On the Diophantine Equation $4^{x}+n^{y}=z^{2}$

Wachirarak Orosram ${ }^{1}$, Sasikarn Niratsrok ${ }^{2}$ and Arisa Sukkharin ${ }^{3^{*}}$
${ }^{1,2,3}$ Department of Mathematics, Faculty of Science, Buriram Rajabhat University Muang Buriram 31000, Thailand.
${ }^{1}$ E-mail: wachirarak.tc@ bru.ac.th; ${ }^{2}$ E-mail: $620112210028 @$ bru.ac.th
*Corresponding author. ${ }^{3}$ E-mail: $620112210040 @$ bru.ac.th

Received 12 October 2022; accepted 8 December 2022
Abstract. Let n be a positive integer where $n \equiv 1(\bmod 15)$. In this paper we shown that the Diophantine equation $4^{x}+n^{y}=z^{2}$ has no non-negative integer solution where x, y and z are non-negative integers.

Keywords: Diophantine equation, Quadratic residue, non-negative integer
AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

In the past, there was a lot of interest in studying the solution of Diophantine equations.
The general form of the Diophantine equation is $a^{x}+b^{y}=c^{z}$ which has been studied in [4]. In 2008, Pumnea and Nicoar [8] studied Diophantine equations of the form $a^{x}+b^{y}=z^{2}$, for example: $2^{x}+7^{y}=z^{2}, 2^{x}+11^{y}=z^{2}$ and $2^{x}+13^{y}=z^{2}$. Many authors also studied some particular cases of the Diophantine equation $4^{x}+b^{y}=z^{2}$, where b is a fixed number and b is a prime number. In 2011, Suvarnaman, Singta and Chotchaisthit [12] showed that Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$ have no solution in non-negative integers. The following year, Chotchaisthit [3] showed that the Diophantine equation $4^{x}+p^{y}=z^{2}$ has no non-negative integer solution where x, y and z are non-negative integers and p is a positive prime. In 2014, Sroysang [11] established that the Diophantine equation $4^{x}+10^{y}=z^{2}$ has no non-negative integer solution where x, y and z are non-negative integers. In 2016, Srisarakham and Thongmoon [10] solved that the Diophantine equation $48^{x}+84^{y}=z^{2}$ has a unique non-negative integer solution $(x, y, z)=(1,0,7)$. In 2018, Kumar, Gupta and Kishan [5] showed that the Diophantine equations $61^{x}+67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$ have no solution where x, y and z are non-negative integers. In the same year, Lu [6] investigated the equation of the form $q^{x}+p^{y}=z^{2}$ with q and p are primes. Particularly, Lu considered the equations $3^{x}+p^{y}=z^{2} \quad$ where $p \equiv 5(\bmod 12)$ and $3^{x}+b^{y}=z^{2} \quad$ where $b \equiv 1(\bmod 4) \quad$ and

Wachirarak Orosram, Sasikarn Niratsrok and Arisa Sukkharin

$p \equiv 5(\bmod 12)$ or $p \equiv 7(\bmod 12)$. In the next year, Burshtein [1] established some nonnegative solutions for the Diophantine equation $3^{x}+p^{y}=z^{2}$ where p is an odd prime number and $x+y \leq 8$. Later, [2] proved that the equation $8^{x}+9^{y}=z^{2}$ has no solution when x, y and z are positive integers by utilizing the last digits of the powers $8^{x}, 9^{y}$. In 2021, Moonchaisook [7] considered the non-linear Diophantine equation $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$ has no solution where $p>3, p+4^{n}$ are primes.

In this paper, we consider the Diophantine equation $4^{x}+n^{y}=z^{2}$, where $n \equiv$ $1(\bmod 15)$ and x, y, z are non-negative integers. Here we will study all the possible causes and we will use a quadratic residue of n.

2. Preliminaries

Let p be an odd prime and a be a positive integer where $\operatorname{gcd}(a, p)=1$. If the quadratic congruence $x^{2} \equiv a(\bmod p)$ has a solution, then a is said to be a quadratic residue of p. Otherwise, a is called a quadratic non-residue of p. In 1798 Adrien-Marie Legendre [9] introduced the Legendre symbol $\left(\frac{a}{p}\right)$ which is defined by

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
1 & \text {; if a is a quadratic residue of } p \\
-1 & \text {; if } a \text { is a quadratic non - residue of } p
\end{aligned}\right.
$$

In this paper, using the following symbols;
Lemma 2.1. The Diophantine equation $4^{x}+1=z^{2}$ has no non-negative integer solution where x and z are non-negative integers.
Proof: Let x and z are non-negative integers. If $x=0$, then $z^{2}=2$, which is impossible. If $x=1$, then $z^{2}=5$, which is impossible. If $x>1$, then $4^{x}+1=z^{2}$. Since $4^{x} \equiv 1(\bmod 3)$, thus $z^{2}=4^{x}+1 \equiv 2(\bmod 3) \quad$ but $\left(\frac{2}{3}\right)=-1$, this equation has no solution.

Let $n \equiv 1(\bmod 15)$. We get $15 \mid n-1$ or $n-1=15 k$ for some integers k. Get $n=15 k+1=3(5 k)+1=5(3 k)+1$ so $n \equiv 1(\bmod 3)$ and $n \equiv 1(\bmod 5)$. In this paper, we assume that n is a non-negative integer.

Lemma 2.2. Let n be a positive integer with $n \equiv 1(\bmod 15)$. The Diophantine equation $1+n^{y}=z^{2}$ has no non-negative integer solution y and z.
Proof: Let y and z are non-negative integers and n be a positive integer with $n \equiv 1(\bmod 15)$ is clear that $n \equiv 1(\bmod 3)$ and $n \equiv 1(\bmod 5)$. We divide it into two cases as follows:

On the Diophantine Equation $4^{x}+n^{y}=z^{2}$
Case 1: if $y=0$, then $2=z^{2}$ is impossible.
Case 2: if $y \geq 1$, then $1+n^{y}=z^{2}$. Since $n \equiv 1(\bmod 5)$, thus $n^{y} \equiv 1(\bmod 5)$ and $z^{2}=1+n^{y} \equiv 2(\bmod 5)$ but $\left(\frac{2}{5}\right)=-1$.

3. Main theorem

Theorem 3.1. Let n be a positive integer where $n \equiv 1(\bmod 15)$. The Diophantine equation $4^{x}+n^{y}=z^{2}$ has no non-negative integer solution x, y and z.
Proof: Let n be a positive integer where $n \equiv 1(\bmod 15)$, and x, y, z are non-negative integers. We divide it into three cases as follows:

Case 1: $x=0$, by Lemma 2.2, there is no non-negative integer solution.
Case 2: $y=0$, by Lemma 2.1, there is no non-negative integer solution.
Case 3: if $x \geq 1$ and $y \geq 1$, then we consider two cases:
Case $3.1 x$ is even. We get $4^{x} \equiv 1(\bmod 5)$. Since $n \equiv 1(\bmod 5)$, thus $n^{y} \equiv 1(\bmod 5)$. Therefore $z^{2}=4^{x}+n^{y} \equiv 2(\bmod 5)$ but $\left(\frac{2}{5}\right)=-1$.

Case $3.2 x$ is odd. We get $4^{x} \equiv 1(\bmod 3)$. Since $n \equiv 1(\bmod 3)$, thus $n^{y} \equiv 1(\bmod 3)$. Therefore $z^{2}=4^{x}+n^{y} \equiv 2(\bmod 3)$ but $\left(\frac{2}{3}\right)=-1$.

Corollary 3.2. The Diophantine equation $4^{x}+136^{y}=z^{2}$ has no non-negative integer solution x and z.
Proof: Since $136 \equiv 1(\bmod 15)$, by Theorem 3.1 the Diophantine equation $4^{x}+136^{y}=z^{2}$ has no non-negative integer solution.

Corollary 3.3. Let n be a positive integer where $n \equiv 1(\bmod 15)$. The Diophantine equation $4^{x}+n^{y}=u^{2 t+6}$ has no non-negative integer solution x, y and u.
Proof: Let $z=u^{t+3}$ then $4^{x}+n^{y}=u^{2 t+6}=z^{2}, n \equiv 1(\bmod 15)$, which has no solution by Theorem 3.1.

4. Conclusion

In this paper, we discussed the Diophantine equation $4^{x}+n^{y}=z^{2}$ with $n \equiv 1(\bmod 15)$ and x, y, z are non-negative integers. We used the quadratic residue of n which conclusion that Diophantine equation $4^{x}+n^{y}=z^{2}$ has no non-negative integer solution x, y and z.

Acknowledgement. The authors thank the reviewer for putting valuable remarks and comments on this paper.

Wachirarak Orosram, Sasikarn Niratsrok and Arisa Sukkharin

Conflict of interest. The authors declare that they have no conflict of interest.
Authors' Contributions. All the authors contributed equally to this work.

REFERENCES

1. N.Burshtein, On solutions of the Diophantine equation $3^{x}+p^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 19(2) (2019) 169-173.
2. N.Burshtein, On solutions of the Diophantine equation $8^{x}+9^{y}=z^{2}$ when x, y, z are Positive Integers, Annals of Pure and Applied Mathematics, 20(2) (2019) 79-83.
3. S.Chotchaisthit, On the Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is a prime number, Amer. J. Math. Sci., 1 (2012) 191-193.
4. T.Hadano, On the Diophantine equation $a^{x}+b^{y}=c^{z}$, Math. J. Okayama Univ., 19 (1976) 1-53.
5. S.Kumar, S.Gupta and H.Kishan, On the non-linear Diophantine equation $61^{x}+67^{y}$ $=z^{2}$ and $67^{x}+73^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(1) (2018) 9194.
6. L.Lu, A Note on the Diophantine Equation $q x+p y=z 2$, Journal of Physics: Conference Series, 1039 (2018) 012007
7. V.Moonchaisook, On the non-linear Diophantine equation $p^{x}+\left(p+4^{n}\right)^{y}=z^{2}$ where p and $p+4^{n}$ are primes, Annals of Pure and Applied Mathematics, 23(2) (2021) 117121.
8. C.E.Pumnea and A.D.Nicoar, On a Diophantine equation of $a^{x}+b^{y}=z^{2}$, Educatia Matematica, 4(2) (2008) 65-75.
9. K.Rosen, Elementary Number Theory and Its Applications. Addison-Wesley Publishing, MA, 1986.
10. N.Srisarakham and M.Thongmoon, The solution of Diophantine equation $48^{x}+$ $84^{y}=z^{2}$, RMUTSB Acad. J., 4(2) (2016) 140-148.
11. B.Sroysang, More on the Diophantine equation $4^{x}+10^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 91(1) (2014) 135-138.
12. A.Suvarnaman, A.Singta and S.Chotchaisthit, On two diophantine equation $4^{x}+7^{y}=$ z^{2} and $4^{x}+11^{y}=z^{2}$, Science and Technology RMUTT Journal, 1(1) (2011) 25-28.
