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Abstract. In this paper, we study all kinds of open sets introduced in bi-generalized 
topological spaces, namely, ���,��-semi open sets, ���,��-pre open sets, ���,��-regular 
open sets, ���,��-�-open sets, ���,��-�-open sets, �̅��,��-open sets, (m, n)-open sets and 
quasi generalized open sets and investigate some of their properties. We choose ���,��-
semi open set as the bases open set for our investigation and compare the relationships 
between the ���,��-semi open sets and other open sets in this bi-generalized topological 
spaces. 
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1. Introduction 
Kelly [17] initiated the concept of bi-topological spaces (briefly, Bi-TS) in 1963 and 
thereafter many mathematicians generalized the topological ideas into bi-topological 
settings. Some open and closed sets in Bi-TS were defined by several authors 
[1,14,25,26,28,30]. Cs
́sz
́r [7] introduced the concept of generalized neighborhood 
systems and generalized topological spaces (briefly, GTS). Research in GTS is still a hot 
area of research in which researchers introduced several types of continuity, compactness, 
homogeneity, and sets are extended from ordinary topological spaces to include GTS. As a 
generalization of Bi-TS, Boonpok [4] introduced the concept of bi-generalized topological 
spaces (briefly, Bi-GTS) and studied (m, n)-closed sets and (m, n)-open sets in Bi-GTS. 
Also, several authors [3,8,11,12,16,23,27] further extended the concept of various types of 
closed sets in Bi-GTS. 
      In the literature, different types of open sets in Bi-GTS were defined by several authors 
[5,15,21]. Murugalingam and Gnanam [22] introduced the boundary set on Bi-GTS. 
Further, Sompong [29] defined the dense set in Bi-GTS. Zakari [32] defined the almost 
homeomorphism on Bi-GTS. Also, the authors [9,18] introduced the various types of 
continuous functions in Bi-GTS. Gnanam [13] introduced a new kind of connectedness in 
Bi-GTS. In this Bi-GTS, separation axioms were defined by several authors [10,19,24,31]. 
Recently, Ghour [2] introduced certain covering properties and minimal sets in Bi-GTS. 
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        In this paper, we studied all kind of open sets introduced in Bi-GTS namely, ���,�)-

semi open sets, �(�,�)-pre open sets, �(�,�)-regular open sets, �(�,�)-�-open sets,  �(�,�)-

�-open sets, �̅(�,�)-open sets, (m, n)-open sets and quasi generalized open sets and 

investigated some of their properties. Also we investigated the relationships between the 
�(�,�)--semi open sets and other open sets in Bi-GTS. 

2. Preliminaries 
Definition 2.1. [7] Let X be a non-empty set and let we denote �(X) be the power set of X. 
A subset � of �(X) is said to be a generalized topology (briefly, GT) on X, if it satisfying 
the following axioms: 
(1) ∅ ∈ �. 
(2) An arbitrary union of elements of � belongs to �. 
 
If � is a GT on X, then (X, �) is called a generalized topological space (briefly, GTS). The 
elements of � are called �-open sets and the complements of �-open sets are called �-
closed sets. 
 
Definition 2.2. [6] Let (X, �) be a GTS and A ⊆ X. Then, the �-interior of A, denoted by 
����(A), is the union of all �-open sets contained in A. The �-closure of A, denoted by 
���(A), is the intersection of all �-closed sets containing A. 
 
Theorem 2.1. [6] Let (X, �) be a GTS and A ⊆ X. Then, 
(1) ���(A) = X - ����(X - A). 
(2) ����(A) = X - ���(X - A). 
 
Proposition 2.1. [20] Let (X, �) be a GTS and A, B ⊆ X. Then, the following properties 
holds: 
(1) ���(X - A) = X - ����(A) and ����(X - A) = X - ���(A). 
(2) If (X - A) ∈ �, then ���(A) = A and if A ∈ �, then ����(A) = A. 
(3) If A ⊆ B, then ��� (A) ⊆ ���(B) and ����(A) ⊆ ����(B). 
(4) If A ⊆ ���(A) and ����(A) ⊆ A. 
(5) ���(���(A)) = ���(A) and ����(����(A)) = ����(A). 
 
Definition 2.3. [6] A subset A of a GTS (X, �) is called 
(1) �-regular open if A = ����(���(A)). 
(2) �-pre open if A ⊆ ����(���(A)). 
(3) �-semi open if A ⊆ ���(����(A)). 
(4) �-�-open if A ⊆ ����(���(����(A))). 
(5) �-�-open if A ⊆ ���(����(���(A))). 
 
Definition 2.4. [4] Let X be a non-empty set and ��, �� be generalized topologies on X. 
The triple (X, ��, ��) is said to be Bi-generalized topological space (briefly, Bi-GTS). 
The elements of �� are called ��-open sets, where m ∈ �1,2�. 
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Definition 2.5. [4] Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, ��-interior 
of A with respect to ��, denoted by �����

(A), is the union of all ��-open sets contained 
in A. The ��-closure of A with respect to ��, denoted by ����

(A), is the intersection of all 
��-closed sets containing A.  
 
3. Open sets in bi-generalized topological spaces 
3.1. ���, )-semi open sets 
Definition 3.1. [4] Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said to 
be a �(�,�)-semi open set if A ⊆ ���!

(�����
(A)), where m, n ∈ �1,2� and m ≠ n. The 

collection of all �(�,�)-semi open sets is denoted by #(�,�)(�). 
Example 3.1. Let X = �
, $, ��, ��= �∅, �
�, �$�, �
, $� � and ��=  �∅, �
�, ���, �
, �� �. 
Then, #(�,�)(�) = �∅, �
�, �$�, �
, $� �. 

Lemma 3.1. If A and B are �(�,�)-semi open sets, then A ∪ B is a �(�,�)-semi open set. 

Proof: Suppose that A and B are �(�,�)-semi open sets. Then, A ⊆ ���!
(�����

(A)) and B 
⊆ ���!

(�����
(B)). Since ���!

(�����
(A)) ⊆ ���!

(�����
(A ∪ B)) and ���!

(�����
(B)) ⊆ 

���!
(�����

(A ∪ B)), we get A ⊆ ���!
(�����

(A ∪ B)) and B ⊆ ���!
(�����

(A ∪ B)). 
Therefore, A ∪ B ⊆ ���!

(�����
(A ∪ B)). Thus, A ∪ B is a �(�,�)-semi open set.  

                  
Remark 3.1. If A and B are �(�,�)-semi open sets, then in general, A ∩ B need not be a 
�(�,�)-semi open set. This can be seen in the following example: 
 
Example 3.2. Let X = {a, b, c, d}, ��= �∅, �
�, �$�, �
, $�, �
, ��, �$, ��, �
, $, �� � and ��=  
�∅, �
�, �$�, �'�, �
, $�, �
, '�, �$, '�, �
, $, '� �. If A = {a, c}, B = {b, c}, then, A ∩ B = {c} 
∉ #(�,�)(�). 
 
Proposition 3.1. Let (X, ��, ��) be a Bi-GTS and A be a subset of X. If A is �(�,�)-semi 

open set, then ���!
(A) = ���!

(�����
(A)). 

Proof: Suppose that A is a �(�,�)-semi open set. Then, A ⊆ ���!
(�����

(A)). This implies 

that ���!
(A) ⊆ ���!

(���!
(�����

(A))) = ���!
(�����

(A)) and so ���!
(A) ⊆ ���!

(�����
(A)). 

Since �����
(A)) ⊆ A, we get ���!

(�����
(A)) ⊆ ���!

(A). Thus, ���!
(A) = ���!

(�����
(A)).          

Theorem 3.3. Let (X, ��, ��)  be a Bi-GTS. If A ⊆ B ⊆ ���!
(A) and A is �(�,�)- semi open 

set, then B is a �(�,�)-semi open set. 
Proof: Suppose that A is a �(�,�)-semi open set. Then, by Proposition 3.1, we get ���!

(A) 
= ���!

(�����
(A)). So B ⊆ ���!

(�����
(A)). Since A ⊆ B, we get ���!

(�����
(A)) ⊆ 

���!
(�����

(B)). Therefore, B ⊆ ���!
(�����

(B)). Thus, B is �(�,�)-semi open set.  
 
Proposition 3.2. Every ��-open set in (X, ��) is a �(�,�)-semi open set in (X, ��, ��). 
Proof: Suppose that A is a ��-open set. Then, A = �����

(A). Since A ⊆ ���!
(A) = 

���!
(�����

(A)), we get A ⊆ ���!
(�����

(A)). Therefore, A is �(�,�)-semi open set in (X, ��, 
��). 
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      The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 3.4. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, �
, $�, ���, ) �. Where 
{a, b}, X are �(�,�)-semi open sets, but these are not ��-open sets in (X, ��). 
 
3.2. �(�, )-pre open set 
Definition 3.2. ([4,15]) Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said 
to be a �(�,�)-pre open set if A ⊆ �����

(���!
(A)), where m, n ∈ �1,2� and m ≠ n. The 

collection of all �(�,�)-pre open sets is denoted by  *(�,�)(�). 
 
Example 3.5. Let X = {a, b, c, d}, ��= �∅, �
�, �$�, �
, $�, �
, ��, �$, ��, �
, $, �� � and  
��= �∅, �
�, �$�, �'�, �
, $�, �
, '�, �$, '�, �
, $, '� � .Then, 
*(�,�)(�)= �∅, �
�, �$�, �
, $�, �
, ��, �$, ��, �
, $, �� �. 
 
Lemma 3.2. If A and B are �(�,�)-pre open sets, then A ∪ B is �(�,�)-pre open set. 
Proof: Suppose that A and B are �(�,�)-pre open sets. Then, A ⊆ �����

(���!
(A)) and B ⊆

�����
(���!

(B)). Since �����
(���!

(A)) ⊆ �����
(���!

(A ∪ B)) and �����
(���!

(B)) ⊆

�����
(���!

(A ∪ B)), we get A ⊆ �����
(���!

(A ∪ B)) and B ⊆ �����
(���!

(A ∪ B)). 
Therefore, A ∪ B ⊆ �����

(���!
(A ∪ B)). Thus, A ∪ B is a �(�,�)-pre open set.  

 
Remark 3.2. If A and B are �(�,�)-pre open sets, then in general, A ∩ B need not be a 
�(�,�)-pre open set. This can be seen in the following example: 
 
Example 3.6. Let X = {a, b, c, d}, ��= �∅, �
�, �$�, �
, $�, �
, ��, �$, ��, �
, $, �� � and ��=  
�∅, �
�, �$�, �'�, �
, $�, �
, '�, �$, '�, �
, $, '� �. If A = {a, c}, B = {b, c}, then, A ∩ B = {c} 
∉ *(�,�)(�). 
 
Proposition 3.3. Every ��-open set in (X, ��) is a �(�,�)-pre open set in (X, ��, ��). 
Proof: Suppose that A is a ��-open set. Then, A = �����

(+). Since A ⊆ ���!
(A), we get 

�����
 (A) ⊆ �����

(���!
(A)). Therefore, A ⊆ �����

(���!
(A)). Thus, A is a �(�,�)-pre open 

set in (X, ��, ��).  
        
      The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 3.7. Let X = �
, $, ��, ��= �∅, �
, $�, �
, ��, ) � and ��=  �∅, �$�, ���, �$, �� � 
where {b}, {c}, {b, c} are �(�,�)-pre open sets, but these are not ��-open sets in (X, ��). 
 
3.3. �(�, )-regular open sets 
Definition 3.3. [4] Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said to 
be a �(�,�)-regular open set if A = �����

(���!
(A)), where m, n ∈ �1,2� and m ≠ n. The 

collection of all �(�,�)-regular open sets is denoted by γ(-,.)(�). 
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Example 3.8. Let X = �
, $, ��, ��= �∅, �
, $�, �
, ��, ) � and ��=  �∅, �$�, ���, �$, �� �. 
Then, γ(�,�)(�) = �∅, �
, $�, �
, ��, ) �. 
 
Lemma 3.3. If A and B are �(�,�)-regular open sets, then A ∪ B is a �(�,�)-regular open 
set. 
Proof: Suppose that A and B are �(�,�)-regular open sets. Then, A = �����

(���!
(A)) and B 

= �����
(���!

(B)). Since �����
(���!

(A)) ⊆ �����
(���!

(A ∪ B)) and �����
(���!

(B)) ⊆  
�����

(���!
(A ∪ B)), we get A ⊆  �����

(���!
(A ∪ B)) and B ⊆ �����

(���!
(A ∪ B)). 

Therefore, A ∪ B ⊆ �����
(���!

(A ∪ B)). And it is clear that �����
(���!

(A ∪ B)) ⊆  A ∪ B. 
Therefore, A ∪ B = �����

(���!
(A ∪ B)). Thus, A ∪ B is a �(�,�)-regular open set.  

 
Remark 3.3. If A and B are �(�,�)-regular open sets, then in general, A ∩ B need not be a 
�(�,�)-regular open set. This can be seen in the following example: 
 
Example 3.9. Let X = �
, $, ��, ��= �∅, �
, $�, �
, ��, ) � and ��=  �∅, �$�, ���, �$, �� �. If A 
= {a, b}, B = {a, c}, then, A ∩ B = {a} ∉ γ(�,�)(�). 
 
Proposition 3.4. let A be a ��-closed set in (X, ��). Then, A is a �(�,�)-regular open set in 
(X, ��, ��) if and only if A is a ��-open set in (X, ��). 
Proof: Suppose that A is a �(�,�)-regular open set. Then, A = �����

(���!
(A)). Since A is 

��-closed set, we get ���!
(A) = A. Therefore, A = �����

(A). Hence A is a  ��-open set in 
(X, ��).  
     Conversely, suppose that A is a  ��-open set. Then, A = �����

(A). Since A is ��-closed 
set, we get A = ���!

(A). Therefore, A = �����
(���!

(A)). Hence A is a �(�,�)-regular open 
set.  
 
3.4. �(�, )-0-open sets 
Definition 3.4. [4] Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said to 
be a �(�,�)-�-open set if A ⊆  �����

(���!
(�����

(A))), where m, n ∈ �1,2� and m ≠ n. The 
collection of all �(�,�)-�-open sets is denoted by �(�,�)(�). 
 
Example 3.10. Let X = �
, $, ��, ��= �∅, �
, $�, �
, ��, ) � and ��=  �∅, �
�, ���, �
, �� �. 
Then, �(�,�)(�) = �∅, �
, $�, �
, ��, ) �. 
 
Lemma 3.4. If A and B are �(�,�)-�-open sets, then A ∪ B is a �(�,�)-�-open set. 
Proof: Suppose that A and B are �(�,�)-�-open sets. Then, A ⊆  �����

(���!
(�����

(A))) 
and B ⊆ �����

(���!
(�����

(B))). Since �����
(���!

(�����
(A))) ⊆ �����

(���!
(�����

(A ∪ 
B))) and �����

(���!
(�����

(B))) ⊆ �����
(���!

(�����
(A ∪ B))), we get A ⊆ 

�����
(���!

(�����
(A ∪ B))) and B ⊆ �����

(���!
(�����

(A ∪ B))). Therefore, A ∪ B ⊆ 
�����

(���!
(�����

(A ∪ B))). Thus, A ∪ B is a �(�,�)-�-open set. 
  
Remark 3.4. If A and B are �(�,�)-�-open sets, then in general, A ∩ B need not be a �(�,�)-
�-open set. This can be seen in the following example: 



R. Rishanthini and P. Elango 

106 
 

Example 3.11. Let X = �
, $, ��, ��= �∅, �
, $�, �
, ��, ) � and ��=  �∅, �
�, ���, �
, �� �. If 
A = {a, b}, B = {a, c}, then, A ∩ B = {a} ∉ �(�,�)(�). 
 
Proposition 3.5. Every ��-open set in (X, ��) is a �(�,�)-�-open set in (X, ��, ��). 
Proof: Suppose that A is a ��-open set. Then, A = �����

(A). Since A ⊆ ���!
(+) = 

���!
(�����

(A)), we get �����
(A) ⊆ �����

(���!
(�����

(A))). Therefore, A ⊆ 
�����

(���!
(�����

(A))). Hence A is a �(�,�)-�-open set in (X, ��, ��). 
 
     The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 3.12. Let X = �
, $, ��, ��= �∅, �
�, �
, $�, �$, ��, ) � and  
��=  �∅, �
, $�, �
, ��, ) �. Then, �(�,�)(�)= �∅, �
�, �
, $�, �
, ��, �$, ��, ) �. Therefore, {a, 
c} is �(�,�)-�-open set, but this is not a ��-open set in (X, ��).  
 
3.5. �(�, )-1-open sets 
Definition 3.5. [4] Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said to 
be a �(�,�)-�-open set if A ⊆ ���!

(�����
(���!

(A))), where m, n ∈ �1,2� and m ≠ n. The 
collection of all �(�,�)-�-open sets is denoted by �(�,�)(�). 
 
Example 3.13. Let X = {a, b, c, d}, ��= �∅, �
�, �$�, �
, $�, �
, ��, �$, ��, �
, $, �� � and ��=  
�∅, �
�, �$�, �'�, �
, $�, �
, '�, �$, '�, �
, $, '� �. Then,  
�(�,�)(�) = �∅, �
�, �$�, �
, $�, �
, ��, �$, ��, �
, $, �� �. 
 
Lemma 3.5. If A and B are �(�,�)-�-open sets, then A ∪ B is a �(�,�)-�-open set. 
Proof: Suppose that A and B are �(�,�)-�-open sets. Then, A ⊆ ���!

(�����
(���!

(A))) and 
B ⊆ ���!

(�����
(���!

(B))). Since ���!
(�����

(���!
(A))) ⊆ ���!

(�����
(���!

(A ∪ B))) and 
���!

(�����
(���!

(B))) ⊆ ���!
(�����

(���!
(A ∪ B))), we get A ⊆ ���!

(�����
(���!

(A ∪ B))) 
and B ⊆ ���!

(�����
(���!

(A ∪ B))). Therefore, A ∪ B ⊆ ���!
(�����

(���!
(A ∪ B))). Thus, A 

∪ B is a �(�,�)-�-open set.  
 
Remark 3.5. If A and B are �(�,�)-�-open sets, then in general, A ∩ B need not be a �(�,�)-
�-open set. This can be seen in the following example: 
 
Example 3.14. Let X = {a, b, c, d}, ��= �∅, �
�, �$�, �
, $�, �
, ��, �$, ��, �
, $, �� � and ��=  
�∅, �
�, �$�, �'�, �
, $�, �
, '�, �$, '�, �
, $, '� �. If A = {a, c}, B = {b, c}, then, A ∩ B = {c} 
∉ �(�,�)(�). 
 
Proposition 3.6. Every ��-open set in (X, ��) is a �(�,�)-�-open set in (X, ��, ��). 
Proof: Suppose that A is a ��-open set. Then, A = �����

(A). Since A ⊆ ���!
(A), we get A 

= �����
(A)) ⊆ �����

(���!
(A)), So ���!

(A) ⊆ ���!
(�����

(���!
(A))). Therefore, A ⊆ 

���!
(�����

(���!
(A))). Hence A is a �(�,�)-�-open set in (X, ��, ��).  
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      The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 3.15. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, �
, $�, ���, ) �. Then, 
�(�,�)(�) = �∅, �
�, �$�, ���, �
, $�, �
, ��, �$, ��, ) �. Therefore, {b}, {a, b}, {b, c}, X are 

�(�,�)-�-open sets, but these are not ��-open sets in (X, ��). 

3.6. �2(�, )-open sets 
Definition 3.6. [5] Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said to 
be a �̅(�,�)-open set if there exists a ��-open set U of X such that U ⊆ A ⊆ ��34!

(U), where 

��34!
(U) is the intersection of all ��-semi closed sets containing U. That is, the smallest 

��-semi closed set containing U, where m, n ∈ �1,2� and m ≠ n. 
 
Example 3.16. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, �
, $�, ���, ) �.  
Then, ∅, �
�, ���, �
, ��, �
, $�, ) are �̅(�,�)-open sets. 
 
Lemma 3.6. If A and B are �̅(�,�)-open sets, then A ∪ B is �̅(�,�)-open set. 
Proof: Suppose that A and B are �̅(�,�)-open sets. Then, there exists a ��-open set U of X 
such that U ⊆ A ⊆ ��34!

(U) and U ⊆ B ⊆ ��34!
(U). This implies that U ⊆ A ∪ B ⊆ ��34!

(U). 

Thus, A ∪ B is a �̅(�,�)-open set.  
 
Remark 3.6. If A and B are �̅(�,�)-open sets, then in general, A ∩ B need not be a �̅(�,�)-
open set. This can be seen in the following example: 
 
Example 3.17. Let X = �
, $, ��, ��= �∅, �
, $�, �$, ��, ) � and ��=  �∅, �$�, ���, �$, �� �. If 
A = {a, b}, B = {b, c}, then, A ∩ B = {b} ∉ �̅(�,�)-open set. 
 
Theorem 3.18. Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said to be a 
�̅(�,�)-open set if and only if A ⊆ ��34!

(�����
(A)). 

Proof: Let A be a �̅(�,�)-open set. Then, there exists a ��-open set U such that U ⊆ A ⊆ 
��34!

(U). Since U is ��-open set, we get U = �����
(U) ⊆ �����

(A). This implies that A ⊆ 

��34!
(U) ⊆ ��34!

(�����
(A)). Thus, A ⊆ ��34!

(�����
(A)). 

       Conversely, let A ⊆ ��34!
(�����

(A)) and take U = �����
(A). Then, �����

(A) ⊆ A ⊆ 

��34!
(�����

(A)). Hence A is �̅(�,�)-open set.  
 
Proposition 3.7. Every ��-open set in (X, ��) is a �̅(�,�)-open set in (X, ��, ��). 
Proof: Suppose that A is a ��-open set. Then, A = �����

(A). Since A ⊆ ��34!
(A), we get A 

⊆ ��34!
(�����

(A)). Therefore, by Theorem 3.18, we get A is �̅(�,�)-open set in (X, ��, ��).  
 
     The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
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Example 3.19. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, �
, $�, �
�, ) �. 
Then, {a, b}, X are �̅(�,�)-open sets, but these are not ��-open sets in (X, ��). 
 
3.7. (m, n)-open sets 
Definition 3.7. [4] Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said to 
be a (m, n)-open set if A = �����

(����!
(A)), where m, n ∈ �1,2� and m ≠ n. 

 
Example 3.20. Let X = �
, $, ��, ��= �∅, �$�, �
, $� � and ��=  �∅, �
, $�, ���, ) �. Then, (1, 
2)-open set is {a, b}. 
 
Lemma 3.7. If A and B are (m, n)-open sets, then A ∪ B is a (m, n)-open set. 
Proof: Suppose that A and B are (m, n)-open sets. Then, A = �����

(����!
(A)) and B = 

�����
(����!

(B)). Since �����
(����!

(A)) ⊆  �����
(����!

(A ∪ B)) and �����
(����!

(B)) ⊆ 
�����

(����!
(A ∪ B)), we get A  ⊆ �����

(����!
(A ∪ B)) and B ⊆ �����

(����!
(A ∪ B)). 

Then, A ∪ B ⊆ �����
(����!

(A ∪ B)). Since ����!
(A ∪ B) ⊆ A ∪ B, we get �����

(����!
(A 

∪ B)) ⊆ �����
(A ∪ B) ⊆ A ∪ B. Therefore, A ∪ B = �����

(����!
(A ∪ B)). Thus, A ∪ B is 

a (m, n)-open set.  
 
Remark 3.7. If A and B are (m, n)-open sets, then in general, A ∩ B need not be a (m, n)-
open set. This can be seen in the following example: 
 
Example 3.21. Let X = �
, $, ��, ��= �∅, �
, $�, �$, ��, ) � and ��=  �∅, �
, $�, �$, ��, ) �. If 
A = �
, $�, B = �$, ��, then, A ∩ B = {b} ∉ (1, 2)-open set. 
 
Proposition 3.8. let A be a subset of a Bi-GTS (X, ��, ��) and A is ��-open set in (X, ��).  
Then, A is a (m, n)-open set in (X, ��, ��) if and only if A is a  ��-open set in (X, ��). 
Proof: Suppose that A is a (m, n)-open set. Then, A = �����

(����!
(A)). Since A is  ��-open 

set, we get A = ����!
(A). This implies that A = �����

(A). Hence A is a ��-open set in (X, 
��).  
       Conversely, suppose that A is a ��-open set. Then, A = �����

(A). Since A is  ��-open 
set, we get A = ����!

(A). This implies that A = �����
(����!

(A)). Hence A is a (m, n)-open 
set.  
 
3.8. Quasi generalized open sets 
Definition 3.8. [21] Let (X, ��, ��) be a Bi-GTS and A be a subset of X. Then, A is said to 
be a quasi generalized open set (briefly, 5�-open set) if for every x ∈ A, then there exist a 
��-open set U such that x ∈ U ⊆ A, or a ��-open set V such that x ∈ V ⊆ A. 
 
Example 3.22. Let X = {a, b, c, d}, ��= �∅, �
, $� � and ��=  �∅, �
, �� �. Then, 5�-open 
set is {a, b, c}. 
 
Lemma 3.8. If A and B are 5�-open sets, then A ∪ B is a 5�-open set. 
Proof: Suppose that A and B are 5�-open sets. Then, for every x ∈ A and x ∈ B, then there 
exist a ��-open set U such that x ∈ U ⊆ A and x ∈ U ⊆ B, or a ��-open set V such that x ∈ 
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V ⊆ A and x ∈ V ⊆ B. This implies that for every x ∈ A ∪ B, then there exist a ��-open set 
U such that x ∈ U ⊆ A ∪ B, or a ��-open set V such that x ∈ V ⊆ A ∪ B. Thus, A ∪ B is a 
5�-open set.  
 
Remark 3.8. If A and B are 5�-open sets, then in general, A ∩ B need not be a 5�-open set. 
This can be seen in the following example: 
 
Example 3.23. Let X = {a, b, c, d}, ��= �∅, �'�, �
, $�, �
, $, '� � and ��=  
�∅, ���, �
, '�, �
, �, '� �. If A = {a, b, c}, B = {a, c, d}, then, A ∩ B = {a, c} ∉ 5�-open set. 
 
4. Comparison of open sets in bi-generalized topological spaces 
We choose �(�,�)-semi open set as the base open set for the comparison of all open sets in 
the Bi-GTS. 
 
Proposition 4.1. Every �(�,�)-�-open set is a �(�,�)-semi open set in (X, ��, ��). 
Proof: Let A be a �(�,�)-�-open set. Then, A ⊆ �����

(���!
(�����

(A))). Take B = 
���!

(�����
(A)). Let �����

(B) be the union of all open sets contained in B, that is, �����
(B) 

= ⋃ 788 ∈ 9 , where 78 ⊆ B. Then, A ⊆⋃ 788 ∈ 9 , where 78⊆ B. This implies that A ⊆ B. 
Therefore, A ⊆ ���!

(�����
(A)). Hence A is a �(�,�)-semi open set in (X, ��, ��). 

 
    The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 4.1. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, �
�, �
, $�, ) �. Then, 
{a, b}, X are �(�,�)-semi open sets, but these are not �(�,�)-�-open sets in (X, ��, ��). 
 
Proposition 4.2. Every �(�,�)-semi open set is a �(�,�)-�-open set in (X, ��, ��). 
Proof: Let A be a �(�,�)-semi open set. Then, A ⊆ ���!

(�����
(A)). Since A ⊆ ���!

(A), we 
get ���!

(�����
(A)) ⊆ ���!

(�����
(���!

(A))). This implies that A ⊆ ���!
(�����

(���!
(A))). 

Hence A is �(�,�)-�-open set in (X, ��, ��).  
 
     The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 4.2. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, ���, �
, $�, ) �. Then, 
{b}, {b, c} are �(�,�)-�-open sets, but these are not �(�,�)-semi open sets in (X, ��, ��). 
 
Proposition 4.3. [5] Every �̅(�,�)-open set is a �(�,�)-semi open set in (X, ��, ��). 
 
     The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 4.3. Let X = �
, $, ��, ��= �∅, ���, �
, $�, ) � and ��=  �∅, �$�, ���, �$, �� �. Then, 
{a, c} is a �(�,�)-semi open set, but these is not a �̅(�,�)-open set in (X, ��, ��). 



R. Rishanthini and P. Elango 

110 
 

Proposition 4.4. let A be a ��-closed set of a Bi-GTS (X, ��, ��). If A is ���,�)-pre open 
set in (X, ��, ��), then A is a �(�,�)-semi open set in (X, ��, ��). 
Proof: Let A be a �(�,�)-pre open set. Then, A ⊆ �����

(���!
(A)). Since A is ��-closed set, 

we get A = ���!
(A). This implies that A ⊆ �����

(A) and so ���!
(A) ⊆ ���!

(�����
(A)). 

Therefore, A ⊆ ���!
(�����

(A)). Hence A is a �(�,�)-semi open set in (X, ��, ��).  
 
     The converse of the above proposition need not be true in general. This can be seen in  
the following example: 
 
Example 4.4. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, ���, �
, $�, ) � and 
also {a, b}, X are μ�-closed sets. Then, {a, b}, X are �(�,�)-semi open sets in (X, ��, ��), 
but these are not �(�,�)-pre open sets in (X, ��, ��). 
 
Proposition 4.5. let A be a ��-closed set of a Bi-GTS (X, ��, ��). If A is a �(�,�)-regular 
open set in (X, ��, ��), then A is a �(�,�)-semi open set in (X, ��, ��). 
Proof: Let A be a �(�,�)-regular open set. Then, A = �����

(���!
(A)). Since A is ��-closed 

set, we get A = ���!
(A). This implies that A = �����

(A). Since A ⊆ ���!
(A), we get A ⊆ 

���!
(�����

(A)). Therefore, A ⊆ ���!
(�����

(A)). Hence A is a �(�,�)-semi open set in (X, 
��, ��).  
 
     The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 4.5. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, ���, �
, $�, ) � and 
also {a, b}, X are ��-closed sets. Then, {a, b}, X are �(�,�)-semi open sets in (X, ��, ��), 
but these are not �(�,�)-regular open sets in (X, ��, ��). 
 
Proposition 4.6. let A be a ��-open set of a Bi-GTS (X, ��, ��). If A is a (m, n)-open set in 
(X, ��, ��), then A is a �(�,�)-semi open set in (X, ��, ��). 
Proof: Let A be a (m, n)-open set in (X, ��, ��). Then, A = �����

(����!
(A)). Since A is ��-

open set, we get A = ����!
(A). This implies that A = �����

(A). Since A ⊆ ���!
(A), we get 

A ⊆ ���!
(�����

(A)). Therefore, A ⊆ ���!
(�����

(A)). Hence A is a �(�,�)-semi open set in 
(X, ��, ��).  
 
     The converse of the above proposition need not be true in general. This can be seen in 
the following example: 
 
Example 4.6. Let X = �
, $, ��, ��= �∅, �
�, ���, �
, �� � and ��=  �∅, ���, �
, $�, �
, ��, ) � 
and also {a, b}, X are ��-open sets. Then, {a, b}, X are �(�,�)-semi open sets in (X, ��, ��), 
but these are not (1,2)-open sets in (X, ��, ��). 
 
Since the quasi generalized open set is defined by ��-open set or ��-open set. So this cannot 
be compared with �(�,�)-semi open set. 
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Figure 4.1: Relationships between the ���,�)-semi open set and other open sets in Bi-
GTS. 
 
5. Conclusion 
In this paper, we studied all kind of open sets in Bi-GTS namely, �(�,�)-semi open sets, 
�(�,�)-pre open sets, �(�,�)-regular open sets, �(�,�)-�-open sets, �(�,�)-�-open sets, 
�̅(�,�)-open sets, (m, n)-open sets and quasi generalized open sets and investigated some 
of the properties of these open sets. Also we compared the relationships between the �(�,�)-
semi open set and other open sets in Bi-GTS. 
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