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Abstract.In this paper, the Diophantine equatiph+ (p + 14)¥ = z%, wherep p + 14
are primes and, y, zare non-negative integers, is investigated. Someditions for non-
existence of the solutions of this equation aresgméed.
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1. Introduction
In recent papers, Diophantine equations of tpp&(p+ h)y = 7 wherep, p+ hare

primes andh is an even positive integer, have been studied.ifstance, Bacani and
Rabago [1] proved in 2015 that all non-negativeegetr solutions of the Diophantine

equation p* +( p+2)” = Z where p andp+ 2are primes, argx, y, 2) :(1, 1Wﬂ
Where\/TJrZis an integer. In 2018, Burshtein [2,3] studied Biephantine equation
p* +( p+ 4)y =7 where p> 3and p+ 4 are primes, and the Diophantine equation
p* +( p+ 6)y = Z where pand p+6are primes withx+ y=2,3,4. In the same year,

Neres [9] showed that the Diophantine equagion ( p+8)’ = Z where p> 3and p+ 8

are primes, has no positive integer solution.
In 2019, Kumar, Gupta and Kishan [6] found thag¢ fhiophantine equation

p* +( p+12)y = Zwhere p and p+ 12are primes such that is of the formp= &+ 1
, has no non-negative integer solution. In 202Xkdban and Pakapongpun [4] showed that
the Diophantine equationmx+(p+ 20)y = Z where p and p+ 20are primes, has no
positive integer solution. In 2022, Tadee [12] stdd the Diophantine equation
p* +(p+10)’ = Zwherep andp+10 are primes.

In this paper, we will study the Diophantine edpmatp* +( p+14)y = Z where
p, p+14 are primes and, y, zare non-negative integers.
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2. Preliminaries
In this section, we present some helpful Theoremisl@mmas.

Theorem 2.1. (Mihailescu’s theorem) [7] The Diophantine equate’ — b’ =1 has the
unique integer solutior{a,b, x, y)=(3,2,2,3 where a,b, x and y are integers with

min{a,b, x, y} > 1.

Theorem 2.2. [11] (1,0, 2 is the unique solutiofx, y, 2) for the Diophantine equation
3 +17' =7" wherex, y and z are non-negative integers.

Lemma2.1. Let q be prime. Then the Diophantine equationg’ = Z has only two non-
negative integer solutiors, y, 20{(2,3,3 (3,13 .

Proof: Let y and z be non-negative integers such thatq’ = Z. It is easy to check that
z>1landy#0. If y=1, then(z-1)(z+1)= qg. Sinceq is prime, we have-1=1 and
z+1=q. It implies thatz=2and q=3. Therefore(q, y, 2=(3,1,9. If y>1, then
min{z,q,2,)} > 1. By Theorem 2.1, it follows thd, y, 2) =(2,3,3.

Definition 2.1. Let p be an odd prime and be an integer such thgt:d(a,p) =1 If the

congruencez’ = a(mod p) has an integer solution, thenis said to be a quadratic residue
of p. Otherwise,a is called a quadratic non-residue pf

Definition 2.2. Let p be an odd prime and be an integer such thgtd(a,p) =1 The
Legendre symbol(ij , is defined by
p

a)_ 1 if aisa quadratic residue op
p -1 if ais a quadratic non-residue gi
Theorem 2.3. [10] Let p be an odd prime and,bbe integers witlgcd(a,p)z land

T e

Lemma2.2. [5] Let p be an odd prime.

[E]:{ 1if p=#1(mod§

p -1 if p=+3(mod8§) .
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Lemma2.3.[8] Let p be an odd prime witlp # 7.

(7j={ 1 if p=+1,£3,+9 mod2$

p) | -1 if p=45,+11+19 mod 2B

By Lemma 2.2, Lamma 2.3 and Theorem 2.3, we haséallowing theorem.

Theorem 2.4. Let p be an odd prime withp# 7.

14) [ 1 if p=#1,#5+9+11# 13+ 2b mod56
p) | -1 if p=23,£15+17+ 19+ 2% 2{ modJe

3. Main results
In this section, we present our results.

Theorem 3.1. Let p and p+14 be primes and, y, zbe non-negative integers.
(i) If x is even, then the Diophantine equatiph+( p+14)" = Z has no solution.
(i) If y is even, then the Diophantine equatiph+(p+14)" = Z has the only one

solution(p, x, ¥, 2 =(3,1,0,3.

Proof:
® Let x be even. Then there exists a non-negative int&gsuch thatx=2k .

Then (z— pk)( 7+ 6) =( pr14)’ . Since p+14 is prime, it implies that
z- p =(p+14)" and z+ p =( p+14)"" for some non-negative integer.
Thus, y=2u and 2p :(p+14)”(( p+ 147" - j . Since p and p+14 are
primes, we obtain that=0, and so2p“=(p+14)’-1. It follows that
2p" :(p+13)(( p+14 " +(pr 147+ + ) By Lemma 2.1, we hakez 0.
Thenp +13= 2p" for some positive integamn. Thus, p|( p+13), and sop=13.

This is a contradiction sincp +14= 27 is not prime.

(i) Let y be even. Then there exists a non-negative integeich thaty =2I .
Then(z—( p+14)')( z+( pr14 ) = p. Since p is prime, we get
z—( p+14)I = p andz+( p+14)I = p~'for some non-negative integer.
Thus, x> 2v and 2(p+14) = pV( P - ]) . Since p and p+14 are primes,
we havev=0 and2(p+14) = p* - 1. It follows that
2(p+14] =(p= (54 9],
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Since p+14 is prime, there exists a non-negative integar such that
p-1=2(p+14". Thus,m=0, and sop=3. By Theorem 2.2, we have
(p.xy.2=(310,3.

Corollary 3.1. Two Diophantine equationg5‘+19 =z* and 5* + 362 =z* have no
non-negative integer solution.

Proof: Assume that, b, care non-negative integers such tB&t + 19 =c?. It follows
that (x,y,2)=(2a b ¢ is a solution of the Diophantine equatifh+19’ =z*. This is a
contradiction by Theorem 3.1. Similarly, to proveatt the Diophantine equation
5+ 362 =Z° has no solution.

Corollary 3.2. Let p and p+14 be primes Withp53(mod4). Then the Diophantine
equationp* +( p+14)’ = Z" has no solution, where is a positive integer.

Proof: Assume that, b, care non-negative integers such trpﬁt+( p+14)b =c". Then
(x, Y, z) =( ah 6”) is a non-negative integer solution of the Diophantequation
p*+(p+14)’ = Z. By Theorem 3.1a andb are odd. Sincep=3(mod4), we have
p=3,7( modg.

Casel p=3(mod§. Then p+14=1 mod§. Sincea is odd, we get3* =3(mod§ ,
and soc*" = p* +( p+14)b =3+ 1= 4 mod$, a contradiction since*" =0,1( mod§.
Case 2. p=7(modg . Sincea andb are odd, we have® =(-1)" =-1( mod§ and
(p+14)" =(-3" =-4 mod$, respectively. Thus!" = p* +( p+14)’ = 4 mod§. This
is impossible since* =0,1( mod§.

Theorem 3.2. Let p and p+14 be primes withp=6(mod7. Then the Diophantine
equation p* +( p+14)y = Z has no non-negative integer solution.

Proof: Assume thal, y, zare non-negative integers such trpﬂt+( p+14)y = Z. Since
p=6(mod7), we getp#3. By Theorem 3.1x and y are odd. Since =-1(mod?7),
we obtain thatz” = p* +( p+14)’ =(-1)"+(-1)”"=-2 mod7]. This is impossible since
72=0,1,2,4 mod7J.

By Theorem 3.2, we have the following corollary.

Corollary 3.3. The Diophantine equatioB3 + 97 =z has no non-negative integer
solution.
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Theorem 33. Let pz3 and p+14 be primes with p=+3,£15+17+ 19 2¢
+27(mod5§ . Then the Diophantine equati@+( p+14)" = Z has no non-negative
integer solution.

Proof: Assume thatx, y, z are non-negative integers such tipdt+ ( p+14)’ = Z. By
Theorem 3.1 ang # 3, it follows thatx and y are odd. Ther? El4y(mod p), and so

y
(£] =1. Since p+14 is prime, we getp# 2 and p# 7. By Theorem 2.3, we have
p
p) Up p)
4. Conclusion

which is impossible by Theorem 2.4.

We proved that the Diophantine equat'prml-( p+14)y =7, where p and p+14 are
primes, has no non-negative integer solutiothe following cases: 1) whex is even, 2)
when p=6(mod7), and 3) whenp# 3 and p=+3,+15+ 17 19 2% 2 mod}.
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