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Abstract. The connectivity indices are applied to measure the chemical characteristics of 
chemical compounds in Chemical Sciences. Recently, a novel degree concept has been 
defined in Graph Theory: Banhatti degree of a vertex in a graph. In this paper, the product 
connectivity E-Banhatti and the reciprocal product connectivity E-Banhatti indices are 
defined by using Banhatti degree concept. We also compute these newly defined E-
Banhatti indices of wheel graphs and certain nanotubes. 
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1. Introduction 
Let G be a simple, connected graph with vertex set V(G) and edge set E(G). The degree 
dG(u) of a vertex u is the number of vertices adjacent to u. If e=uv is an edge of G, then the 
vertex u and edge e are incident as are v and e. The degree dG(e) of an edge e in G is defined 
as dG(e) = dG(u) + dG(v) – 2 with e=uv. For term and concept not given here, we refer the 
book [1]. 
Chemical Graph Theory is a branch of Mathematical Chemistry which has an important 
effect on the development of Chemical Sciences. Several graph indices have found some 
applications in Chemistry, especially in QSPR/QSAR research [2]. 
In [3], Kulli defined the Banhatti degree of a vertex u of a graph G as  

( ) ( )
( ) ,G

G

d e
B u

n d u
=

−  
where n is the number of vertices of G and the vertex u and edge e are incident in G. 
The first and second E-Banhatti indices were introduced by Kulli in [3] and they are defined 
as 
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Recently, some E-Banhatti indices were studied for example, in [4, 5, 6, 7]. 
We introduce the product connectivity E-Banhatti index, defined as  

( )
( ) ( )( )

1
.

uv E G

PEB G
B u B v∈

= 
 

We also propose the reciprocal product connectivity E-Banhatti index of a graph as 
( ) ( ) ( )

( )
.
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RPEB G B u B v
∈

=    

We now introduce the connectivity E-Banhatti polynomials of a graph as follows: 
 
The product connectivity E-Banhatti polynomial of a graph is defined as  

( ) ( ) ( )

( )
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PEB G x x
∈

=    

The reciprocal product connectivity E-Banhatti polynomial of a graph is defined as  

( ) ( ) ( )

( )
, .B u B v

uv E G

RPEB G x x
∈

=    

Recently, some connectivity indices were studied for example, in [8, 9, 10, 11, 12]. 
In this paper, the product connectivity E-Banhatti index, the reciprocal product 
connectivity E-Banhatti index and their corresponding polynomials of wheel graphs and 
certain nanotubes are computed.   

                                        
2. Results for wheel graphs 
A wheel graph Wn is the join of Cn and K1. Then Wn has n+1vertices and 2n edges. A graph 
Wn is shown in Figure 1. 

 
Figure 1: Wheel graph Wn 

In Wn , there are two types of edges as follows:  
     E1 = {uv ∈ E(Wn) | d(u) = d(v) = 3}, |E1| = n. 
     E2 = {uv ∈ E(Wn) | d(u) =3, d(v) = n}, |E2| = n. 
Therefore, in Wn, there are two types of Banhatti edges based on Banhatti degrees of end 
vertices of each edge as follow: 

     BE1 = {uv ∈ E(Wn) | B(u) = B(v) = ( )
4

2n −
},       |BE1| = n. 

     BE2 = {uv ∈ E(Wn) | B(u) =
1

2

n

n

+
−

, B(v) = n+1},   |BE2| = n. 
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We calculate the product connectivity E-Banhatti index and its polynomial form of  Wn as 
follows:

 

Theorem 1. Let Wn be a wheel graph. Then  

 (i)       ( ) ( )1 2
2 .

4 1n
n n

PEB W n n
n

−= − +
+

  

(ii)       ( )
22
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nn
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−−
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Proof: Applying definition and Banhatti edge partitions of Wn, we conclude 

(i)       ( )
( ) ( )( )
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B u B v∈

=    

                            ( )
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2 24 4 1
1 .

2 2 2

n
n n n

n n n

− −
   +     = × + × +        − − −          

By simplifying the above equation, we get the desired result. 

(ii)     ( ) ( ) ( )
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1

,
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∈
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By simplifying the above equation, we obtain the desired result. 
We calculate the reciprocal product connectivity E-Banhatti index and its polynomial form 
of Wn as follows: 

 

Theorem 2. Let Wn be a wheel graph. Then  
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Proof: Applying definition and Banhatti edge partitions of Wn, we conclude 

(i)     ( ) ( ) ( )
( )n

n
uv E W

RPEB W B u B v
∈

=    

                              ( )
1 1

2 24 4 1
1 .

2 2 2

n
n n n

n n n

   +     = × + × +        − − −          

By simplifying the above equation, we obtain the desired result. 

 (ii)    ( ) ( ) ( )

( )
,

n

B u B v
n

uv E W

RPEB W x x
∈

=    

                                    

( )
1 1

2 24 4 1
1

2 2 2 .
n

n
n n nnx nx

+   × × +   − − −   = +  



V.R.Kulli 

10 
 

By simplifying the above equation, we get the desired result. 

3. H-Naphtalenic Nanotubes                                             
We consider a family of H-Naphtalenic nanotubes which is denoted by NHPX[m, n], see 
Figure 2. 

 
Figure 2: Graph of H-Naphtalenic nanotube  

 
The graphs of a nanotube NHPX[m, n] have 10mn vertices and 15mn – 2m edges are shown 
in the above graph. Let G= NHPX[m, n]. 
          In G, there are two types of edges as follows:  
    E1 = {uv ∈ E(G) | d(u) = 2, d(v) = 3},  |E1| = 8m. 
    E2 = {uv ∈ E(G) | d(u) = d(v) = 3},  |E2| = 15mn – 10m . 
Therefore, in G, we obtain that {B(u), B(v): uv ∈ E(NHPX[m, n])}  has two  Banhatti edge 
set partitions.  

      BE1 = {uv ∈ E(G) | B(u) =
3

10 2mn −
, B(v) =

3

10 3mn −
},           |BE1| = 8m. 

       BE2 = {uv ∈ E(G) | B(u) = B(v) =
4

10 3mn −
},                              |BE2| = 15mn−10m. 

We calculate the product connectivity E-Banhatti index and its polynomial form of G as 
follows:

 

Theorem 3. Let G= NHPX[m, n].  Then   

 (i)   ( ) ( )( ) ( )( )8 1
10 2 10 3 15 10 10 3 .

3 4
PEB G m mn mn mn m mn= − − + − −   
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Proof: Applying definition and Banhatti edge partitions of G, we conclude 
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                       ( )
1 1

2 23 3 4 4
8 15 10 .

10 2 10 3 10 3 10 3
m mn m

mn mn mn mn

− −
   = × + − ×   − − − −     

By simplifying the above equation, we get the desired result. 
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(ii)   ( ) ( ) ( )
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1
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By simplifying the above equation, we get the required solution. 

We calculate the reciprocal product connectivity E-Banhatti index and its polynomial form 
of a wheel graph Wn as follows: 

 

Theorem 4. Let G= NHPX[m, n].  Then  
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Proof: Applying definition and Banhatti edge partitions of G, we conclude 
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By simplifying the above equation, we get the desired result. 
  

 (ii)    ( ) ( ) ( )

( )
, B u B v
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∈
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            ( )
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   × ×   − − − −   = + −  

By simplifying the above equation, we obtain the necessary result.                                                                     

4. Conclusion  

In this study, we have introduced some new E-Banhatti indices of a graph. Furthermore, 
we have computed the product connectivity E-Banhatti index, the reciprocal product 
connectivity E-Banhatti index and their corresponding polynomial versions of wheel 
graphs and certain nanotubes.  
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