Annals of Pure and Applied Mathematics Vol. 26, No. 2, 2022, 119-124 ISSN: 2279-087X (P), 2279-0888(online) Published on 10 December 2022 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v26n2a08892

Annals of Pure and Applied <u>Mathematics</u>

Computation of E-Banhatti Nirmala Indices of Tetrameric 1,3-Adamantane

V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585106, India email: <u>vrkulli@gmail.com</u>

Received 31 October 2022; accepted 9 December 2022

Abstract. In this paper, we introduce the E-Banhatti Nirmala index and the modified E-Banhatti Nirmala index and their corresponding exponentials of a graph. Furthermore, we determine these newly defined E-Banhatti Nirmala indices and their corresponding exponentials for some standard graphs and tetrameric 1,3-Adamantane.

Keywords: E-Banhatti Nirmala index, modified E-Banhatti Nirmala index, tetrameric 1,3-adamantane.

AMS Mathematics Subject Classification): 05C05, 05C07, 05C09, 05C92

1. Introduction

Throughout this paper, we consider simple graphs which are finite, connected, undirected graphs without loops and multiple edges. Let *G* be such a graph with vertex set V(G) and edge set E(G). The degree $d_G(u)$ of a vertex *u* is the number of vertices adjacent to *u*. For term and concept not given here, we refer the book [1].

A molecular graph is a simple graph, representing the carbon atom skeleton of an organic molecule of the hydrocarbon. Therefore the vertices of a molecular graph represent the carbon atoms and its edges the carbon-carbon bonds. Chemical Graph Theory is a branch of Mathematical Chemistry which has an important effect on the development of Chemical Sciences. Several graph indices [2] have found some applications in Chemistry, especially in QSPR/QSAR research [3].

In [4], Kulli defined the Banhatti degree of a vertex u of a graph G as

$$B(u) = \frac{d_G(e)}{n - d_G(u)},$$

where *n* is the number of vertices of *G* and the vertex *u* and edge *e* are incident in *G*.

The first and second E-Banhatti indices were introduced by Kulli in [4] and they are defined as

$$EB_1(G) = \sum_{uv \in E(G)} [B(u) + B(v)]$$
$$EB_2(G) = \sum_{uv \in E(G)} B(u)B(v).$$

V.R.Kulli

We propose the E-Banhatti Nirmala index of a graph G and defined it as

$$EBN(G) = \sum_{uv \in E(G)} \sqrt{B(u) + B(v)}.$$

We introduce the modified E-Banhatti Nirmala index of a graph G and defined it

as

$$^{m}EBN(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{B(u) + B(v)}}.$$

Considering the E-Banhatti Nirmala and modified E-Banhatti Nirmala indices, we define their corresponding exponentials of a graph G as

$$EBN(G, x) = \sum_{uv \in E(G)} x^{\sqrt{B(u) + B(v)}},$$

^m EBN(G, x) = $\sum_{uv \in E(G)} x^{\sqrt{B(u) + B(v)}}.$

In Chemical Graph Theory, several graph indices were introduced and studied such as the Wiener index [6, 7], the Zagreb indices [8, 9], the Revan indices [10, 11], the Gourava indices [12, 13], the reverse indices [14, 15] and the Banhatti indices [16, 17].

In this paper, we compute the E-Banhatti Nirmala index and the modified E-Banhatti Nirmala index for some standard graphs and tetrameric 1,3-adamanane.

2. Results for some standard graphs

Proposition 1. If *G* is an *r*-regular graph with *n* vertices and $r \ge 2$, then

$$EBN(G) = nr\sqrt{\frac{r-1}{n-r}}.$$

Proof: Let *G* be an *r*-regular graph with *n* vertices and $r \ge 2$. Then *G* has $\frac{nr}{2}$ edges. For any edge uv=e in *G*, $d_G(e)=d_G(u)+d_G(u)-2=2r-2$.

From definition we have

$$EBN(G) = \sum_{uv \in E(G)} \sqrt{B(u) + B(v)}$$
$$= \frac{nr}{2} \sqrt{\left(\frac{2r-2}{n-r}\right) + \left(\frac{2r-2}{n-r}\right)} = nr \sqrt{\frac{r-1}{n-r}}.$$

Corollary 1.1. Let C_n be a cycle with $n \ge 3$ vertices. Then

$$EBN(C_n) = 2n\sqrt{\frac{1}{n-2}}.$$

Computation of E-Banhatti Nirmala Indices of Tetrameric 1,3-Adamantane

Corollary 1.2. Let K_n be a complete graph with $n \ge 3$ vertices. Then $EBN(K_n) = n(n-1)\sqrt{n-2}$.

Proposition 2. Let P_n be a path with $n \ge 3$ vertices. Then

$$EBN(P_n) = 2\left[\left(\frac{1}{n-1}\right) + \left(\frac{2}{n-2}\right)\right]^{\frac{1}{2}} + (n-3)\left[\left(\frac{2}{n-2}\right) + \left(\frac{2}{n-2}\right)\right]^{\frac{1}{2}}$$
$$= n\sqrt{\frac{3n-4}{(n-1)(n-2)}} + 2(n-3)\sqrt{\frac{1}{n-2}}.$$

Proposition 3. Let $K_{m,n}$ be a complete bipartite graph with $1 \le m \le n$ and $n \ge 2$. Then $EBN(K_{m,n}) = \sqrt{mn}\sqrt{(m+n)(m+n-2)}$.

Proof: Let $K_{m,n}$ be a complete bipartite m n graph with m + n vertices and mn edges such that $|V_1| = m$, $|V_2| = n$, $V(K_{r,s}) = V_1 \cup V_2$ for $1 \le m \le n$, and $n \ge 2$. Every vertex of V_1 is incident with n edges and every vertex of V_2 is incident with m edges. Then $d_G(e) = d_G(u) + d_G(v) - 2 = m + n - 2$.

$$EBN(K_{m,n}) = \sum_{uv \in E(G)} \sqrt{B(u) + B(v)}$$
$$= mn \left[\left(\frac{m+n-2}{m+n-n} \right) + \left(\frac{m+n-2}{m+n-m} \right) \right]^{\frac{1}{2}}$$
$$= \sqrt{mn} \sqrt{(m+n)(m+n-2)}.$$

Corollary 3.1. Let $K_{n,n}$ be a complete bipartite graph with $n \ge 2$. Then

$$EBN(K_{n,n}) = 2n\sqrt{n(n-1)}.$$
Corollary 3.2. Let $K_{l,n}$ be a star with $n \ge 2$. Then
$$EBN(K_{1,n}) = \sqrt{n}\sqrt{(n+1)(n-1)}$$

3. Results for Tetrameric 1,3-Adamantane

In Chemistry, diamondoids are variants of the carbon cage known as a damantane (C_{10} , H_{16}), the smallest unit cage structure of the diamond crystal lattice. We focus on the molecular graph structure of the family of tetrameric 1,3-adamantane, denoted by TA[n]. Let *G* be the graph of a tetrameric 1,3-adamantane TA[n]. The graph of a tetrameric 1,3-adamantane TA[n] is presented in Figure 1.

V.R.Kulli

By calculation, G has 10n vertices and 13n - 1 edges. Also by calculation, we obtain three edge partitions of G based on the degrees of the end vertices of each edge as follows:

$E_1 = \{uv \in E(G) \mid d_G(u) = 2, d_G(v) = 3\},\$	$ E_1 =6n+6.$
$E_2 = \{uv \in E(G) \mid d_G(u) = 2, d_G(v) = 4\},\$	$ E_2 =6n-6.$
$E_3 = \{uv \in E(G) \mid d_G(u) = d_G(v) = 4\},\$	$ E_3 = n - 1.$

Therefore, in TA[n], there are three types of edges based on the Banhatti degree of end vertices of each edge as follow:

$$BE_{1} = \{uv \in E(G) \mid B(u) = \frac{3}{10n - 2}, B(v) = \frac{3}{10n - 3}\}, \qquad |BE_{1}| = 6n + 6.$$

$$BE_{2} = \{uv \in E(G) \mid B(u) = \frac{4}{10n - 2}, B(v) = \frac{4}{10n - 4}\}, \qquad |BE_{2}| = 6n - 6.$$

$$BE_{3} = \{uv \in E(G) \mid B(u) = \frac{6}{10n - 4}, B(v) = \frac{6}{10n - 4}\}, \qquad |BE_{3}| = n - 1.$$

We determine the E-Banhatti Nirmala index of TA[n].

Theorem 1. Let G be the graph of a tetrameric 1,3-adamantane TA[n] with 10n vertices and 13n-1 edges. Then

$$EBN(TA[n]) = (6n+6)\sqrt{\frac{60n-15}{(10n-2)(10n-3)}} + (6n-6)\sqrt{\frac{20n-6}{(5n-1)(5n-2)}} + (n-1)\sqrt{\frac{6}{5n-2}}.$$

Proof: From definition and by cardinalities of the Banhatti edge partition of TA[n], we obtain

$$EBN(TA[n]) = \sum_{uv \in E(TA[n])} \sqrt{B(u) + B(v)}$$
$$= (6n+6)\sqrt{\left(\frac{3}{10n-2}\right) + \left(\frac{3}{10n-3}\right)} + (6n-6)\sqrt{\left(\frac{4}{10n-2}\right) + \left(\frac{4}{10n-4}\right)}$$

Computation of E-Banhatti Nirmala Indices of Tetrameric 1,3-Adamantane

$$+(n-1)\sqrt{\left(\frac{6}{10n-4}\right)}+\left(\frac{6}{10n-4}\right)$$

After simplification, we get the desired result.

We compute the modified E-Banhatti Nirmala index of *TA*[*n*].

Theorem 2. Let G be the graph of a tetrameric 1,3-adamantane TA[n] with 10n vertices and 13n-1 edges. Then

$${}^{m}EBN(TA[n]) = (6n+6)\sqrt{\frac{(10n-2)(10n-3)}{60n-15}} + (6n-6)\sqrt{\frac{(5n-1)(5n-2)}{20n-6}} + (n-1)\sqrt{\frac{5n-2}{6}}$$

Proof: From definition and by cardinalities of the Banhatti edge partition of TA[n], we have

$${}^{m}EBN(TA[n]) = \sum_{uv \in E(TA[n])} \left[B(u) + B(v)\right]^{-\frac{1}{2}}$$
$$= (6n+6) \left[\left(\frac{3}{10n-2}\right) + \left(\frac{3}{10n-3}\right)\right]^{-\frac{1}{2}} + (6n-6) \left[\left(\frac{4}{10n-2}\right) + \left(\frac{4}{10n-4}\right)\right]^{-\frac{1}{2}}$$
$$+ (n-1) \left[\left(\frac{6}{10n-4}\right) + \left(\frac{6}{10n-4}\right)\right]^{-\frac{1}{2}}$$

gives the desired result after simplification.

By using definitions and by cardinalities of the Banhatti edge partition of TA[n], we obtain the E-Banhatti Nirmala and modified E-Banhatti Nirmala exponentials of TA[n].

Theorem 3. The E-Banhatti Nirmala exponential of *TA*[*n*] is given by

$$EBN(TA[n], x) = (6n+6)x^{\sqrt{\frac{60n-15}{(10n-2)(10n-3)}}} + (6n-6)x^{\sqrt{\frac{20n-6}{(5n-1)(5n-2)}}} + (n-1)x^{\sqrt{\frac{6}{5n-2}}}.$$

Theorem 4. The modified E-Banhatti Nirmala exponential of *TA*[*n*] is given by

$${}^{m}EBN(TA[n],x) = (6n+6)x^{\sqrt{\frac{(10n-2)(10n-3)}{60n-15}}} + (6n-6)x^{\sqrt{\frac{(5n-1)(5n-2)}{20n-6}}} + (n-1)x^{\sqrt{\frac{5n-2}{6}}}.$$

4. Conclusion

In this study, we have introduced the E-Banhatti Nirmala index and the modified E-Banhatti Nirmala index and their corresponding exponentials of a graph. These newly defined E-Banhatti Nirmala indices and their corresponding exponentials for some standard graphs and tetrameric 1,3-adamantane have been determined. This study is a new direction in Graph Indices.

V.R.Kulli

Acknowledgement. The authors thank the reviewer for putting valuable remarks and comments on this paper.

Conflict of interest. The authors declare that they have no conflict of interest.

Authors' Contributions. All the authors contributed equally to this work.

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- V.R.Kulli, Graph indices, in Hand Book of Research in Advanced Applications of Graph Theory in Modern Society, M.Pal, S.Samanta, A.Pal (eds.) IGI Global, USA (2020) 66-91.
- 3. I.Gutman and O.E.Polansky, *Mathematical Concepts in Organic Chemistry*, Springer, Berlin (1986).
- 4. V.R.Kulli, New direction in the theory of graph index in graphs, submitted.
- 5. V.R.Kulli, Hyper E-Banhatti indices of certain networks, submitted.
- 6. H.Wiener, Structural determination of parattin boiling points, *Journal of the American Chemical Society*, 69(1) (1947) 17-20.
- P.W.Fowler, G.Caporossi and P.Hansen, Distance matrices, Wiener indices and related invariants of fullerenes, *The Journal of Physical Chemistry A*, 105(25) (2001) 6232-6242.
- 8. I.Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.*, 17 (1972) 535-538.
- 9. K.C.Das, I.Gutman and B.Horoldagva, Comparing Zagreb indices and coindices of trees, *MATCH Commun. Math. Comput. Chem.*, 67 (2012) 189-198.
- 10. V.R.Kulli, The sum connectivity Revan index of silicate and hexagonal networks, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 401-406.
- 11. R.Aguilar-Sanchez, I.F.Herrera-Gonzalez, J.A.Mendez-Bermudez and J.M.Sigarreta, Revan degree indices on random graphs, arXiv:2210.04749v1[math.CO]10 Oct.2022.
- 12. V.R.Kulli, The Gourava indices and coindices of graphs, *Annals of Pure and Applied Mathematics*, 14(1) (2017) 33-38.
- 13. B.Basavanagoud and S.Policepatil, Chemical applicability of Gourava and hyper Gourava indices, *Nanosystems: Physics, Chemistry, Mathematics* 12(2) (2021) 142-150.
- 14. S.Ediz, Maximal graphs of the first reverse Zagreb beta index, *TWMS J. Appl.Eng. Math.* 8 (2018) 306-310.
- 15. V.R.Kulli, The reverse Zagreb and reverse hyper Zagreb indices and their polynomials of rhombus silicate networks, *Annals of Pure and Applied Mathematics*, 16(1) (2018) 47-51.
- 16. V.R.Kulli, On *K* Banhatti indices of graphs, *Journal of Computer and Mathematical Sciences*, 7 (2016) 213-218.
- 17. D.Zhao, M.A.Zahid, R.Irfan, M.Arshad, A.Fahad, Z.Ahmad and L.Li, R.Kulli, Banhatti, Revan and hyper indices of silicon carbide Si2C3-III[*n*,*m*], *Open Chemistry*, 19 (2021) 646-652.