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Abstract. In this paper, we introduce the E-Banhatti Nirmaldex and the modified E-
Banhatti Nirmala index and their corresponding ewptials of a graph. Furthermore, we
determine these newly defined E-Banhatti Nirmaldides and their corresponding
exponentials for some standard graphs and tetrarhg&iAdamantane.
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1. Introduction
Throughout this paper, we consider simple graphisiwére finite, connected, undirected
graphs without loops and multiple edges. Gebe such a graph with vertex 846G) and
edge seE(G). The degreds(u) of a vertexu is the number of vertices adjacenttd-or
term and concept not given here, we refer the lpbjok

A molecular graph is a simple gragipresenting the carbon atom skeleton of an
organic molecule of the hydrocarbon. Thereforevtirtices of a molecular graph represent
the carbon atoms and its edges the carbon-carbedsb&hemical Graph Theory is a
branch of Mathematical Chemistry which has an irtepureffect on the development of
Chemical Sciences. Several graph indices [2] hawed some applications in Chemistry,
especially in QSPR/QSAR research [3].

In [4]Kulli defined the Banhatti degree of a verterf a graphG as

dg (e)
n-— dG (U) ’
wheren is the number of vertices &f and the vertexi and edges are incident irG.

The first and second E-Banhatti iedigvere introduced by Kulli in [4] and they
are defined as

B(u) =

EB(G)= Y [B(u)+B(V)],

wiE(G)

EB,(G)= > B(u)B(v).

WIE(G)
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We propose the E-Banhatti Nirmala index of a grépdind defined it as

EBN(G)= > +/B(u)+B(v).
)

WOE(G
We introduce the modified E-Banhatti Nirmala inddéxa graph G and defined it
as

1

uvuZE;'e)\/B(U) +B(v)

Considering the E-Banhatti Nirmala and modified &Batti Nirmala indices, we define
their corresponding exponentials of a graph G as

MEBN (G) =

EBN (G,X)= Z xVBu)+B(v)

wiE(G)

’

1
MEBN(G,x)= Y x/BWrBM,
wiE(G)

In Chemical Graph Theory, several graph indicesewsroduced and studied such as the
Wiener index [6, 7], the Zagreb indices [8, 9], Revan indices [10, 11], the Gourava
indices [12, 13], the reverse indices [14, 15] #re@Banhatti indices [16, 17].

In this paper, we compute the E-Banittinala index and the modified E-Banhatti

Nirmala index for some standard graphs and tetriame3-adamanane.

2. Resultsfor some standard graphs
Proposition 1. If Gis anr-regulargraph withn vertices and > 2, then

EBN(G) =nr [~ ~L.
n-r

Proof: LetG be anr-regular graph witm vertices and > 2. ThenG hasn—2r edges. For
any edgaiv=ein G, ds(€)= dg(u)+ de(u) —2=2r—2.

From definition we have

EBN(G)= > +/B(u)+B(v)

wE(G)

nr\/(Zr—Zj (2—2) /r—l
=— + =nr ;
2 n-r n-r n-

Corollary 1.1. Let C, be a cycle witm> 3 vertices. Then

[1
EBN(C,)=2n —
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Corollary 1.2. LetK, be a complete graph witix 3 vertices. Then

EBN (K, )=n(n-1)vn-2.

Proposition 2. Let P, be a path witln> 3 vertices. Then

EBN<P~=2H%-1MF+<n-s>{(:zj+(nfgf

Proposition 3. LetKmn, be a complete bipartite graph withikilm< nand n > 2. Then
EBN Ky, ) =v/mny(m+n)(m+n-2).

Proof: LetKnn be a complete blpartltem n graph withm + n vertices anann edges

such thaVi|=m, | V2 |=n,V (K:s) =Vi0V, for1<m <n, andn > 2. Every vertex

of V1is incident withn edges and every vertex\d#f is incident withm edges. Then

ds(€)= de(u)+ dg(V) —2=m+n —2.

EBN (K, )= > vB(U)+B(Vv)

wE(G)

Km+n—2j (m+n—2ﬂ
=mn +
m+n-n) {m+n-m

=J/mn/(m+n)(m+n-2).

N~

Corollary 3.1. LetK,, be a complete bipartite graph witke 2. Then

EBN (K, )2n1/n(n 1).

Corollary 3.2. LetK;, be a star WlthnZ 2. Then

EBN (K, ) =vny(n+1)(n-1).

3. Resultsfor Tetrameric 1,3-Adamantane

In Chemistry, diamondoids are variants of the carbage known as a damantaneo(C
Hie), the smallest unit cage structure of the diamongtal lattice. We focus on the
molecular graph structure of the family of tetraimdr,3-adamantane, denoted B4(n].
Let G be the graph of a tetrameric 1,3-adamani&fe@&]. The graph of a tetrameric 1,3-
adamantan@A[4] is presented in Figure 1.
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Figurel

By calculation,G has 1@ vertices and 13— ledges. Also by calculation, we obtain three
edge partitions of based on the degrees of the end vertices of egghaedfollows:

E={WIE(G) |de(W)=2,ds(V)=3},  Fi| = & + 6.
E={WOE(G) | de(W)=2, ds()=4},  E2| = & — 6.
Es={ WE(G) | de(u)=da(v) = 4}, Esl=n—1.

Therefore, inTA[n], there are three types of edges based on thedBadegree of end
vertices of each edge as follow:

_ _ 3 _ 3 _
BE: = {uv U E(G) | B(u) “lon=2' B(V) “Ton- 3}, BE.| =6n+6.
_ __ 4 - —
BE.={uv O E(G) | B(u) “Ton=> B(Vv) = Ton- 4}, BE;| = 6h—6.
_ ) _ 6 o
BEs;= {uv O E(G) | B(u) “lon_a B(Vv) = Ton 4}, BEs| =n—1.

We determine the E-Banhatiirmala index ofTA[n].

Theorem 1. Let G be the graph of a tetrameric 1,3-adamanfigij@] with 10n vertices
and 13—1 edges. Then

6n-15 20— 6 6
—2)(10n—3)+(6n_6) (5n—J)(Fn—2+(n_J) B- 2

EBN(TA[n])=(6n+6)\/(1On

Proof: From definition and by cardinalities of the Banthatige partition ofTA[n], we
obtain

EBN(TA[n])= > B(W+B(Vv)

wOE(TAN] )

:(en+6)\/[10n3_ 2j+[1m3_ ?J“G”‘QJ( o M = )
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+(n—l)\/(10n6_ 4}’( 1m6— 4)

After simplification, we get the desired resullt.

We compute the modified E-Banhatti Nirmatdex of TA[n].

Theorem 2. Let G be the graph of a tetrameric 1,3-adamaniigija] with 10n vertices
and 13—1 edges. Then

m (10n-2)(10- 3 (®- 1(5—)2 5—
EBN (TA[n]) = (6n+6)\/ son_15  Tle- 6,222 E (g |2

Proof: From definition and by cardinalities of the Barthatige partition ofTA[n], we
have

"EBN(TA[n])= X [B(u)+B(v)]‘%

WOE(TA )

1

SR R ) O
+(n—1)K10nG_ 4j+(1m6— 4ﬂ

gives the desired result after simplification.

;{ - ﬂ;

10
1
2

By using definitions and by cardinalities of thenBatti edge partition oFA[n], we obtain
the E-Banhatti Nirmala and modified E-Banhatti Neexponentials ofA[N].

Theorem 3. The E-Banhatti Nirmala exponential BA[Nn] is given by

[ 60015 [ 20-6 6
EBN (TA[n] ,x) = (6n+ 6) x/(10n-2010=3 4 (g7 g xV (5 X 5—2+(n_J)X\/; |

Theorem 4. The modified E-Banhatti Nirmala exponentiall@n] is given by

(on-2(1-3 ST (B~ 2
MEBN(TA[n] ,x)=(6n+6)x! 6015  +(en-g)x' 206 +(n—])x\/76.

4. Conclusion

In this study, we have introduced the E-Banhattinfdila index and the modified E-

Banhatti Nirmala index and their corresponding egtials of a graph. These newly
defined E-Banhatti Nirmala indices and their cgnmxling exponentials for some

standard graphs and tetrameric 1,3-adamantanebeavedetermined. This study is a new
direction in Graph Indices.
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