Annals of Pure and Applied Mathematics Vol. 26, No. 2, 2022, 101-113 ISSN: 2279-087X (P), 2279-0888(online) Published on 3 November 2022 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v26n2a06886

Annals of Pure and Applied <u>Mathematics</u>

Study of Open Sets in Bi-generalized Topological Spaces

R. Rishanthini^{1^*} and **P.** Elango²

^{1,2}Department of Mathematics, Faculty of Science, Eastern University, Sri Lanka ²Email: <u>elangop@esn.ac.lk</u> *Corresponding author. ¹Email: rishanthini119@gmail.com

Received 30 September 2022; accepted 1 November 2022

Abstract. In this paper, we study all kinds of open sets introduced in bi-generalized topological spaces, namely, $\mu_{(m,n)}$ -semi open sets, $\mu_{(m,n)}$ -pre open sets, $\mu_{(m,n)}$ -regular open sets, $\mu_{(m,n)}$ - α -open sets, $\mu_{(m,n)}$ - β -open sets, $\bar{\mu}_{(m,n)}$ -open sets, (m, n)-open sets and quasi generalized open sets and investigate some of their properties. We choose $\mu_{(m,n)}$ -semi open set as the bases open set for our investigation and compare the relationships between the $\mu_{(m,n)}$ -semi open sets and other open sets in this bi-generalized topological spaces.

Keywords: Generalized topological spaces, Bi-generalized topological spaces, Open sets.

AMS Mathematics Subject Classification (2010): 54A05, 54A10, 54E55

1. Introduction

Kelly [17] initiated the concept of bi-topological spaces (briefly, *Bi-TS*) in 1963 and thereafter many mathematicians generalized the topological ideas into bi-topological settings. Some open and closed sets in *Bi-TS* were defined by several authors [1,14,25,26,28,30]. Császár [7] introduced the concept of generalized neighborhood systems and generalized topological spaces (briefly, *GTS*). Research in *GTS* is still a hot area of research in which researchers introduced several types of continuity, compactness, homogeneity, and sets are extended from ordinary topological spaces to include *GTS*. As a generalization of *Bi-TS*, Boonpok [4] introduced the concept of bi-generalized topological spaces (briefly, *Bi-GTS*) and studied (*m*, *n*)-closed sets and (*m*, *n*)-open sets in *Bi-GTS*. Also, several authors [3,8,11,12,16,23,27] further extended the concept of various types of closed sets in *Bi-GTS*.

In the literature, different types of open sets in *Bi-GTS* were defined by several authors [5,15,21]. Murugalingam and Gnanam [22] introduced the boundary set on *Bi-GTS*. Further, Sompong [29] defined the dense set in *Bi-GTS*. Zakari [32] defined the almost homeomorphism on *Bi-GTS*. Also, the authors [9,18] introduced the various types of continuous functions in *Bi-GTS*. Gnanam [13] introduced a new kind of connectedness in *Bi-GTS*. In this *Bi-GTS*, separation axioms were defined by several authors [10,19,24,31]. Recently, Ghour [2] introduced certain covering properties and minimal sets in *Bi-GTS*.

In this paper, we studied all kind of open sets introduced in *Bi-GTS* namely, $\mu_{(m,n)}$ semi open sets, $\mu_{(m,n)}$ -pre open sets, $\mu_{(m,n)}$ -regular open sets, $\mu_{(m,n)}$ - α -open sets, $\mu_{(m,n)}$ - β -open sets, $\bar{\mu}_{(m,n)}$ -open sets, (m, n)-open sets and quasi generalized open sets and
investigated some of their properties. Also we investigated the relationships between the $\mu_{(m,n)}$ --semi open sets and other open sets in *Bi-GTS*.

2. Preliminaries

Definition 2.1. [7] Let *X* be a non-empty set and let we denote $\mathcal{P}(X)$ be the power set of *X*. A subset μ of $\mathcal{P}(X)$ is said to be a generalized topology (briefly, *GT*) on *X*, if it satisfying the following axioms:

(1) $\emptyset \in \mu$.

(2) An arbitrary union of elements of μ belongs to μ .

If μ is a *GT* on *X*, then (*X*, μ) is called a generalized topological space (briefly, *GTS*). The elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets.

Definition 2.2. [6] Let (X, μ) be a *GTS* and $A \subseteq X$. Then, the μ -interior of A, denoted by $int_{\mu}(A)$, is the union of all μ -open sets contained in A. The μ -closure of A, denoted by $cl_{\mu}(A)$, is the intersection of all μ -closed sets containing A.

Theorem 2.1. [6] Let (X, μ) be a *GTS* and $A \subseteq X$. Then, (1) $cl_{\mu}(A) = X - int_{\mu}(X - A)$. (2) $int_{\mu}(A) = X - cl_{\mu}(X - A)$.

Proposition 2.1. [20] Let (X, μ) be a *GTS* and *A*, $B \subseteq X$. Then, the following properties holds:

(1) cl_µ(X - A) = X - int_µ(A) and int_µ(X - A) = X - cl_µ(A).
 (2) If (X - A) ∈ µ, then cl_µ(A) = A and if A ∈ µ, then int_µ(A) = A.
 (3) If A ⊆ B, then cl_µ(A) ⊆ cl_µ(B) and int_µ(A) ⊆ int_µ(B).
 (4) If A ⊆ cl_µ(A) and int_µ(A) ⊆ A.
 (5) cl_µ(cl_µ(A)) = cl_µ(A) and int_µ(int_µ(A)) = int_µ(A).

Definition 2.3. [6] A subset *A* of a *GTS* (*X*, μ) is called (1) μ -regular open if $A = int_{\mu}(cl_{\mu}(A))$. (2) μ -pre open if $A \subseteq int_{\mu}(cl_{\mu}(A))$. (3) μ -semi open if $A \subseteq cl_{\mu}(int_{\mu}(A))$. (4) μ - α -open if $A \subseteq int_{\mu}(cl_{\mu}(int_{\mu}(A)))$. (5) μ - β -open if $A \subseteq cl_{\mu}(int_{\mu}(cl_{\mu}(A)))$.

Definition 2.4. [4] Let *X* be a non-empty set and μ_1 , μ_2 be generalized topologies on *X*. The triple (*X*, μ_1 , μ_2) is said to be Bi-generalized topological space (briefly, *Bi-GTS*). The elements of μ_m are called μ_m -open sets, where $m \in \{1,2\}$.

Definition 2.5. [4] Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, μ_m -interior of *A* with respect to μ_m , denoted by $int_{\mu_m}(A)$, is the union of all μ_m -open sets contained in *A*. The μ_m -closure of *A* with respect to μ_m , denoted by $cl_{\mu_m}(A)$, is the intersection of all μ_m -closed sets containing *A*.

3. Open sets in bi-generalized topological spaces 3.1. $\mu_{(m,n)}$ -semi open sets

Definition 3.1. [4] Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a $\mu_{(m,n)}$ -semi open set if $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$, where $m, n \in \{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m,n)}$ -semi open sets is denoted by $\sigma_{(m,n)}(\mu)$.

Example 3.1. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\mu_2 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then, $\sigma_{(1,2)}(\mu) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$.

Lemma 3.1. If *A* and *B* are $\mu_{(m,n)}$ -semi open sets, then $A \cup B$ is a $\mu_{(m,n)}$ -semi open set. **Proof:** Suppose that *A* and *B* are $\mu_{(m,n)}$ -semi open sets. Then, $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$ and $B \subseteq cl_{\mu_n}(int_{\mu_m}(B))$. Since $cl_{\mu_n}(int_{\mu_m}(A)) \subseteq cl_{\mu_n}(int_{\mu_m}(A \cup B))$ and $cl_{\mu_n}(int_{\mu_m}(B)) \subseteq cl_{\mu_n}(int_{\mu_m}(A \cup B))$, we get $A \subseteq cl_{\mu_n}(int_{\mu_m}(A \cup B))$ and $B \subseteq cl_{\mu_n}(int_{\mu_m}(A \cup B))$. Therefore, $A \cup B \subseteq cl_{\mu_n}(int_{\mu_m}(A \cup B))$. Thus, $A \cup B$ is a $\mu_{(m,n)}$ -semi open set.

Remark 3.1. If *A* and *B* are $\mu_{(m,n)}$ -semi open sets, then in general, $A \cap B$ need not be a $\mu_{(m,n)}$ -semi open set. This can be seen in the following example:

Example 3.2. Let $X = \{a, b, c, d\}$, $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. If $A = \{a, c\}$, $B = \{b, c\}$, then, $A \cap B = \{c\} \notin \sigma_{(1,2)}(\mu)$.

Proposition 3.1. Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. If *A* is $\mu_{(m,n)}$ -semi open set, then $cl_{\mu_n}(A) = cl_{\mu_n}(int_{\mu_m}(A))$.

Proof: Suppose that *A* is a $\mu_{(m,n)}$ -semi open set. Then, $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. This implies that $cl_{\mu_n}(A) \subseteq cl_{\mu_n}(int_{\mu_m}(A)) = cl_{\mu_n}(int_{\mu_m}(A))$ and so $cl_{\mu_n}(A) \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Since $int_{\mu_m}(A) \subseteq A$, we get $cl_{\mu_n}(int_{\mu_m}(A)) \subseteq cl_{\mu_n}(A)$. Thus, $cl_{\mu_n}(A) = cl_{\mu_n}(int_{\mu_m}(A))$.

Theorem 3.3. Let (X, μ_1, μ_2) be a *Bi-GTS*. If $A \subseteq B \subseteq cl_{\mu_n}(A)$ and *A* is $\mu_{(m,n)}$ - semi open set, then *B* is a $\mu_{(m,n)}$ -semi open set.

Proof: Suppose that *A* is a $\mu_{(m,n)}$ -semi open set. Then, by Proposition 3.1, we get $cl_{\mu_n}(A) = cl_{\mu_n}(int_{\mu_m}(A))$. So $B \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Since $A \subseteq B$, we get $cl_{\mu_n}(int_{\mu_m}(A)) \subseteq cl_{\mu_n}(int_{\mu_m}(B))$. Therefore, $B \subseteq cl_{\mu_n}(int_{\mu_m}(B))$. Thus, B is $\mu_{(m,n)}$ -semi open set.

Proposition 3.2. Every μ_m -open set in (X, μ_m) is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2) . **Proof:** Suppose that A is a μ_m -open set. Then, $A = int_{\mu_m}(A)$. Since $A \subseteq cl_{\mu_n}(A) = cl_{\mu_n}(int_{\mu_m}(A))$, we get $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Therefore, A is $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.4. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{c\}, X\}$. Where $\{a, b\}, X$ are $\mu_{(1,2)}$ -semi open sets, but these are not μ_1 -open sets in (X, μ_1) .

3.2. $\mu_{(m,n)}$ -pre open set

Definition 3.2. ([4,15]) Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a $\mu_{(m,n)}$ -pre open set if $A \subseteq int_{\mu_m}(cl_{\mu_n}(A))$, where $m, n \in \{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m,n)}$ -pre open sets is denoted by $\pi_{(m,n)}(\mu)$.

Example 3.5. Let $X = \{a, b, c, d\}, \mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. Then, $\pi_{(1,2)}(\mu) = \{\emptyset, \{a\}, \{b\}, \{a, c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Lemma 3.2. If *A* and *B* are $\mu_{(m,n)}$ -pre open sets, then $A \cup B$ is $\mu_{(m,n)}$ -pre open set. **Proof:** Suppose that *A* and *B* are $\mu_{(m,n)}$ -pre open sets. Then, $A \subseteq int_{\mu_m}(cl_{\mu_n}(A))$ and $B \subseteq int_{\mu_m}(cl_{\mu_n}(B))$. Since $int_{\mu_m}(cl_{\mu_n}(A)) \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$ and $int_{\mu_m}(cl_{\mu_n}(B)) \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$, we get $A \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$ and $B \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$. Therefore, $A \cup B \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$. Thus, $A \cup B$ is a $\mu_{(m,n)}$ -pre open set.

Remark 3.2. If *A* and *B* are $\mu_{(m,n)}$ -pre open sets, then in general, $A \cap B$ need not be a $\mu_{(m,n)}$ -pre open set. This can be seen in the following example:

Example 3.6. Let $X = \{a, b, c, d\}$, $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{a, d\}, \{a, b, d\}\}$. If $A = \{a, c\}, B = \{b, c\}$, then, $A \cap B = \{c\} \notin \pi_{(1,2)}(\mu)$.

Proposition 3.3. Every μ_m -open set in (X, μ_m) is a $\mu_{(m,n)}$ -pre open set in (X, μ_1, μ_2) . **Proof:** Suppose that A is a μ_m -open set. Then, $A = int_{\mu_m}(A)$. Since $A \subseteq cl_{\mu_n}(A)$, we get $int_{\mu_m}(A) \subseteq int_{\mu_m}(cl_{\mu_n}(A))$. Therefore, $A \subseteq int_{\mu_m}(cl_{\mu_n}(A))$. Thus, A is a $\mu_{(m,n)}$ -pre open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.7. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$ where $\{b\}, \{c\}, \{b, c\}$ are $\mu_{(1,2)}$ -pre open sets, but these are not μ_1 -open sets in (X, μ_1) .

3.3. $\mu_{(m,n)}$ -regular open sets

Definition 3.3. [4] Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a $\mu_{(m,n)}$ -regular open set if $A = int_{\mu_m}(cl_{\mu_n}(A))$, where $m, n \in \{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m,n)}$ -regular open sets is denoted by $\gamma_{(m,n)}(\mu)$.

Example 3.8. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$. *Then*, $\gamma_{(1,2)}(\mu) = \{\emptyset, \{a, b\}, \{a, c\}, X\}$.

Lemma 3.3. If A and B are $\mu_{(m,n)}$ -regular open sets, then $A \cup B$ is a $\mu_{(m,n)}$ -regular open set.

Proof: Suppose that *A* and *B* are $\mu_{(m,n)}$ -regular open sets. Then, $A = int_{\mu_m}(cl_{\mu_n}(A))$ and $B = int_{\mu_m}(cl_{\mu_n}(B))$. Since $int_{\mu_m}(cl_{\mu_n}(A)) \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$ and $int_{\mu_m}(cl_{\mu_n}(B)) \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$, we get $A \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$ and $B \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$. Therefore, $A \cup B \subseteq int_{\mu_m}(cl_{\mu_n}(A \cup B))$. And it is clear that $int_{\mu_m}(cl_{\mu_n}(A \cup B)) \subseteq A \cup B$. Therefore, $A \cup B = int_{\mu_m}(cl_{\mu_n}(A \cup B))$. Thus, $A \cup B$ is a $\mu_{(m,n)}$ -regular open set.

Remark 3.3. If *A* and *B* are $\mu_{(m,n)}$ -regular open sets, then in general, $A \cap B$ need not be a $\mu_{(m,n)}$ -regular open set. This can be seen in the following example:

Example 3.9. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$. If $A = \{a, b\}, B = \{a, c\}, then, A \cap B = \{a\} \notin \gamma_{(1,2)}(\mu)$.

Proposition 3.4. let A be a μ_n -closed set in (X, μ_n) . Then, A is a $\mu_{(m,n)}$ -regular open set in (X, μ_1, μ_2) if and only if A is a μ_m -open set in (X, μ_m) .

Proof: Suppose that *A* is a $\mu_{(m,n)}$ -regular open set. Then, $A = int_{\mu_m}(cl_{\mu_n}(A))$. Since *A* is μ_n -closed set, we get $cl_{\mu_n}(A) = A$. Therefore, $A = int_{\mu_m}(A)$. Hence *A* is a μ_m -open set in (X, μ_m) .

Conversely, suppose that A is a μ_m -open set. Then, $A = int_{\mu_m}(A)$. Since A is μ_n -closed set, we get $A = cl_{\mu_n}(A)$. Therefore, $A = int_{\mu_m}(cl_{\mu_n}(A))$. Hence A is a $\mu_{(m,n)}$ -regular open set.

3.4. $\mu_{(m,n)}$ - α -open sets

Definition 3.4. [4] Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a $\mu_{(m,n)}$ - α -open set if $A \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A)))$, where $m, n \in \{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m,n)}$ - α -open sets is denoted by $\alpha_{(m,n)}(\mu)$.

Example 3.10. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then, $\alpha_{(1,2)}(\mu) = \{\emptyset, \{a, b\}, \{a, c\}, X\}$.

Lemma 3.4. If A and B are $\mu_{(m,n)}$ - α -open sets, then $A \cup B$ is a $\mu_{(m,n)}$ - α -open set.

Proof: Suppose that *A* and *B* are $\mu_{(m,n)}$ - α -open sets. Then, $A \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A)))$ and $B \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(B)))$. Since $int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A))) \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A \cup B)))$ and $int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(B))) \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A \cup B)))$, we get $A \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A \cup B)))$ and $B \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A \cup B)))$. Therefore, $A \cup B \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A \cup B)))$. Thus, $A \cup B$ is a $\mu_{(m,n)}$ - α -open set.

Remark 3.4. If *A* and *B* are $\mu_{(m,n)}$ - α -open sets, then in general, $A \cap B$ need not be a $\mu_{(m,n)}$ - α -open set. This can be seen in the following example:

Example 3.11. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. If $A = \{a, b\}, B = \{a, c\}$, then, $A \cap B = \{a\} \notin \alpha_{(1,2)}(\mu)$.

Proposition 3.5. Every μ_m -open set in (X, μ_m) is a $\mu_{(m,n)}$ - α -open set in (X, μ_1, μ_2) . **Proof:** Suppose that A is a μ_m -open set. Then, $A = int_{\mu_m}(A)$. Since $A \subseteq cl_{\mu_n}(A) = cl_{\mu_n}(int_{\mu_m}(A))$, we get $int_{\mu_m}(A) \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A)))$. Therefore, $A \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A)))$. Hence A is a $\mu_{(m,n)}$ - α -open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.12. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{a, c\}, X\}$. Then, $\alpha_{(1,2)}(\mu) = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Therefore, $\{a, c\}$ is $\mu_{(1,2)}-\alpha$ -open set, but this is not a μ_1 -open set in (X, μ_1) .

3.5. $\mu_{(m,n)}$ - β -open sets

Definition 3.5. [4] Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a $\mu_{(m,n)}$ - β -open set if $A \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A)))$, where $m, n \in \{1,2\}$ and $m \neq n$. The collection of all $\mu_{(m,n)}$ - β -open sets is denoted by $\beta_{(m,n)}(\mu)$.

Example 3.13. Let $X = \{a, b, c, d\}, \mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. Then, $\beta_{(1,2)}(\mu) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Lemma 3.5. If *A* and *B* are $\mu_{(m,n)}$ - β -open sets, then $A \cup B$ is a $\mu_{(m,n)}$ - β -open set. **Proof:** Suppose that *A* and *B* are $\mu_{(m,n)}$ - β -open sets. Then, $A \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A)))$ and $B \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(B)))$. Since $cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A))) \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A \cup B)))$ and $cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(B))) \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A \cup B)))$, we get $A \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A \cup B)))$ and $B \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A \cup B)))$. Therefore, $A \cup B \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A \cup B)))$. Thus, $A \cup B$ is a $\mu_{(m,n)}$ - β -open set.

Remark 3.5. If *A* and *B* are $\mu_{(m,n)}$ - β -open sets, then in general, $A \cap B$ need not be a $\mu_{(m,n)}$ - β -open set. This can be seen in the following example:

Example 3.14. Let $X = \{a, b, c, d\}, \mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. If $A = \{a, c\}, B = \{b, c\}$, then, $A \cap B = \{c\} \notin \beta_{(1,2)}(\mu)$.

Proposition 3.6. Every μ_m -open set in (X, μ_m) is a $\mu_{(m,n)}$ - β -open set in (X, μ_1, μ_2) . **Proof:** Suppose that *A* is a μ_m -open set. Then, $A = int_{\mu_m}(A)$. Since $A \subseteq cl_{\mu_n}(A)$, we get $A = int_{\mu_m}(A) \subseteq int_{\mu_m}(cl_{\mu_n}(A))$, So $cl_{\mu_n}(A) \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A)))$. Therefore, $A \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A)))$. Hence *A* is a $\mu_{(m,n)}$ - β -open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.15. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{c\}, X\}$. Then, $\beta_{(1,2)}(\mu) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Therefore, $\{b\}, \{a, b\}, \{b, c\}, X$ are $\mu_{(1,2)}$ - β -open sets, but these are not μ_1 -open sets in (X, μ_1) .

3.6. $\overline{\mu}_{(m,n)}$ -open sets

Definition 3.6. [5] Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a $\bar{\mu}_{(m,n)}$ -open set if there exists a μ_m -open set *U* of *X* such that $U \subseteq A \subseteq cl_{s\mu_n}(U)$, where $cl_{s\mu_n}(U)$ is the intersection of all μ_n -semi closed sets containing *U*. That is, the smallest μ_n -semi closed set containing *U*, where $m, n \in \{1,2\}$ and $m \neq n$.

Example 3.16. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{c\}, X\}$. Then, $\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b\}, X$ are $\overline{\mu}_{(1,2)}$ -open sets.

Lemma 3.6. If A and B are $\bar{\mu}_{(m,n)}$ -open sets, then $A \cup B$ is $\bar{\mu}_{(m,n)}$ -open set. **Proof:** Suppose that A and B are $\bar{\mu}_{(m,n)}$ -open sets. Then, there exists a μ_m -open set U of X such that $U \subseteq A \subseteq cl_{s\mu_n}(U)$ and $U \subseteq B \subseteq cl_{s\mu_n}(U)$. This implies that $U \subseteq A \cup B \subseteq cl_{s\mu_n}(U)$. Thus, $A \cup B$ is a $\bar{\mu}_{(m,n)}$ -open set.

Remark 3.6. If *A* and *B* are $\overline{\mu}_{(m,n)}$ -open sets, then in general, $A \cap B$ need not be a $\overline{\mu}_{(m,n)}$ -open set. This can be seen in the following example:

Example 3.17. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a, b\}, \{b, c\}, X\}$ and $\mu_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$. If $A = \{a, b\}, B = \{b, c\}$, then, $A \cap B = \{b\} \notin \overline{\mu}_{(1,2)}$ -open set.

Theorem 3.18. Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a $\overline{\mu}_{(m,n)}$ -open set if and only if $A \subseteq cl_{s_{\mu_n}}(int_{\mu_m}(A))$.

Proof: Let A be a $\bar{\mu}_{(m,n)}$ -open set. Then, there exists a μ_m -open set U such that $U \subseteq A \subseteq cl_{s_{\mu_n}}(U)$. Since U is μ_m -open set, we get $U = int_{\mu_m}(U) \subseteq int_{\mu_m}(A)$. This implies that $A \subseteq cl_{s_{\mu_n}}(U) \subseteq cl_{s_{\mu_n}}(int_{\mu_m}(A))$. Thus, $A \subseteq cl_{s_{\mu_n}}(int_{\mu_m}(A))$.

Conversely, let $A \subseteq cl_{s_{\mu_n}}(int_{\mu_m}(A))$ and take $U = int_{\mu_m}(A)$. Then, $int_{\mu_m}(A) \subseteq A \subseteq cl_{s_{\mu_n}}(int_{\mu_m}(A))$. Hence A is $\overline{\mu}_{(m,n)}$ -open set.

Proposition 3.7. Every μ_m -open set in (X, μ_m) is a $\bar{\mu}_{(m,n)}$ -open set in (X, μ_1, μ_2) . **Proof:** Suppose that *A* is a μ_m -open set. Then, $A = int_{\mu_m}(A)$. Since $A \subseteq cl_{s_{\mu_n}}(A)$, we get $A \subseteq cl_{s_{\mu_n}}(A)$. Therefore, by Theorem 3.18, we get *A* is $\bar{\mu}_{(m,n)}$ -open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 3.19. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{a\}, X\}$. Then, $\{a, b\}, X$ are $\overline{\mu}_{(1,2)}$ -open sets, but these are not μ_1 -open sets in (X, μ_1) .

3.7. (*m*, *n*)-open sets

Definition 3.7. [4] Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a (m, n)-open set if $A = int_{\mu_m}(int_{\mu_n}(A))$, where $m, n \in \{1,2\}$ and $m \neq n$.

Example 3.20. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{b\}, \{a, b\}\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{c\}, X\}$. Then, (1, 2)-open set is $\{a, b\}$.

Lemma 3.7. If A and B are (m, n)-open sets, then $A \cup B$ is a (m, n)-open set.

Proof: Suppose that *A* and *B* are (m, n)-open sets. Then, $A = int_{\mu_m}(int_{\mu_n}(A))$ and $B = int_{\mu_m}(int_{\mu_n}(B))$. Since $int_{\mu_m}(int_{\mu_n}(A)) \subseteq int_{\mu_m}(int_{\mu_n}(A \cup B))$ and $int_{\mu_m}(int_{\mu_n}(B)) \subseteq int_{\mu_m}(int_{\mu_n}(A \cup B))$, we get $A \subseteq int_{\mu_m}(int_{\mu_n}(A \cup B))$ and $B \subseteq int_{\mu_m}(int_{\mu_n}(A \cup B))$. Then, $A \cup B \subseteq int_{\mu_m}(int_{\mu_n}(A \cup B))$. Since $int_{\mu_n}(A \cup B) \subseteq A \cup B$, we get $int_{\mu_m}(int_{\mu_n}(A \cup B))$. Then, $A \cup B \subseteq int_{\mu_m}(int_{\mu_n}(A \cup B))$. Since $int_{\mu_n}(A \cup B) \subseteq A \cup B$, we get $int_{\mu_m}(int_{\mu_n}(A \cup B)) \subseteq int_{\mu_m}(A \cup B) \subseteq A \cup B$. Therefore, $A \cup B = int_{\mu_m}(int_{\mu_n}(A \cup B))$. Thus, $A \cup B$ is a (m, n)-open set.

Remark 3.7. If A and B are (m, n)-open sets, then in general, $A \cap B$ need not be a (m, n)-open set. This can be seen in the following example:

Example 3.21. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a, b\}, \{b, c\}, X\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{b, c\}, X\}$. If $A = \{a, b\}, B = \{b, c\}$, then, $A \cap B = \{b\} \notin (1, 2)$ -open set.

Proposition 3.8. let *A* be a subset of a *Bi-GTS* (*X*, μ_1 , μ_2) and *A* is μ_n -open set in (*X*, μ_n). Then, *A* is a (*m*, *n*)-open set in (*X*, μ_1 , μ_2) if and only if *A* is a μ_m -open set in (*X*, μ_m). **Proof:** Suppose that *A* is a (*m*, *n*)-open set. Then, $A = int_{\mu_m}(int_{\mu_n}(A))$. Since *A* is μ_n -open set, we get $A = int_{\mu_n}(A)$. This implies that $A = int_{\mu_m}(A)$. Hence *A* is a μ_m -open set in (*X*, μ_m).

Conversely, suppose that A is a μ_m -open set. Then, $A = int_{\mu_m}(A)$. Since A is μ_n -open set, we get $A = int_{\mu_n}(A)$. This implies that $A = int_{\mu_m}(int_{\mu_n}(A))$. Hence A is a (m, n)-open set.

3.8. Quasi generalized open sets

Definition 3.8. [21] Let (X, μ_1, μ_2) be a *Bi-GTS* and *A* be a subset of *X*. Then, *A* is said to be a quasi generalized open set (briefly, q_{μ} -open set) if for every $x \in A$, then there exist a μ_1 -open set *U* such that $x \in U \subseteq A$, or a μ_2 -open set *V* such that $x \in V \subseteq A$.

Example 3.22. Let $X = \{a, b, c, d\}$, $\mu_1 = \{\emptyset, \{a, b\}\}$ and $\mu_2 = \{\emptyset, \{a, c\}\}$. Then, q_{μ} -open set is $\{a, b, c\}$.

Lemma 3.8. If A and B are q_{μ} -open sets, then $A \cup B$ is a q_{μ} -open set.

Proof: Suppose that *A* and *B* are q_{μ} -open sets. Then, for every $x \in A$ and $x \in B$, then there exist a μ_1 -open set *U* such that $x \in U \subseteq A$ and $x \in U \subseteq B$, or a μ_2 -open set *V* such that $x \in U \subseteq A$ and $x \in U \subseteq B$, or a μ_2 -open set *V* such that $x \in U \subseteq A$ and $x \in U \subseteq B$, or a μ_2 -open set *V* such that $x \in U \subseteq A$ and $x \in U \subseteq B$, or a μ_2 -open set *V* such that $x \in U \subseteq A$ and $x \in U \subseteq B$.

 $V \subseteq A$ and $x \in V \subseteq B$. This implies that for every $x \in A \cup B$, then there exist a μ_1 -open set U such that $x \in U \subseteq A \cup B$, or a μ_2 -open set V such that $x \in V \subseteq A \cup B$. Thus, $A \cup B$ is a q_u -open set.

Remark 3.8. If A and B are q_{μ} -open sets, then in general, $A \cap B$ need not be a q_{μ} -open set. This can be seen in the following example:

Example 3.23. Let $X = \{a, b, c, d\}, \mu_1 = \{\emptyset, \{d\}, \{a, b\}, \{a, b, d\}\}$ and $\mu_2 = \{\emptyset, \{c\}, \{a, d\}, \{a, c, d\}\}$. If $A = \{a, b, c\}, B = \{a, c, d\}$, then, $A \cap B = \{a, c\} \notin q_u$ -open set.

4. Comparison of open sets in bi-generalized topological spaces

We choose $\mu_{(m,n)}$ -semi open set as the base open set for the comparison of all open sets in the *Bi-GTS*.

Proposition 4.1. Every $\mu_{(m,n)}$ - α -open set is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2) . **Proof:** Let A be a $\mu_{(m,n)}$ - α -open set. Then, $A \subseteq int_{\mu_m}(cl_{\mu_n}(int_{\mu_m}(A)))$. Take $B = cl_{\mu_n}(int_{\mu_m}(A))$. Let $int_{\mu_m}(B)$ be the union of all open sets contained in B, that is, $int_{\mu_m}(B) = \bigcup_{i \in I} G_i$, where $G_i \subseteq B$. Then, $A \subseteq \bigcup_{i \in I} G_i$, where $G_i \subseteq B$. This implies that $A \subseteq B$. Therefore, $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Hence A is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.1. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then, $\{a, b\}, X$ are $\mu_{(1,2)}$ -semi open sets, but these are not $\mu_{(1,2)}$ - α -open sets in (X, μ_1, μ_2) .

Proposition 4.2. Every $\mu_{(m,n)}$ -semi open set is a $\mu_{(m,n)}$ - β -open set in (X, μ_1, μ_2) . **Proof:** Let A be a $\mu_{(m,n)}$ -semi open set. Then, $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Since $A \subseteq cl_{\mu_n}(A)$, we get $cl_{\mu_n}(int_{\mu_m}(A)) \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A)))$. This implies that $A \subseteq cl_{\mu_n}(int_{\mu_m}(cl_{\mu_n}(A)))$. Hence A is $\mu_{(m,n)}$ - β -open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.2. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{c\}, \{a, b\}, X\}$. Then, {b}, {b, c} are $\mu_{(1,2)}$ - β -open sets, but these are not $\mu_{(1,2)}$ -semi open sets in (X, μ_1, μ_2) .

Proposition 4.3. [5] Every $\bar{\mu}_{(m,n)}$ -open set is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.3. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{c\}, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$. Then, $\{a, c\}$ is a $\mu_{(1,2)}$ -semi open set, but these is not $a \bar{\mu}_{(1,2)}$ -open set in (X, μ_1, μ_2) .

Proposition 4.4. let A be a μ_n -closed set of a Bi-GTS (X, μ_1, μ_2) . If A is $\mu_{(m,n)}$ -pre open set in (X, μ_1, μ_2) , then A is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2) .

Proof: Let *A* be a $\mu_{(m,n)}$ -pre open set. Then, $A \subseteq int_{\mu_m}(cl_{\mu_n}(A))$. Since *A* is μ_n -closed set, we get $A = cl_{\mu_n}(A)$. This implies that $A \subseteq int_{\mu_m}(A)$ and so $cl_{\mu_n}(A) \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Therefore, $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Hence *A* is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.4. Let $X = \{a, b, c\}$, $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{c\}, \{a, b\}, X\}$ and also $\{a, b\}$, X are μ_2 -closed sets. Then, $\{a, b\}$, X are $\mu_{(1,2)}$ -semi open sets in (X, μ_1, μ_2) , but these are not $\mu_{(1,2)}$ -pre open sets in (X, μ_1, μ_2) .

Proposition 4.5. let A be a μ_n -closed set of a Bi-GTS (X, μ_1, μ_2). If A is a $\mu_{(m,n)}$ -regular open set in (X, μ_1, μ_2), then A is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2).

Proof: Let *A* be a $\mu_{(m,n)}$ -regular open set. Then, $A = int_{\mu_m}(cl_{\mu_n}(A))$. Since *A* is μ_n -closed set, we get $A = cl_{\mu_n}(A)$. This implies that $A = int_{\mu_m}(A)$. Since $A \subseteq cl_{\mu_n}(A)$, we get $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Therefore, $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Hence *A* is a $\mu_{(m,n)}$ -semi open set in (*X*, μ_1, μ_2).

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.5. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{c\}, \{a, b\}, X\}$ and also $\{a, b\}, X$ are μ_2 -closed sets. Then, $\{a, b\}, X$ are $\mu_{(1,2)}$ -semi open sets in (X, μ_1, μ_2) , but these are not $\mu_{(1,2)}$ -regular open sets in (X, μ_1, μ_2) .

Proposition 4.6. let A be a μ_n -open set of a Bi-GTS (X, μ_1, μ_2). If A is a (m, n)-open set in (X, μ_1, μ_2), then A is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2).

Proof: Let *A* be a (m, n)-open set in (X, μ_1, μ_2) . Then, $A = int_{\mu_m}(int_{\mu_n}(A))$. Since *A* is μ_n open set, we get $A = int_{\mu_n}(A)$. This implies that $A = int_{\mu_m}(A)$. Since $A \subseteq cl_{\mu_n}(A)$, we get $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Therefore, $A \subseteq cl_{\mu_n}(int_{\mu_m}(A))$. Hence *A* is a $\mu_{(m,n)}$ -semi open set in (X, μ_1, μ_2) .

The converse of the above proposition need not be true in general. This can be seen in the following example:

Example 4.6. Let $X = \{a, b, c\}, \mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mu_2 = \{\emptyset, \{c\}, \{a, b\}, \{a, c\}, X\}$ and also $\{a, b\}, X$ are μ_2 -open sets. Then, $\{a, b\}, X$ are $\mu_{(1,2)}$ -semi open sets in (X, μ_1, μ_2) , but these are not (1,2)-open sets in (X, μ_1, μ_2) .

Since the quasi generalized open set is defined by μ_1 -open set or μ_2 -open set. So this cannot be compared with $\mu_{(m,n)}$ -semi open set.

Figure 4.1: Relationships between the $\mu_{(m,n)}$ -semi open set and other open sets in *Bi*-*GTS*.

5. Conclusion

In this paper, we studied all kind of open sets in *Bi-GTS* namely, $\mu_{(m,n)}$ -semi open sets, $\mu_{(m,n)}$ -pre open sets, $\mu_{(m,n)}$ -regular open sets, $\mu_{(m,n)}$ - α -open sets, $\mu_{(m,n)}$ - β -open sets, $\bar{\mu}_{(m,n)}$ -open sets, (m, n)-open sets and quasi generalized open sets and investigated some of the properties of these open sets. Also we compared the relationships between the $\mu_{(m,n)}$ -semi open set and other open sets in *Bi-GTS*.

Acknowledgments. The authors acknowledge the reviewers for their valuable comments.

Conflict of interest. The authors declare that they have no conflict of interest.

Authors' Contributions. All the authors contributed equally to this work.

REFERENCES

- H.M.Abu Donia, M.A.Abd Allah, A.S.Nawar, Generalized φ*-closed sets in Bitopological spaces, *Jou. Egyptain Math. Society*, 23 (2015) 527-534.
- S.AI Ghour and A.Alhorani, On certain covering properties and minimal sets of Bigeneralized topological spaces, *Symmetry*, 12 (2020) 1145.
- 3. J.J.Baculta and H.M.Rara, Regular generalized star *b*-closed sets in Bi-generalized topological spaces, *App. Math. Sci*, 9(15) (2015) 703-711.
- 4. C.Boonpok, Weakly open functions in Bi-generalized topological spaces, *Int. J. Math. Analysis*, 4(18) (2010) 891-897.
- 5. D.M.M.Castellano and J.B.Nalzaro, $\bar{\mu}_{(m,n)}$ -open and closed sets in Bi-generalized topological spaces, *Int. J. Sci. Research*, 8(7) (2019) 1218-1220.
- Á.Császár, Generalized open sets in generalized topologies, *Acta Math. Hungar*, 106 (2005) 53-66.

- Á.Császár, Generalized topology, generalized continuity, Acta Math.Hungar, 96 (2002) 351-357.
- 8. A.Deb Ray and R.Bhowmick, On $g_{(i,j)}$ -closed sets in Bi-generalized topological spaces, *Bol. Soc. Paran. Math*, 35(2) (2017) 59-67.
- 9. M.K.V.Donesa and H.M.Rara, Generalized $\mu^{(m,n)}$ -b-continuous function in Bigeneralized topological spaces, *Int. J. Math. Analysis*, 9 (16) (2015) 793-803.
- 10. M.K.V.Donesa and H.M.Rara, Some gb-seperation axioms in Bi-generalized topological spaces, *App. Math. Sci*, 9 (22) (2015) 1051-1060.
- 11. W.Dungthaisong, C.Boonpok and C.Viriyapong, Generalized closed sets in Bigeneralized topological spaces, *Int. J. Math. Analysis*, 5(24) (2011) 1175-1184.
- 12. R.Glory Deva Gnanam, $\tau_1 \tau_2 rg^{**}$ -closed sets in Bi-generalized topological spaces, *IJMTT*, 65(2) (2019) 85-88.
- 13. R.G.D.Gnanam, Generalized hyper connected space in Bi-generalized topological spaces, *IJMTT*, 47 (1) (2017) 27-30.
- 14. T.Indira, $\tau_1 \tau_2$ [#]g closed sets in Bi-topological spaces, *Annals pure & Appl. Math*, 7 (2) (2014) 27-34.
- 15. R.Jamuna Rani and M.Anee Fathima, $\mu_{(i,j)}$ -pre open sets in Bi-generalized topological spaces, *Advance in Math*, 9(5) (2020) 2459-2466.
- 16. C.Janaki and K.Binoy Balan, μ - π r α -closed sets in Bi-generalized topological spaces, Int.J. Eng Research and Appl, 4(8) (2014) 51-55.
- 17. J.C.Kelly, Bi-topological spaces, Pro. London Math. Soc, 13 (1963) 71-89.
- 18. L.L.L.Lusanta and H.M.Rara, Generalized star $\mu^{(m,n)}\alpha$ b-continuous function in Bigeneralized topological spaces, *Int. J. Math. Analysis*, 10 (4) (2016) 191-202.
- 19. L.L.L.Lusanta and H.M.Rara, Generalized star $\mu^{(m,n)}\alpha$ b-seperation axioms in Bigeneralized topological spaces, *App. Math. Sci*, 9 (75) (2015) 3725-3737.
- 20. W.K.Min, Almost continuity on generalized topological spaces, *Acta Math. Hungar*, 125 (2009) 121-125.
- 21. W.K.Min and Y.K.Kim, Quasi generalized open sets and quasi generalized continuity on Bi-generalized topological spaces, *Honom. J. Math*, 32(4) (2010) 619-624.
- 22. M.Murugalingam and R.G.D.Gnanam, $\tau_1 \tau_2^*$ Bountary set on Bi-generalized topological spaces, *Int. J. Math. Sci. Appl*, 3 (1) (2013) 141-144.
- 23. P.Priyatharsini, G.K.Chandrika and A.Parvathi, Semi generalized closed sets in Bigeneralized topological spaces, *Internat. J. Math. Archive*, 3(1) (2012) 1-7.
- 24. A.D.Ray and R.Bhowmick, Seperation axioms in Bi-generalized topological spaces, *Int. J. Chungcheong. Math. Soc*, 27 (3) (2014) 363-378.
- 25. S.Sampath Kumar, On a decomposition of pairwise continuity, *Bull. Cal. Math. Soc*, 89 (1997) 441-446.
- 26. A.E.Samuel, D.Balan, ij-Generalized delta semi closed sets, *Annals pure & Appl. Math*, 10 (2) (2015) 255-266.
- 27. D.Sasikala and I.Arockiarani, Decomposition of *J*-closed sets in Bi-generalized topological spaces, *Int. J. Math. Sci*, 1(7) (2012) 11-18.
- 28. M.Sheik John, P.Sundaram, g*-closed sets in Bi-topological spaces, *Indian J. Pure. App. Math*, 35 (1) (2004) 71-80.

- 29. S.Sompong, Dense sets on Bi-generalized topological spaces, *Int. J. Math. Analysis*, 7 (21) (2013) 999-1003.
- 30. N.B.Suwarnlatha, A.D.Mandakini, Generalized minimal closed sets in Bi-topological spaces, *Annals pure & Appl. Math*, 14 (2) (2017) 269-276.
- 31. P.Torton, C.Viriyapong and C.Boonpok, Some seperation axioms in Bi-generalized topological spaces, *Int. J. Math. Analysis*, 6 (56) (2012) 2789-2796.
- 32. A.H.Zakari, Almost homeomorphism in Bi-generalized topological spaces, *Int. J. Math. Forum*, 8 (38) (2013) 1853-1861.