Annals of Pure and Applied Mathematics Vol. 27, No. 1, 2023, 7-12 ISSN: 2279-087X (P), 2279-0888(online) Published on 6 January 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v27n1a02897

Annals of Pure and Applied <u>Mathematics</u>

Product Connectivity E-Banhatti Indices of Certain Nanotubes

V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585 106, India email: <u>vrkulli@gmail.com</u>

Received 21 November 2022; accepted 1 January 2023

Abstract. The connectivity indices are applied to measure the chemical characteristics of chemical compounds in Chemical Sciences. Recently, a novel degree concept has been defined in Graph Theory: Banhatti degree of a vertex in a graph. In this paper, the product connectivity E-Banhatti and the reciprocal product connectivity E-Banhatti indices are defined by using Banhatti degree concept. We also compute these newly defined E-Banhatti indices of wheel graphs and certain nanotubes.

Keywords: product connectivity E-Banhatti index, reciprocal product connectivity E-Banhatti index, graph, nanotube.

AMS Mathematics Subject Classification (2010): 05C05, 05C07, 05C09, 05C92

1. Introduction

Let *G* be a simple, connected graph with vertex set *V*(*G*) and edge set *E*(*G*). The degree $d_G(u)$ of a vertex *u* is the number of vertices adjacent to *u*. If e=uv is an edge of *G*, then the vertex *u* and edge *e* are incident as are *v* and *e*. The degree $d_G(e)$ of an edge *e* in *G* is defined as $d_G(e) = d_G(u) + d_G(v) - 2$ with e=uv. For term and concept not given here, we refer the book [1].

Chemical Graph Theory is a branch of Mathematical Chemistry which has an important effect on the development of Chemical Sciences. Several graph indices have found some applications in Chemistry, especially in QSPR/QSAR research [2].

In [3], Kulli defined the Banhatti degree of a vertex u of a graph G as

$$B(u) = \frac{d_G(e)}{n - d_G(u)},$$

where n is the number of vertices of G and the vertex u and edge e are incident in G. The first and second E-Banhatti indices were introduced by Kulli in [3] and they are defined as

$$EB_1(G) = \sum_{uv \in E(G)} [B(u) + B(v)],$$
$$EB_2(G) = \sum_{uv \in E(G)} B(u)B(v).$$

V.R.Kulli

Recently, some E-Banhatti indices were studied for example, in [4, 5, 6, 7]. We introduce the product connectivity E-Banhatti index, defined as

$$PEB(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{B(u)B(v)}}.$$

We also propose the reciprocal product connectivity E-Banhatti index of a graph as

$$RPEB(G) = \sum_{uv \in E(G)} \sqrt{B(u)B(v)}$$

We now introduce the connectivity E-Banhatti polynomials of a graph as follows:

The product connectivity E-Banhatti polynomial of a graph is defined as

$$PEB(G, x) = \sum_{uv \in E(G)} x^{\frac{1}{\sqrt{B(u)B(v)}}}.$$

The reciprocal product connectivity E-Banhatti polynomial of a graph is defined as

$$RPEB(G, x) = \sum_{uv \in E(G)} x^{\sqrt{B(u)B(v)}}.$$

Recently, some connectivity indices were studied for example, in [8, 9, 10, 11, 12]. In this paper, the product connectivity E-Banhatti index, the reciprocal product connectivity E-Banhatti index and their corresponding polynomials of wheel graphs and certain nanotubes are computed.

2. Results for wheel graphs

A wheel graph W_n is the join of C_n and K_1 . Then W_n has n+1 vertices and 2n edges. A graph W_n is shown in Figure 1.

Figure 1: Wheel graph W_n

 $|E_1| = n.$

In W_n , there are two types of edges as follows:

$$E_1 = \{ uv \in E(W_n) \mid d(u) = d(v) = 3 \},\$$

$$E_2 = \{ uv \in E(W_n) \mid d(u) = 3, d(v) = n \}, \qquad |E_2| = n.$$

Therefore, in W_n , there are two types of Banhatti edges based on Banhatti degrees of end vertices of each edge as follow:

$$BE_{1} = \{uv \in E(W_{n}) \mid B(u) = B(v) = \frac{4}{(n-2)}\}, \quad |BE_{1}| = n.$$
$$BE_{2} = \{uv \in E(W_{n}) \mid B(u) = \frac{n+1}{n-2}, B(v) = n+1\}, \quad |BE_{2}| = n.$$

Product Connectivity E-Banhatti Indices of Certain Nanotubes

We calculate the product connectivity E-Banhatti index and its polynomial form of W_n as follows:

Theorem 1. Let W_n be a wheel graph. Then

(i)
$$PEB(W_n) = \frac{1}{4}n(n-2) + \frac{n\sqrt{n-2}}{n+1}.$$

(ii) $PEB(W_n, x) = nx^{\frac{n-2}{4}} + nx^{\frac{\sqrt{n-2}}{n+1}}.$

Proof: Applying definition and Banhatti edge partitions of W_n , we conclude

(i)
$$PEB(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{B(u)B(v)}}$$
$$= n \left[\left(\frac{4}{n-2}\right) \times \left(\frac{4}{n-2}\right) \right]^{-\frac{1}{2}} + n \left[\left(\frac{n+1}{n-2}\right) \times (n+1) \right]^{-\frac{1}{2}}.$$

1

By simplifying the above equation, we get the desired result.

(ii)
$$PEB(W_n, x) = \sum_{uv \in E(W_n)} x^{\sqrt{B(u)B(v)}}$$

= $nx^{\left(\frac{4}{n-2} \times \frac{4}{n-2}\right)^{\frac{1}{2}}} + nx^{\left(\frac{n+1}{n-2} \times (n+1)\right)^{\frac{1}{2}}}.$

By simplifying the above equation, we obtain the desired result. We calculate the reciprocal product connectivity E-Banhatti index and its polynomial form of W_n as follows:

Theorem 2. Let W_n be a wheel graph. Then

(i)
$$RPEB(W_n) = \frac{4n}{n-2} + \frac{n(n+1)}{\sqrt{n-2}}.$$

(ii) $RPEB(W_n, x) = nx^{\frac{4}{n-2}} + nx^{\frac{n+1}{\sqrt{n-2}}}.$

Proof: Applying definition and Banhatti edge partitions of W_n , we conclude

(i)
$$RPEB(W_n) = \sum_{uv \in E(W_n)} \sqrt{B(u)B(v)}$$

= $n \left[\left(\frac{4}{n-2} \right) \times \left(\frac{4}{n-2} \right) \right]^{\frac{1}{2}} + n \left[\left(\frac{n+1}{n-2} \right) \times (n+1) \right]^{\frac{1}{2}}$.
By simplifying the above equation, we obtain the desired result

By simplifying the above equation, we obtain the desired result.

(ii)
$$RPEB(W_n, x) = \sum_{u v \in E(W_n)} x^{\sqrt{B(u)B(v)}}$$

= $nx^{\left(\frac{4}{n-2} \times \frac{4}{n-2}\right)^{\frac{1}{2}}} + nx^{\left(\frac{n+1}{n-2} \times (n+1)\right)^{\frac{1}{2}}}.$

V.R.Kulli

By simplifying the above equation, we get the desired result.

3. *H*-Naphtalenic Nanotubes

We consider a family of *H*-Naphtalenic nanotubes which is denoted by NHPX[m, n], see Figure 2.

Figure 2: Graph of *H*-Naphtalenic nanotube

The graphs of a nanotube NHPX[m, n] have 10mn vertices and 15mn - 2m edges are shown in the above graph. Let G = NHPX[m, n].

In *G*, there are two types of edges as follows:

$$\begin{split} E_1 &= \{ uv \in E(G) \mid d(u) = 2, \, d(v) = 3 \}, \\ E_2 &= \{ uv \in E(G) \mid d(u) = d(v) = 3 \}, \\ |E_1| &= 8m. \\ |E_2| &= 15mn - 10m \,. \end{split}$$

Therefore, in G, we obtain that $\{B(u), B(v): uv \in E(NHPX[m, n])\}$ has two Banhatti edge set partitions.

$$BE_{1} = \{uv \in E(G) \mid B(u) = \frac{3}{10mn - 2}, B(v) = \frac{3}{10mn - 3}\}, \qquad |BE_{1}| = 8m.$$

$$BE_{2} = \{uv \in E(G) \mid B(u) = B(v) = \frac{4}{10mn - 3}\}, \qquad |BE_{2}| = 15mn - 10m.$$

We calculate the product connectivity E-Banhatti index and its polynomial form of G as follows:

Theorem 3. Let
$$G = NHPX[m, n]$$
. Then
(i) $PEB(G) = \frac{8}{3}m\sqrt{(10mn-2)(10mn-3)} + \frac{1}{4}(15mn-10m)(10mn-3)$.

(ii)
$$PEB(G, x) = 8mx^{\frac{1}{3}\sqrt{(10mn-2)(10mn-3)}} + (15mn-10m)x^{\frac{1}{4}(10mn-3)}.$$

Proof: Applying definition and Banhatti edge partitions of G, we conclude

(i)
$$PEB(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{B(u)B(v)}}$$

= $8m \left[\frac{3}{10mn - 2} \times \frac{3}{10mn - 3} \right]^{-\frac{1}{2}} + (15mn - 10m) \left[\frac{4}{10mn - 3} \times \frac{4}{10mn - 3} \right]^{-\frac{1}{2}}$

By simplifying the above equation, we get the desired result.

Product Connectivity E-Banhatti Indices of Certain Nanotubes

(ii)
$$PEB(G, x) = \sum_{uv \in E(G)} x^{\frac{1}{\sqrt{B(u)B(v)}}}$$

= $8mx^{\left[\frac{3}{10mn-2} \times \frac{3}{10mn-3}\right]^{\frac{1}{2}}} + (15mn-10m)x^{\left[\frac{3}{10mn-2} \times \frac{3}{10mn-3}\right]^{\frac{1}{2}}}.$

By simplifying the above equation, we get the required solution.

We calculate the reciprocal product connectivity E-Banhatti index and its polynomial form of a wheel graph W_n as follows:

Theorem 4. Let G = NHPX[m, n]. Then

(i)
$$RPEB(G) = \frac{24m}{\sqrt{(10mn-2)(10mn-3)}} + \frac{4(15mn-10m)}{10mn-3}.$$

(ii)
$$RPEB(G, x) = 8mx^{\sqrt{(10mn-2)(10mn-3)}} + (15mn-10m)x^{10mn-3}.$$

Proof: Applying definition and Banhatti edge partitions of *G*, we conclude

(i)
$$RPEB(G) = \sum_{uv \in E(G)} \sqrt{B(u)B(v)}$$

= $8m \left[\frac{3}{10mn-2} \times \frac{3}{10mn-3} \right]^{\frac{1}{2}} + (15mn-10m) \left[\frac{4}{10mn-3} \times \frac{4}{10mn-3} \right]^{\frac{1}{2}}$
By simplifying the above equation, we get the desired result

By simplifying the above equation, we get the desired result.

(ii)
$$RPEB(G, x) = \sum_{uv \in E(G)} x^{\sqrt{B(u)B(v)}}$$

= $8mx^{\left(\frac{3}{10mn-2} \times \frac{3}{10mn-3}\right)^{\frac{1}{2}}} + (15mn - 10m)x^{\left(\frac{4}{10mn-3} \times \frac{4}{10mn-3}\right)^{\frac{1}{2}}}$

By simplifying the above equation, we obtain the necessary result.

4. Conclusion

In this study, we have introduced some new E-Banhatti indices of a graph. Furthermore, we have computed the product connectivity E-Banhatti index, the reciprocal product connectivity E-Banhatti index and their corresponding polynomial versions of wheel graphs and certain nanotubes.

Acknowledgement. The author would like to thank the reviewers for putting valuable remarks and comments on this paper.

Conflict of interest. This is a single-author paper, so there is no scope for a conflict of interest.

Authors' Contributions. This is the sole work of the author.

V.R.Kulli

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. I.Gutman and O.E.Polansky, *Mathematical Concepts in Organic Chemistry*, Springer, Berlin (1986).
- 3. V.R.Kulli, New direction in the theory of graph index in graphs, *International Journal* of Engineering Sciences & Research Technology, to appear.
- 4. V.R.Kulli, Hyper E-Banhatti indices of certain networks, *International Journal of Mathematical Archive*, 13(12) (2022) 1-10.
- 5. V.R.Kulli, Computation of E-Banhatti Nirmala indices of tetrameric 1,3-adamantane, *Annals of Pure and Applied Mathematics*, 26(2) (2022) 119-124.
- 6. V.R.Kulli, E-Banhatti Sombor indices, *International Journal of Mathematics and Computer Research*, 10(12) (2022) 2986-2994.
- 7. V.R.Kulli, The (*a*, *b*)-KA E-Banhatti indices of graphs, Journal of Mathematics and Informatics, 23 (2022) 55-60.
- 8. K.C.Das, S.Das and B.Zhou, Sum connectivity of a graph, *Front. Math., China.* 11(1) (2016) 47-54.
- 9. V.R.Kulli, The sum connectivity Revan index of silicate and hexagonal networks, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 401-406.
- 10. V.R.Kulli, Product connectivity leap index and ABC leapindex of helm graphs, *Annals of Pure and Applied Mathematics*, 18(2) (2018) 189-193.
- 11. V.R.Kulli, Degree based connectivity *F*-indices of nanotubes, *Annals of Pure and Applied Mathematics*, 18(2) (2018) 201-206.
- 12. B.Zhou and N.Trinajstic, On general sum connectivity index, *j. Math. Chem.* 47(1) (2010) 210-218.