, $A \cap B$ need not be a q_{μ}-open set. This can be seen in the following example:

Example 3.23. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mu_{1}=\{\varnothing,\{d\},\{a, b\},\{a, b, d\}\}$ and $\mu_{2}=$ $\{\varnothing,\{c\},\{a, d\},\{a, c, d\}\}$. If $A=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, B=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$, then, $A \cap B=\{\mathrm{a}, \mathrm{c}\} \notin q_{\mu}$-open set.

4. Comparison of open sets in bi-generalized topological spaces

We choose $\mu_{(m, n)}$-semi open set as the base open set for the comparison of all open sets in the Bi-GTS.

Proposition 4.1. Every $\mu_{(m, n)^{-}} \alpha$-open set is a $\mu_{(m, n)}$-semi open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
Proof: Let A be a $\mu_{(m, n)^{-}} \alpha$-open set. Then, $A \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}\left(\right.\right.$ int $\left.\left._{\mu_{m}}(A)\right)\right)$. Take $B=$ $c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. Let $\operatorname{int}_{\mu_{m}}(B)$ be the union of all open sets contained in B, that is, $i n t_{\mu_{m}}(B)$ $=\bigcup_{i \in I} G_{i}$, where $G_{i} \subseteq B$. Then, $A \subseteq \bigcup_{i \in I} G_{i}$, where $G_{i} \subseteq B$. This implies that $A \subseteq B$. Therefore, $A \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$. Hence A is a $\mu_{(m, n)}$-semi open set in $\left(X, \mu_{1}, \mu_{2}\right)$.

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.1. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\varnothing,\{a\},\{a, b\}, X\}$. Then, $\{\mathrm{a}, \mathrm{b}\}, X$ are $\mu_{(1,2)}$-semi open sets, but these are not $\mu_{(1,2)}-\alpha$-open sets in $\left(X, \mu_{1}, \mu_{2}\right)$.

Proposition 4.2. Every $\mu_{(m, n)}$-semi open set is a $\mu_{(m, n)}-\beta$-open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
Proof: Let A be a $\mu_{(m, n)}$-semi open set. Then, $A \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. Since $A \subseteq c l_{\mu_{n}}(A)$, we get $c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right) \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)\right)$. This implies that $A \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)\right)$. Hence A is $\mu_{(m, n)}-\beta$-open set in $\left(X, \mu_{1}, \mu_{2}\right)$.

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.2. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\emptyset,\{c\},\{a, b\}, X\}$. Then, $\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}$ are $\mu_{(1,2)}-\beta$-open sets, but these are not $\mu_{(1,2)}$-semi open sets in $\left(X, \mu_{1}, \mu_{2}\right)$.

Proposition 4.3. [5] Every $\bar{\mu}_{(m, n)}$-open set is a $\mu_{(m, n)}$-semi open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.3. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{c\},\{a, b\}, X\}$ and $\mu_{2}=\{\varnothing,\{b\},\{c\},\{b, c\}\}$. Then, $\{\mathrm{a}, \mathrm{c}\}$ is a $\mu_{(1,2)}$-semi open set, but these is not $a \bar{\mu}_{(1,2)}$-open set in $\left(X, \mu_{1}, \mu_{2}\right)$.

R. Rishanthini and P. Elango

Proposition 4.4. let A be a μ_{n}-closed set of a $\operatorname{Bi-GTS}\left(X, \mu_{1}, \mu_{2}\right)$. If A is $\mu_{(m, n)}$-pre open set in $\left(X, \mu_{1}, \mu_{2}\right)$, then A is a $\mu_{(m, n)}$-semi open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
Proof: Let A be a $\mu_{(m, n)}$-pre open set. Then, $A \subseteq \operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$. Since A is μ_{n}-closed set, we get $A=c l_{\mu_{n}}(A)$. This implies that $A \subseteq i n t_{\mu_{m}}(A)$ and so $c l_{\mu_{n}}(A) \subseteq c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. Therefore, $A \subseteq c l_{\mu_{n}}\left(\operatorname{int}_{\mu_{m}}(A)\right)$. Hence A is a $\mu_{(m, n)}$-semi open set in $\left(X, \mu_{1}, \mu_{2}\right)$.

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.4. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\emptyset,\{c\},\{a, b\}, X\}$ and also $\{\mathrm{a}, \mathrm{b}\}, X$ are μ_{2}-closed sets. Then, $\{\mathrm{a}, \mathrm{b}\}, X$ are $\mu_{(1,2)}$-semi open sets in $\left(X, \mu_{1}, \mu_{2}\right)$, but these are not $\mu_{(1,2)}$-pre open sets in $\left(X, \mu_{1}, \mu_{2}\right)$.

Proposition 4.5. let A be a μ_{n}-closed set of a $\operatorname{Bi-GTS}\left(X, \mu_{1}, \mu_{2}\right)$. If A is a $\mu_{(m, n)}$-regular open set in $\left(X, \mu_{1}, \mu_{2}\right)$, then A is a $\mu_{(m, n)}$-semi open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
Proof: Let A be a $\mu_{(m, n)}$-regular open set. Then, $A=\operatorname{int}_{\mu_{m}}\left(c l_{\mu_{n}}(A)\right)$. Since A is μ_{n}-closed set, we get $A=c l_{\mu_{n}}(A)$. This implies that $A=\operatorname{int}_{\mu_{m}}(A)$. Since $A \subseteq c l_{\mu_{n}}(A)$, we get $A \subseteq$ $c l_{\mu_{n}}\left(\right.$ int $\left._{\mu_{m}}(A)\right)$. Therefore, $A \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$. Hence A is a $\mu_{(m, n)}$-semi open set in $(X$, μ_{1}, μ_{2}.

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.5. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\emptyset,\{c\},\{a, b\}, X\}$ and also $\{\mathrm{a}, \mathrm{b}\}, X$ are μ_{2}-closed sets. Then, $\{\mathrm{a}, \mathrm{b}\}, X$ are $\mu_{(1,2)}$-semi open sets in $\left(X, \mu_{1}, \mu_{2}\right)$, but these are not $\mu_{(1,2)}$-regular open sets in $\left(X, \mu_{1}, \mu_{2}\right)$.

Proposition 4.6. let A be a μ_{n}-open set of a Bi - $G T S\left(X, \mu_{1}, \mu_{2}\right)$. If A is a (m, n)-open set in $\left(X, \mu_{1}, \mu_{2}\right)$, then A is a $\mu_{(m, n)}$-semi open set in $\left(X, \mu_{1}, \mu_{2}\right)$.
Proof: Let A be a (m, n)-open set in $\left(X, \mu_{1}, \mu_{2}\right)$. Then, $A=i n t_{\mu_{m}}\left(i n t_{\mu_{n}}(A)\right)$. Since A is $\mu_{n^{-}}$ open set, we get $A=\operatorname{int}_{\mu_{n}}(A)$. This implies that $A=\operatorname{int}_{\mu_{m}}(A)$. Since $A \subseteq c l_{\mu_{n}}(A)$, we get $A \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$. Therefore, $A \subseteq c l_{\mu_{n}}\left(i n t_{\mu_{m}}(A)\right)$. Hence A is a $\mu_{(m, n)}$-semi open set in (X, μ_{1}, μ_{2}).

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.6. Let $X=\{a, b, c\}, \mu_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}\}$ and $\mu_{2}=\{\varnothing,\{c\},\{a, b\},\{a, c\}, X\}$ and also $\{\mathbf{a}, \mathbf{b}\}, X$ are μ_{2}-open sets. Then, $\{\mathbf{a}, \mathbf{b}\}, X$ are $\mu_{(1,2)}$-semi open sets in $\left(X, \mu_{1}, \mu_{2}\right)$, but these are not $(1,2)$-open sets in $\left(X, \mu_{1}, \mu_{2}\right)$.

Since the quasi generalized open set is defined by μ_{1}-open set or μ_{2}-open set. So this cannot be compared with $\mu_{(m, n)}$-semi open set.

Study of Open Sets in Bi-generalized Topological Spaces

Figure 4.1: Relationships between the $\mu_{(m, n)}$-semi open set and other open sets in BiGTS.

5. Conclusion

In this paper, we studied all kind of open sets in Bi-GTS namely, $\mu_{(m, n)}$-semi open sets, $\mu_{(m, n)}$-pre open sets, $\mu_{(m, n)}$-regular open sets, $\mu_{(m, n)^{-}} \alpha$-open sets, $\mu_{(m, n)}-\beta$-open sets, $\bar{\mu}_{(m, n)}$-open sets, (m, n)-open sets and quasi generalized open sets and investigated some of the properties of these open sets. Also we compared the relationships between the $\mu_{(m, n)^{-}}$ semi open set and other open sets in Bi-GTS.
Acknowledgments. The authors acknowledge the reviewers for their valuable comments.
Conflict of interest. The authors declare that they have no conflict of interest.
Authors' Contributions. All the authors contributed equally to this work.

REFERENCES

1. H.M.Abu Donia, M.A.Abd Allah, A.S.Nawar, Generalized φ^{*}-closed sets in Bi topological spaces, Jou. Egyptain Math. Society, 23 (2015) 527-534.
2. S.AI Ghour and A.Alhorani, On certain covering properties and minimal sets of Bigeneralized topological spaces, Symmetry, 12 (2020) 1145.
3. J.J.Baculta and H.M.Rara, Regular generalized star b-closed sets in Bi -generalized topological spaces, App. Math. Sci, 9(15) (2015) 703-711.
4. C.Boonpok, Weakly open functions in Bi-generalized topological spaces, Int. J. Math. Analysis, 4(18) (2010) 891-897.
5. D.M.M.Castellano and J.B.Nalzaro, $\bar{\mu}_{(m, n)}$-open and closed sets in Bi-generalized topological spaces, Int. J. Sci. Research, 8(7) (2019) 1218-1220.
6. Á.Császár, Generalized open sets in generalized topologies, Acta Math. Hungar, 106 (2005) 53-66.

R. Rishanthini and P. Elango

7. Á.Császár, Generalized topology, generalized continuity, Acta Math.Hungar, 96 (2002) 351-357.
8. A.Deb Ray and R.Bhowmick, On $g_{(i, j)}$-closed sets in Bi-generalized topological spaces, Bol. Soc. Paran. Math, 35(2) (2017) 59-67.
9. M.K.V.Donesa and H.M.Rara, Generalized $\mu^{(m, n)}$-b-continuous function in Bi generalized topological spaces, Int. J. Math. Analysis, 9 (16) (2015) 793-803.
10. M.K.V.Donesa and H.M.Rara, Some gb-seperation axioms in Bi-generalized topological spaces, App. Math. Sci, 9 (22) (2015) 1051-1060.
11. W.Dungthaisong, C.Boonpok and C.Viriyapong, Generalized closed sets in Bigeneralized topological spaces, Int. J. Math. Analysis, 5(24) (2011) 1175-1184.
12. R.Glory Deva Gnanam, $\tau_{1} \tau_{2}-r g^{* *}$-closed sets in Bi-generalized topological spaces, IJMTT, 65(2) (2019) 85-88.
13. R.G.D.Gnanam, Generalized hyper connected space in Bi-generalized topological spaces, IJMTT, 47 (1) (2017) 27-30.
14. T.Indira, $\tau_{1} \tau_{2-}{ }^{\#} \mathrm{~g}$ closed sets in Bi-topological spaces, Annals pure \& Appl. Math, 7 (2) (2014) 27-34.
15. R.Jamuna Rani and M.Anee Fathima, $\mu_{(i, j)}$-pre open sets in Bi-generalized topological spaces, Advance in Math, 9(5) (2020) 2459-2466.
16. C.Janaki and K.Binoy Balan, $\mu-\pi r \alpha$-closed sets in Bi-generalized topological spaces, Int.J. Eng Research and Appl, 4(8) (2014) 51-55.
17. J.C.Kelly, Bi-topological spaces, Pro. London Math. Soc, 13 (1963) 71-89.
18. L.L.L.Lusanta and H.M.Rara, Generalized star $\mu^{(m, n)} \alpha b-c o n t i n u o u s ~ f u n c t i o n ~ i n ~ B i-~$ generalized topological spaces, Int. J. Math. Analysis, 10 (4) (2016) 191-202.
19. L.L.L.Lusanta and H.M.Rara, Generalized star $\mu^{(m, n)} \alpha$ b-seperation axioms in Bi generalized topological spaces, App. Math. Sci, 9 (75) (2015) 3725-3737.
20. W.K.Min, Almost continuity on generalized topological spaces, Acta Math. Hungar, 125 (2009) 121-125.
21. W.K.Min and Y.K.Kim, Quasi generalized open sets and quasi generalized continuity on Bi-generalized topological spaces, Honom. J. Math, 32(4) (2010) 619-624.
22. M.Murugalingam and R.G.D.Gnanam, $\tau_{1} \tau_{2}^{*}$ Bountary set on Bi-generalized topological spaces, Int. J. Math. Sci. Appl, 3 (1) (2013) 141-144.
23. P.Priyatharsini, G.K.Chandrika and A.Parvathi, Semi generalized closed sets in Bigeneralized topological spaces, Internat. J. Math. Archive, 3(1) (2012) 1-7.
24. A.D.Ray and R.Bhowmick, Seperation axioms in Bi-generalized topological spaces, Int. J. Chungcheong. Math. Soc, 27 (3) (2014) 363-378.
25. S.Sampath Kumar, On a decomposition of pairwise continuity, Bull. Cal. Math. Soc, 89 (1997) 441-446.
26. A.E.Samuel, D.Balan, ij-Generalized delta semi closed sets, Annals pure \& Appl. Math, 10 (2) (2015) 255-266.
27. D.Sasikala and I.Arockiarani, Decomposition of J-closed sets in Bi-generalized topological spaces, Int. J. Math. Sci, 1(7) (2012) 11-18.
28. M.Sheik John, P.Sundaram, g^{*}-closed sets in Bi-topological spaces, Indian J. Pure. App. Math, 35 (1) (2004) 71-80.

Study of Open Sets in Bi-generalized Topological Spaces

29. S.Sompong, Dense sets on Bi-generalized topological spaces, Int. J. Math. Analysis, 7 (21) (2013) 999-1003.
30. N.B.Suwarnlatha, A.D.Mandakini, Generalized minimal closed sets in Bi-topological spaces, Annals pure \& Appl. Math, 14 (2) (2017) 269-276.
31. P.Torton, C.Viriyapong and C.Boonpok, Some seperation axioms in Bi-generalized topological spaces, Int. J. Math. Analysis, 6 (56) (2012) 2789-2796.
32. A.H.Zakari, Almost homeomorphism in Bi-generalized topological spaces, Int. J. Math. Forum, 8 (38) (2013) 1853-1861.
