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Abstract. Let n be a positive integer where 1(mod 15)n ≡ . In this paper we shown that the 

Diophantine equation 24x yn z+ =  has no non-negative integer solution where ,x y  and 
z  are non-negative integers. 
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1. Introduction 
In the past, there was a lot of interest in studying the solution of Diophantine equations. 

The general form of the Diophantine equation is x y za b c+ =  which has been studied in 
[4]. In 2008, Pumnea and Nicoar [8] studied Diophantine equations of the form 

2x ya b z+ = , for example: 2 22 7 ,2 11x y x yz z+ = + =  and 22 13x y z+ = . Many authors 

also studied some particular cases of the Diophantine equation 24x yb z+ = , where b  is a 
fixed number and b  is a prime number. In 2011, Suvarnaman, Singta and Chotchaisthit 

[12] showed that Diophantine equations 24 7x y z+ =  and 24 11x y z+ =  have no solution 
in non-negative integers. The following year, Chotchaisthit [3] showed that the 

Diophantine equation 24x yp z+ =  has no non-negative integer solution where ,x y  and 
z  are non-negative integers and p  is a positive prime. In 2014, Sroysang [11] established 

that the Diophantine equation 24 10x y z+ =  has no non-negative integer solution where 
,x y  and z  are non-negative integers. In 2016, Srisarakham and Thongmoon [10] solved 

that the Diophantine equation 248 84x y z+ =  has a unique non-negative integer solution 

( ) ( ), , 1, 0, 7x y z = . In 2018, Kumar, Gupta and Kishan [5] showed that the Diophantine 

equations 261 67x y z+ =  and 267 73x y z+ =  have no solution where ,x y  and z  are 
non-negative integers. In the same year, Lu [6] investigated the equation of the form 

2x yq p z+ =  with q  and p  are primes. Particularly, Lu considered the equations 
23x yp z+ =  where 5(mod 12)p ≡  and 23x yb z+ =  where 1(mod 4)b ≡  and 
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5(mod 12)p ≡  or 7(mod 12)p ≡ . In the next year, Burshtein [1] established some non-

negative solutions for the Diophantine equation 23x yp z+ =  where p  is an odd prime 

number and 8x y+ ≤ . Later, [2] proved that the equation 28 9x y z+ =  has no solution 

when ,x y  and z  are positive integers by utilizing the last digits of the powers 8 , 9x y . In 
2021, Moonchaisook [7] considered the non-linear Diophantine equation 

( ) 24
y

x np p z+ + =  has no solution where 3, 4np p> +  are primes. 

 In this paper, we consider the Diophantine equation 24x yn z+ = , where n ≡
1(mod 15) and , ,x y z  are non-negative integers. Here we will study all the possible causes 
and we will use a quadratic residue of n . 

 
2. Preliminaries 

Let p  be an odd prime and a  be a positive integer where ( ), 1gcd a p = . If the quadratic 

congruence ( )2 modx a p≡  has a solution, then a  is said to be a quadratic residue of p . 

Otherwise, a  is called a quadratic non-residue of p . In 1798 Adrien-Marie Legendre [9] 

introduced the Legendre symbol 
a

p

 
 
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 which is defined by 
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In this paper, using the following symbols; 
 

Lemma 2.1. The Diophantine equation 24 1x z+ =  has no non-negative integer solution 
where x  and z  are non-negative integers. 

Proof: Let x  and z  are non-negative integers. If 0x = , then 2 2z = , which is 

impossible. If 1x = , then 2 5z = , which is impossible. If 1x > , then 24 1x z+ = . Since 

4x ≡  1(mod 3), thus 2 4 1 2(mod 3)xz = + ≡   but 
2

1
3

 
= − 

 
, this equation has no 

solution. 

 Let 1(mod 15)n ≡ . We get 15 1n −  or 1 15n k− =  for some integers k . Get 

15 1 3(5 ) 1 5(3 ) 1n k k k= + = + = +  so 1(mod 3)n ≡  and 1(mod 5)n ≡ . In this paper, 

we assume that n  is a non-negative integer.  

Lemma 2.2. Let n  be a positive integer with 1(mod 15)n ≡ . The Diophantine equation 
21 yn z+ =  has no non-negative integer solution y  and z . 

Proof: Let y  and z  are non-negative integers and n  be a positive integer with 

1(mod 15)n ≡  is clear that 1(mod 3)n ≡  and 1(mod 5)n ≡ . We divide it into two cases 
as follows: 
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 Case 1: if 0y = , then 22 z=  is impossible.  

 Case 2: if 1y ≥ , then 21 yn z+ = . Since 1(mod 5)n ≡ , thus 1(mod 5)yn ≡  and 

2 1 2(mod 5)yz n= + ≡  but 
2

1
5

 
= − 

 
. 

3. Main theorem 
Theorem 3.1. Let n  be a positive integer where 1(mod 15)n ≡ . The Diophantine 

equation 24x yn z+ =  has no non-negative integer solution ,x y  and z .  

Proof: Let n  be a positive integer where 1(mod 15)n ≡ , and , ,x y z  are non-negative 
integers. We divide it into three cases as follows: 
 Case 1: 0x = , by Lemma 2.2, there is no non-negative integer solution. 
 Case 2: 0y = , by Lemma 2.1, there is no non-negative integer solution. 
 Case 3: if 1x ≥  and 1y ≥ , then we consider two cases: 

  Case 3.1 x  is even. We get 4 1(mod 5)x ≡ . Since 1(mod 5)n ≡ , thus 

1(mod 5)yn ≡ . Therefore 2 4 2(mod 5)x yz n= + ≡  but 
2

1
5

 
= − 

 
. 

  Case 3.2 x  is odd. We get 4 1(mod 3)x ≡  .  Since 1(mod 3)n ≡ , thus 

1(mod 3)yn ≡ . Therefore 2 4 2(mod 3)x yz n= + ≡  but 
2

1
3

 
= − 

 
. 

 

Corollary 3.2. The Diophantine equation 24 136x y z+ =  has no non-negative integer 
solution x  and z . 

Proof: Since 136 1(mod 15)≡ , by Theorem 3.1 the Diophantine equation 4 136x y+ = 2z  
has no non-negative integer solution. 
 
Corollary 3.3. Let n  be a positive integer where 1(mod 15)n ≡ . The Diophantine 

equation 2 64x y tn u ++ =  has no non-negative integer solution ,x y  and u .  

Proof: Let 3tz u +=  then 2 6 24x y tn u z++ = = , 1(mod 15)n ≡ , which has no solution by 
Theorem 3.1. 
 
4. Conclusion  

In this paper, we discussed the Diophantine equation 24x yn z+ =  with 1(mod 15)n ≡

and , ,x y z  are non-negative integers. We used the quadratic residue of n  which 

conclusion that Diophantine equation 24x yn z+ =  has no non-negative integer solution 
,x y  and z .  
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