
Annals of Pure and Applied Mathematics 
Vol. 27, No. 1, 2023, 19-22 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 16 February 2023 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/apam.v27n1a04899 
  
 

19 
 

On the Diophantine Equations 
(n + 2)x - 2.ny = z2  and (n + 2)x + 2.ny = z2 

Suton Tadee 

Department of Mathematics  
Faculty of Science and Technology 

Thepsatri Rajabhat University, Lopburi 15000, Thailand 
E-mail: suton.t@lawasri.tru.ac.th 

Received 1 January 2023; accepted 14 February 2023 

Abstract. In this article, we solve the Diophantine equations (n + 2)x - 2.ny = z2  and (n + 
2)x + 2.ny = z2, where x, y, z are non-negative integers and n is a positive integer with n ≡ 
2 or n ≡ 3 (mod 4).  
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1. Introduction  
In the past few years, many researchers have studied the Diophantine equations of the 
form 2x ya b z− = , where ,a b are positive integers and , ,x y z  are non-negative integers 
(see for instance [1-11]).  
 Recently, Thongnak, Chuayjan and Kaewong [12] studied the Diophantine 
equation 25 2 3x y z− ⋅ = and found that the equation has no non-negative integer solution. 
In this paper, we will generalize their results by considering the Diophantine equation 

2( 2) 2x yn n z+ − ⋅ = , where n  is a positive integer with some conditions. Moreover, we 

will solve the Diophantine equation 2( 2) 2x yn n z+ + ⋅ = . 
 
2. The Diophantine equation (n + 2)x - 2.ny = z2  
We begin this section by considering case 2n = . 
 
Theorem 2.1. The Diophantine equation 24 2 2x y z− ⋅ =  has the non-negative integer 
solutions { }( , , ) ( ,2 1,0) :x y z r r r∈ − ∈� . 
Proof: Let ,x y  and z  be non-negative integers such that 24 2 2x y z− ⋅ = . It implies that 

1(2 )(2 ) 2x x yz z +− + = . There exists a non-negative integer r  such that 2 2x rz− =  and 
12 2x y rz + −+ = . Consequently, 1 2y r+ ≥  and 1 1 22 2 (2 1)x r y r+ + −= + . Thus 1 2 0y r+ − =  

and so 1 1x r+ = + . Then 2 1y r= −  and x r= , respectively. Since y  is a non-negative 

integer and 2 1y r= − , we get 0r ≠ . Since x r=  and 2 2x rz− = , we have 0z = . Hence, 
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{ }( , , ) ( ,2 1,0) :x y z r r r∈ − ∈�  are all non-negative integer solutions of the Diophantine 

equation 24 2 2x y z− ⋅ = . 
Now, we consider case 3 (mod 4)n ≡ . 
 
Theorem 2.2. Let n  be a positive integer with 3 (mod 4)n ≡ . Then the Diophantine 

equation 2( 2) 2x yn n z+ − ⋅ =  has no non-negative integer solution. 

Proof: Assume that ,x y  and z  are non-negative integers such that 2( 2) 2x yn n z+ − ⋅ = . 

Since 3 (mod 4)n ≡ , it implies that 2 ( 2) 2 1 2( 1) (mod 4)x y yz n n= + − ⋅ ≡ − − .  

Case 1: y  is even. Then 2 1 2(1) 1 3(mod 4)z ≡ − ≡ − ≡ . 

Case 2: y  is odd. Then 2 1 2( 1) 3(mod 4)z ≡ − − ≡ . 

Both cases are impossible since 2 0,1(mod 4)z ≡ . 
 
By Theorem 2.2, if 3n = , then we have the result of Thongnak, Chuayjan and Kaewong 
[12]: 
 
Corollary 2.1. [12] The Diophantine equation 25 2 3x y z− ⋅ = has no non-negative integer 
solution. 
 
Corollary 2.2. Let m and n  be positive integers with 3 (mod 4)n ≡ . Then the Diophantine 

equation 2( 2) 2x y mn n z+ − ⋅ =  has no non-negative integer solution. 

Proof: Assume that ,a b  and c  are non-negative integers such that 2( 2) 2a b mn n c+ − ⋅ = . 

Then ( , , ) ( , , )mx y z a b c=  is a non-negative integer solution of the Diophantine equation 
2( 2) 2x yn n z+ − ⋅ = . This contradicts to Theorem 2.2. 

 
3. The Diophantine equation (n + 2)x + 2.ny = z2 
We begin this section by considering case 2n = . 
Theorem 3.1. The Diophantine equation 24 2 2x y z+ ⋅ =  has the non-negative integer 

solutions { }1( , , ) ( 1,2 ,3 2 ) :rx y z r r r−∈ − ⋅ ∈� . 
Proof: Let ,x y  and z  be non-negative integers such that 24 2 2x y z+ ⋅ = . It implies that 

1( 2 )( 2 ) 2x x yz z +− + = . There exists a non-negative integer r  such that 2 2x rz − =  and 
12 2x y rz + −+ = . Thus 1 2y r+ >  and 1 1 22 2 (2 1)x r y r+ + −= − . Consequently, 1 22 1 1y r+ − − =  and 

1x r+ = . Then 2y r=  and 1x r= − , respectively. Since x  is a non-negative integer, we 

get 0r ≠ . Since 2 2x rz − =  and 1x r= − , we obtain that 1 12 2 3 2r r rz − −= + = ⋅ . Hence, 

{ }1( , , ) ( 1,2 ,3 2 ) :rx y z r r r−∈ − ⋅ ∈�  are all non-negative integer solutions of the 

Diophantine equation 24 2 2x y z+ ⋅ = . 
Now, we consider case 3 (mod 4)n ≡ . 
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Theorem 3.2. Let n  be a positive integer with 3 (mod 4)n ≡ . Then the Diophantine 

equation 2( 2) 2x yn n z+ + ⋅ =  has no non-negative integer solution. 

Proof: Assume that ,x y  and z  are non-negative integers such that 2( 2) 2x yn n z+ + ⋅ = . 

Since 3 (mod 4)n ≡ , it implies that 2 ( 2) 2 1 2( 1) (mod 4)x y yz n n= + + ⋅ ≡ + − .  

Case 1: y  is even. Then 2 1 2(1) 3(mod 4)z ≡ + ≡ . 

Case 2: y  is odd. Then 2 1 2( 1) 1 3(mod 4)z ≡ + − ≡ − ≡ . 

Both cases are impossible since 2 0,1(mod 4)z ≡ . 
 
By Theorem 3.2, we have the following corollaries: 
 
Corollary 3.1. The Diophantine equation 25 2 3x y z+ ⋅ = has no non-negative integer 
solution. 
 
Corollary 3.2. Let m and n  be positive integers with 3 (mod 4)n ≡ . Then the Diophantine 

equation 2( 2) 2x y mn n z+ + ⋅ =  has no non-negative integer solution. 

Proof: Assume that ,a b  and c  are non-negative integers such that 2( 2) 2a b mn n c+ + ⋅ = . 

Then ( , , ) ( , , )mx y z a b c=  is a non-negative integer solution of the Diophantine equation 
2( 2) 2x yn n z+ + ⋅ = . This contradicts to Theorem 3.2. 

 
4. Conclusion 
In this work, using elementary methods, we investigated non-negative integer solutions 
of the Diophantine equations 2( 2) 2x yn n z+ − ⋅ = and 2( 2) 2x yn n z+ + ⋅ = , where n  is a 
positive integer with 2n = or 3 (mod 4)n ≡ . Nevertheless, the Diophantine equations on 
the other case remain an open problem.  
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