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Abstract. In this paper, we introduce the E-Banhatti Nirmala index and the modified E-
Banhatti Nirmala index and their corresponding exponentials of a graph. Furthermore, we 
determine these newly defined E-Banhatti Nirmala indices and their corresponding 
exponentials for some standard graphs and tetrameric 1,3-Adamantane. 
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1. Introduction 
Throughout this paper, we consider simple graphs which are finite, connected, undirected 
graphs without loops and multiple edges. Let G be such a graph with vertex set V(G) and 
edge set E(G). The degree dG(u) of a vertex u is the number of vertices adjacent to u. For 
term and concept not given here, we refer the book [1]. 
              A molecular graph is a simple graph, representing the carbon atom skeleton of an 
organic molecule of the hydrocarbon. Therefore the vertices of a molecular graph represent 
the carbon atoms and its edges the carbon-carbon bonds. Chemical Graph Theory is a 
branch of Mathematical Chemistry which has an important effect on the development of 
Chemical Sciences. Several graph indices [2] have found some applications in Chemistry, 
especially in QSPR/QSAR research [3]. 
              In [4], Kulli defined the Banhatti degree of a vertex u of a graph G as  

( ) ( )
( ) ,G

G

d e
B u

n d u
=

−  
where n is the number of vertices of G and the vertex u and edge e are incident in G. 
              The first and second E-Banhatti indices were introduced by Kulli in [4] and they 
are defined as 
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We propose the E-Banhatti Nirmala index of a graph G and defined it as 

( ) ( ) ( )
( )

.
uv E G

EBN G B u B v
∈

= +  

We introduce the modified E-Banhatti Nirmala index of a graph G and defined it 
as 

( )
( ) ( )( )

1
.m

uv E G

EBN G
B u B v∈

=
+

  

Considering the E-Banhatti Nirmala and modified E-Banhatti Nirmala indices, we define 
their corresponding exponentials of a graph G as 

 

( ) ( ) ( )
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 In Chemical Graph Theory, several graph indices were introduced and studied such as the 
Wiener index [6, 7], the Zagreb indices [8, 9], the Revan indices [10, 11], the Gourava 
indices [12, 13], the reverse indices [14, 15] and the Banhatti indices [16, 17].   
          In this paper, we compute the E-Banhatti Nirmala index and the modified E-Banhatti 
Nirmala index for some standard graphs and tetrameric 1,3-adamanane.   

2. Results for some standard graphs  
Proposition 1. If G is an r-regular graph with n vertices and r ≥ 2, then  

( ) 1
.

r
EBN G nr

n r

−=
−

 

Proof:  Let G be an r-regular graph with n vertices and r ≥ 2. Then G has 
2

nr
 edges. For 

any edge uv=e in G, dG(e)= dG(u)+ dG(u) −2=2r−2.  

From definition we have   

                ( ) ( ) ( )
( )uv E G

EBN G B u B v
∈

= +            

                               
2 2 2 2 1

.
2

nr r r r
nr

n r n r n r

− − −   = + =   − − −   
         

Corollary 1.1.   Let  nC be a cycle with n≥ 3 vertices. Then   

( ) 
1

2 .
2nEBN n

n
C =
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Corollary 1.2.   Let Kn   be a complete graph with n≥ 3 vertices. Then   

( ) ( ) 1 2.nEBN nK n n= − −
 

 

 Proposition 2. Let  nP be a path with n≥ 3 vertices. Then          

              ( ) ( )
1
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Proposition 3.  Let Km,n   be a complete bipartite graph with 1 ≤ m≤ n and n ≥ 2. Then 

( ),   ( )( 2).m nEBN mn m n mK n= + + −  

Proof: Let Km,n    be a complete bipartite   m  n graph with m + n vertices and mn edges 
such that |V1|= m , | V2 |= n, V (Kr,s ) = V1 ∪ V2   for 1 ≤ m  ≤ n, and n ≥ 2. Every vertex 
of V1 is incident with n edges and every vertex of V2   is incident with m edges. Then 
dG(e)= dG(u)+ dG(v) −2= m + n −2.  

                ( ) ( ) ( )
( )

,   m n
uv E G

EBN B B vK u
∈

= +
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( )( 2).mn m n m n= + + −
 

Corollary 3.1.   Let Kn,n   be a complete bipartite graph with n≥ 2. Then
 

( ),   2 ( 1).n nKEBN n n n= −  

Corollary 3.2.   Let K1,n   be a star with n≥ 2. Then 

( )1,   ( 1)( 1).nEBN n n nK = + −
 

3. Results for Tetrameric 1,3-Adamantane 
In Chemistry, diamondoids are variants of the carbon cage known as a damantane (C10, 
H16), the smallest unit cage structure of the diamond crystal lattice. We focus on the 
molecular graph structure of the family of tetrameric 1,3-adamantane, denoted by TA[n]. 
Let G be the graph of a tetrameric 1,3-adamantane TA[n]. The graph of a tetrameric 1,3-
adamantane TA[4] is presented in Figure 1. 
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Figure 1 

 
By calculation, G has 10n vertices and 13n – 1edges. Also by calculation, we obtain three 
edge partitions of G based on the degrees of the end vertices of each edge as follows:  
 
     E1={uv∈E(G) | dG(u)=2, dG(v)=3},        |E1| = 6n + 6. 
     E2={uv∈E(G) | dG(u)=2, dG(v)=4},        |E2| = 6n – 6. 
     E3={uv∈E(G) | dG(u)=dG(v) = 4},          |E3| = n – 1. 
 
Therefore, in TA[n], there are three types of edges based on the Banhatti degree of end 
vertices of each edge as follow: 

      BE1 = {uv ∈ E(G) | B(u) =
3

,
10 2n −

 B(v) =
3

10 3n −
},       |BE1| =6n+6. 

     BE2 = {uv ∈ E(G) | B(u) =
4

,
10 2n −

B(v) =
4

10 4n −
},         |BE2| = 6n−6.     

    BE3 = {uv ∈ E(G) | B(u) =
6

,
10 4n −

B(v) =
6

10 4n −
},          |BE3| = n−1.     

 

We determine the E-Banhatti  Nirmala index of TA[n].  
 
Theorem 1. Let G be the graph of a tetrameric 1,3-adamantane TA[n]  with 10n vertices 
and 13n−1 edges. Then  
    

[ ]( ) ( )
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Proof: From definition and by cardinalities of the Banhatti edge partition of TA[n], we 
obtain 
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 After simplification, we get the desired result.                        
                    

     
 

We compute the modified E-Banhatti  Nirmala index of TA[n].  
 
Theorem 2. Let G be the graph of a tetrameric 1,3-adamantane TA[n]  with 10n vertices 
and 13n−1 edges. Then                
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Proof: From definition and by cardinalities of the Banhatti edge partition of TA[n], we 
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gives the desired result  after simplification.                     
                    

      
 

By using definitions and by cardinalities of the Banhatti edge partition of TA[n], we obtain 
the E-Banhatti Nirmala and modified E-Banhatti Nirmala exponentials of TA[n].  
  
Theorem 3. The E-Banhatti Nirmala exponential of TA[n] is given by 

         [ ]( ) ( ) ( )( ) ( ) ( )( ) ( )
60 15 20 6 6

10 2 10 3 5 1 5 2 5 2, 6 6 6 6 1 .
n n

n n n n nTAEBN x n x n x n xn
− −

− − − − −= + + − + −  

         
Theorem 4. The modified E-Banhatti Nirmala exponential of TA[n] is given by 

         [ ]( ) ( )
( )( )

( )
( )( )

( )
10 2 10 3 5 1 5 2 5 2

60 15 20 6 6, 6 6 6 6 1 .
n n n n n
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− −= + + − + −  

          
4. Conclusion 
In this study, we have introduced the E-Banhatti Nirmala index and the modified E-
Banhatti Nirmala index and their corresponding exponentials of a graph. These newly 
defined E-Banhatti Nirmala indices and their corresponding exponentials for some 
standard graphs and tetrameric 1,3-adamantane have been determined. This study is a new 
direction in Graph Indices. 
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