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Abstract. The connectivity indices are applied to measurecttemical characteristics of
chemical compounds in Chemical Sciences. Receathpvel degree concept has been
defined in Graph Theory: Banhatti degree of a weiriea graph. In this paper, the product
connectivity E-Banhatti and the reciprocal prodachnectivity E-Banhatti indices are
defined by using Banhatti degree concept. We atsopate these newly defined E-
Banhatti indices of wheel graphs and certain ndvexu
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1. Introduction
Let G be a simple, connected graph with vertex\§&) and edge sdE(G). The degree
ds(u) of a vertexu is the number of vertices adjacentitdf e=uvis an edge 0§, then the
vertexu and edge are incident as areande. The degreég(€e) of an edgein G is defined
asds(e) = ds(u) + ds(v) — 2 withe=uv. For term and concept not given here, we refer the
book [1].
Chemical Graph Theory is a branch of Mathematidar@istry which has an important
effect on the development of Chemical Sciencese@égraph indices have found some
applications in Chemistry, especially in QSPR/Q3ARearch [2].
In [3], Kulli defined the Banhatti degree of a verteaf a graphs as

dg (e)
wheren is the number of vertices &f and the vertexiand edges are incident irG.
The first and second E-Banhatti indices were intoed by Kulli in [3] and they are defined
as

B(u) =

EB(G)= 3 [B(u)+B(W)],

wiE(G)

EB,(G)= > B(u)B(v).

WE(G)
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Recently, some E-Banhatti indices were studie@tample, in [4, 5, 6, 7].
We introduce the product connectivity E-Banhattigr, defined as
1

uvsz:'e) B(u)B(v)

We also propose the reciprocal product connectiianhatti index of a graph as

RPEB(G)= ) vB(u)B(v).

uwlE(G)

We now introduce the connectivity E-Banhatti polgmals of a graph as follows:

PEB(G) =

The product connectivity E-Banhatti polynomial ofraph is defined as
1

PEB(G, X) — z ¥ VBB

wE(G)

The reciprocal product connectivity E-Banhatti pamignial of a graph is defined as
RPEB(G,x)= > x/Wev,

wiE(G)
Recently, some connectivity indices were studigdef@mple, in [8, 9, 10, 11, 12].
In this paper, the product connectivity E-Banhiattiex, the reciprocal product
connectivity E-Banhatti index and their correspogdpbolynomials of wheel graphs and
certain nanotubes are computed.

2. Resultsfor wheel graphs
A wheel graphi; is the join ofC, andKi. ThenW, hasn+1vertices andr2edges. A graph
W, is shown in Figure 1.

Figure 1: Wheel grapi,
In Wi, , there are two types of edges as follows:
E:i= {uv O E(W,) | d(u) =d(v) = 3}, [E1 =n.
E>= {uv O E(W;) | d(u) =3, d(v) =n}, |E2| =n.
Therefore, i\, there are two types of Banhatti edges based ohd&t degrees of end
vertices of each edge as follow:

4

BE:= {uv D B(W) | BY) =B() =7

}! BEll =n.

BE,= {uv 0 E(W,) | B(u) =”—+; JB()=n+1}, [BEs=n.
n —
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We calculate the product connectivity E-Banhattiex and its polynomial form of\i, as
follows:

Theorem 1. Let W, be a wheel graph. Then

. 1 n/n-2

i PEB(W,)==n(n-2)+ .

® (Wo) 4 (n-2) n+1
n-2 n-2

(ii) PEB(W,,x)=nx 4 +nx "L
Proof: Applying definition and Banhatti edge partitiorfs\id,, we conclude

i PEB(G) = 1
0 2 T

(g D]

By simplifying the above equation, we get the dabiresult.
1

() PEB(W,x)= 3 xVEweW

wiE(W,)
1 =
(ixij 2 (Lﬂ‘x(nq.l)) 2
=nx\""2 n-2) 4 nx\n-2 .

By simplifying the above equation, we obtain theids result.
We calculate the reciprocal product connectivitg &hatti index and its polynomial form
of W, as follows:

Theorem 2. Let W, be a wheel graph. Then

() RPEB(W,)= % +—”(::’_;) .
4 n+1

(i)  RPEB(W,,x)=nx"2 +nx/n-2,
Proof: Applying definition and Banhatti edge partitiorfs\id,, we conclude

() RPEB(W,)= VB(u)B(v)
wE(W,)
1
= n[( 4 jX( 4 H +nK n+lj><(n+l)}2 .
n-2 n-2 n-2
By simplifying the above equation, we obtain theide result.

(i) RPEB(W,x)= Y x/5WEV
e

1 1
(ixijz [ﬂx(nﬂ))z
=nx\""2 n-2) 4 nx\n-2 .

N




V.R.Kulli
By simplifying the above equation, we get the dabiresult.
3. H-Naphtalenic Nanotubes

We consider a family dfl-Naphtalenic nanotubes which is denoted\biPX[m, n], see
Figure 2.

G
S-S

Figure 2: Graph ofH-Naphtalenic nanotube

The graphs of a nanotubPX[m, n] have 10nn vertices and 1Ifin — 2n edges are shown
in the above graph. L&= NHPX[m, n].
InG, there are two types of edges as follows:
E: = {uv O E(G) |d(u) = 2,d(v) = 3}, Ei| = 8n.
E> ={uv 0 E(G) | d(u) =d(v) = 3}, E2| = 15nn — 10m.
Therefore, inG, we obtain that B(u), B(v): uv O E(NHPX[m, n])} has two Banhatti edge
set partitions.

BE:= {uv O E(G) | B(u) =

3
, B(v) = , E. = an.
10mn -2 V) lOmn—3} PEil

BE2= {uv O E(G) | B(u) =B(V) = h BE2| = 15mn—10m.

10mn-3
We calculate the product connectivity E-Banhattieix and its polynomial form & as
follows:

Theorem 3. Let G= NHPX[m, n]. Then
(i) PEB(G)=§m\/(10mn—2)(10nn— 3+:11( 15— 1m)( 1on- B .

. 1 [@om-2(1am-3 L10mn-3
(i) PEB(G,x)=8mx3 +(15mn - 10n) x4

Proof: Applying definition and Banhatti edge partitiorfs& we conclude

. 1
(i) PEB(G)= _—
uvD%(G) B(u)B(v)
1 1
:8m{ 3 L 3 }2+(15mn—10n)[ 4 .4 lz
10mn-2 10m- 3 16m- 3 16n-

By simplifying the above equation, we get the dabiresult.
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(i) PEB(G,x) Z X B(U B(v)
WIE(G)

1

= 8mx[10m3n— 2 10:;1- ?J E +(15mn-10m) X[ﬁf 161?1— lz

By simplifying the above equation, we get the requiddt®n.

We calculate the reciprocal product connectivity E-Banhmatex and its polynomial form
of a wheel graphV, as follows:

Theorem 4. Let G=NHPX[m, n]. Then
() RPEB(G)= 24m , A(15m- 10n)
Jaomn-2(10m- 3 10mn-3

s 4
(i) RPEB(G,x)=8mxY10om-2(1am-3 4 (15mn - 10n) x10m-3

Proof: Applying definition and Banhatti edge partitions@&fwe conclude

() RPEB(G)= > B(u)B(v)

wiE(G)

1 1
=8m[ 3 3 }2+(15mn—10n)[ 4 4 lz

10mn-2 10mn- 3 1n- 3 16n-
By simplifying the above equation, we get the desiredltes

(i) RPEB(G,x)= Y x/BWEW
WOE(G)

= 8mX(W3n—zxﬁj +(15mn - 10m) X( 1@n?1— 3 lﬁ::\— ;2

By simplifying the above equation, we obtain the neagsresult.

4. Conclusion

In this study, we have introduced some new E-Banhmtites of a graph. Furthermore,
we have computed the product connectivity E-Banhatt@xndhe reciprocal product
connectivity E-Banhatti index and their correspondindymamial versions of wheel
graphs and certain nanotubes.
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