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1. Introduction 

In recent papers, Diophantine equations of type ( ) 2yxp p h z+ + =  where ,p p h+ are 

primes and h  is an even positive integer, have been studied. For instance, Bacani and 
Rabago [1] proved in 2015 that all non-negative integer solutions of the Diophantine 

equation ( ) 22
yxp p z+ + =  where p and 2p + are primes, are( ) ( ), , 1,1, 2 2x y z p= +  

where 2 2p + is an integer. In 2018, Burshtein [2,3] studied the Diophantine equation 

( ) 24
yxp p z+ + =  where 3p > and 4p +  are primes, and the Diophantine equation 

( ) 26
yxp p z+ + =  where p and 6p + are primes with 2,3,4x y+ = . In the same year, 

Neres [9] showed that the Diophantine equation ( ) 28
yxp p z+ + =  where 3p >  and 8p +  

are primes, has no positive integer solution.  
 In 2019, Kumar, Gupta and Kishan [6] found that the Diophantine equation 

( ) 212
yxp p z+ + = where p  and 12p +  are primes such that p  is of the form 6 1p n= +

, has no non-negative integer solution. In 2021, Dokchan and Pakapongpun [4] showed that 

the Diophantine equation ( ) 220
yxp p z+ + =  where p  and 20p +  are primes, has no 

positive integer solution. In 2022, Tadee [12] studied the Diophantine equation 

( ) 210
yxp p z+ + = wherep  and 10p +  are primes.  

 In this paper, we will study the Diophantine equation ( ) 214
yxp p z+ + =  where

, 14p p+  are primes and , ,x y zare non-negative integers. 
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2. Preliminaries 
In this section, we present some helpful Theorems and Lemmas. 
 
Theorem 2.1. (Mihailescu’s theorem) [7] The Diophantine equation 1x ya b− =  has the 
unique integer solution ( ) ( ), , , 3, 2, 2, 3a b x y =  where , ,a b x  and y are integers with 

{ }min , , , 1a b x y > . 

 
Theorem 2.2. [11] ( )1, 0, 2  is the unique solution ( ), ,x y z  for the Diophantine equation 

23 17x y z+ =  where ,x y  and z  are non-negative integers. 
 
Lemma 2.1. Let q  be prime. Then the Diophantine equation 21 yq z+ =  has only two non-

negative integer solutions ( ) ( ) ( ){ }, , 2, 3, 3 , 3,1, 2q y z ∈ . 

Proof: Let y  and z  be non-negative integers such that 21 yq z+ = . It is easy to check that 

1z >  and 0y ≠ . If 1y = , then ( )( )1 1z z q− + = . Since q  is prime, we have 1 1z− =  and 

1z q+ = . It implies that 2z = and 3q = . Therefore ( ) ( ), , 3,1, 2q y z = . If 1y > , then 

{ }min , ,2, 1z q y > . By Theorem 2.1, it follows that ( ) ( ), , 2, 3, 3q y z = .                           �       

 
Definition 2.1. Let p  be an odd prime and a  be an integer such that ( )gcd , 1a p = . If the 

congruence ( )2 modz a p≡  has an integer solution, then a  is said to be a quadratic residue 

of p . Otherwise, a  is called a quadratic non-residue of p . 
 
Definition 2.2. Let p  be an odd prime and a  be an integer such that ( )gcd , 1a p = . The 

Legendre symbol, 
a

p

 
 
 

 , is defined by 

1 if is a quadratic residue of

1 if is a quadratic non-residue of .

a pa

a pp

  
=   − 

 

Theorem 2.3. [10] Let p  be an odd prime and ,a b be integers with ( )gcd , 1a p = and 

( )gcd , 1b p = . 

ab a b

p p p

    
=    

    
. 

 
Lemma 2.2. [5] Let p  be an odd prime. 
 

( )
( )

1 if 1 mod82
1 if 3 mod8 .

p

pp

 ≡ ±  =   − ≡ ±  
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Lemma 2.3. [8] Let p  be an odd prime with 7p ≠ . 
 

( )
( )

1 if 1, 3, 9 mod 287
1 if 5, 11, 13 mod 28 .

p

pp

 ≡ ± ± ±  =   − ≡ ± ± ±  
 

 
By Lemma 2.2, Lamma 2.3 and Theorem 2.3, we have the following theorem. 
 
Theorem 2.4. Let p  be an odd prime with 7p ≠ . 

( )
( )

1 if 1, 5, 9, 11, 13, 25 mod5614
1 if 3, 15, 17, 19, 23, 27 mod56 .

p

pp

 ≡ ± ± ± ± ± ±  =   − ≡ ± ± ± ± ± ±  
 

 
3. Main results 
In this section, we present our results. 
 
Theorem 3.1. Let p  and 14p +  be primes and , ,x y zbe non-negative integers. 

(i) If  x  is even, then the Diophantine equation ( ) 214
yxp p z+ + =  has no solution. 

(ii) If y  is even, then the Diophantine equation ( ) 214
yxp p z+ + =  has the only one 

solution( ) ( ), , , 3,1, 0, 2p x y z = . 

Proof:  
(i)  Let x  be even. Then there exists a non-negative integer k  such that 2x k= . 

 Then ( )( ) ( )14
yk kz p z p p− + = + . Since 14p +  is prime, it implies that 

 ( )14
ukz p p− = +  and ( )14

y ukz p p
−+ = + for some non-negative integer u . 

 Thus, 2y u≥ and ( ) ( )( )2
2 14 14 1

u y ukp p p
−= + + − . Since p and 14p + are 

 primes, we obtain that 0u = , and so ( )2 14 1
ykp p= + − . It follows that 

 ( ) ( ) ( )( )1 2
2 13 14 14 1

y ykp p p p
− −= + + + + + +L . By Lemma 2.1 , we have 0k ≠ . 

 Then 13 2 np p+ =  for some positive integer n . Thus, ( )13p p+ , and so 13p = . 

 This is a contradiction since 14 27p + =   is not prime. 
 
(ii) Let y  be even. Then there exists a non-negative integer l  such that 2y l= .  

 Then ( )( ) ( )( )14 14
l l xz p z p p− + + + = . Since p  is prime, we get 

 ( )14
l vz p p− + =  and ( )14

l x vz p p −+ + = for some non-negative integer v . 

 Thus, 2x v≥  and ( ) ( )22 14 1
l v x vp p p −+ = − . Since p  and 14p +  are primes, 

 we have 0v =  and ( )2 14 1
l xp p+ = − . It follows that  

( ) ( )( )1 22 14 1 1
l x xp p p p− −+ = − + + +L . 
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 Since 14p + is prime, there exists a non-negative integer m  such that 

 ( )1 2 14
m

p p− = + . Thus, 0m= , and so 3p = . By Theorem 2.2, we have 

 ( ) ( ), , , 3,1, 0, 2p x y z = .                                                                                          �  

 
Corollary 3.1. Two Diophantine equations 225 19x y z+ =  and 25 361x y z+ =  have no 
non-negative integer solution. 
Proof: Assume that , ,a b care non-negative integers such that 225 19a b c+ = . It follows 

that ( ) ( ), , 2 , ,x y z a b c=  is a solution of the Diophantine equation 25 19x y z+ = . This is a 

contradiction by Theorem 3.1. Similarly, to prove that the Diophantine equation 
25 361x y z+ =  has no solution.                                                                                            �  

 
Corollary 3.2. Let p  and 14p +  be primes with ( )3 mod 4p ≡ . Then the Diophantine 

equation ( ) 414
yx np p z+ + =  has no solution, where n  is a positive integer. 

Proof: Assume that , ,a b care non-negative integers such that ( ) 414
ba np p c+ + = . Then 

( ) ( )2, , , , nx y z a b c=  is a non-negative integer solution of the Diophantine equation 

( ) 214
yxp p z+ + = . By Theorem 3.1, a  and b  are odd. Since ( )3 mod4p ≡ , we have 

( )3,7 mod8p ≡ .  

Case 1. ( )3 mod8p ≡ . Then ( )14 1 mod8p + ≡ . Since a  is odd, we get  ( )3 3 mod8a ≡ , 

and so ( ) ( )4 14 3 1 4 mod8
bn a ac p p= + + ≡ + ≡ , a contradiction since ( )4 0,1 mod8nc ≡ .     

Case 2. ( )7 mod8p ≡ . Since a  and b  are odd, we have ( ) ( )1 1 mod8
aap ≡ − ≡ − and 

( ) ( ) ( )14 3 3 mod8
b b

p + ≡ − ≡ − , respectively. Thus, ( ) ( )4 14 4 mod8
bn ac p p= + + ≡ . This 

is impossible since ( )4 0,1 mod8nc ≡ .                                                                                 �  

 
Theorem 3.2. Let p  and 14p +  be primes with ( )6 mod7p ≡ . Then the Diophantine 

equation ( ) 214
yxp p z+ + =  has no non-negative integer solution. 

Proof: Assume that , ,x y zare non-negative integers such that ( ) 214
yxp p z+ + = . Since 

( )6 mod7p ≡ , we get 3p ≠ . By Theorem 3.1, x  and y  are odd. Since ( )1 mod7p ≡ − , 

we obtain that ( ) ( ) ( ) ( )2 14 1 1 2 mod7
y x yxz p p= + + ≡ − + − ≡ − . This is impossible since 

( )2 0,1,2,4 mod7z ≡ .                                                                                                           �  

 
By Theorem 3.2, we have the following corollary. 
 
Corollary 3.3. The Diophantine equation 283 97x y z+ =  has no non-negative integer 
solution. 
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Theorem 3.3. Let 3p ≠ and 14p + be primes with 3, 15, 17, 19, 23,p ≡ ± ± ± ± ±  

( )27 mod56± . Then the Diophantine equation ( ) 214
yxp p z+ + =  has no non-negative 

integer solution. 

Proof: Assume that , ,x y z are non-negative integers such that ( ) 214
yxp p z+ + = . By 

Theorem 3.1 and 3p ≠ , it follows that x  and y  are odd. Then ( )2 14 modyz p≡ , and so 

14
1

y

p

 
= 

 
. Since 14p +  is prime, we get 2p ≠  and 7p ≠ . By Theorem 2.3, we have  

14 14 14
1,

y y

p p p

    
= = =    

     
 

 which is impossible by Theorem 2.4.                                                                                 �  
 
4. Conclusion 

We proved that the Diophantine equation ( ) 214
yxp p z+ + = , where p  and 14p +  are 

primes, has no non-negative integer solution in the following cases: 1) when x  is even, 2) 
when ( )6 mod7p ≡ , and 3) when 3p ≠  and ( )3, 15, 17, 19, 23, 27 mod56p ≡ ± ± ± ± ± ± . 
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