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Abstract. In this article, we prove that the Diophantine dgum15 — 13 = Zhas non-
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1. Introduction

A popular topic in Mathematics is the Diophantigg&tion. This topic concerns finding a
solution to an equation over an integer number[6ln Mihailescu proved Catalan’s

conjecture. This theorem is very important becausas been applied to prove many

Diophantine equations. In [1], the Diophantine &ipn2* + 5’ = z* was presented by
Acu. He applied congruent and modular arithmetioties to prove that the two solutions

(x,y,2) include (3,0,3 and(2,1,3 . In [8], Suvarnamani et al. proved that
4+7'=7" and 4°+12 =7 have no integer solution. Next, Chotchaisthit [5]
demonstrated tha#* + p’ = Z where p is any positive prime number have no solution.
In 2018, Rabago [7] proved thdt — p¥ = 37 wherep is prime has the set of all solutions
(%, y, 2) including (0,0,0) and (q -1,1,2 - :I)where p=2%-1and gare prime. In
2019, Nechemia [3, 4] showed no solution to thepBamtine equatio* +10" = Z?
when X, y, zare positive integers, and presented the equéionll’ = Z°> when x, Y, Z

are positive integers. He suggested that the exjuhtis one solution whex=2, and no

solution for 2 < x < 16. Next, the Diophantine equatid@ — 3’ = z* was presented [9].
The authors proved that there are three solutionthé equation. Then, a group of

researchers suggested that—2Y = Z where p=k®+2is a prime number has two
solutions including(x, Y, 2) =(0,0,0 or(1,1k) [2]. After that, the Diophantine equation
7*-5'=7" was proved that the solutiofX, Y, 2) is (0,0,0 [10]. Recently, the

Diophantine equatiory* —2” = z> has been proved to have only one trivial solution
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(%, y, 2 =(0,0,0[11]. From the previous works, there is no generathod to prove all

sets of the Diophantine equation in the fah+ b¥ = Z. We still need to prove individual
equations.

In this work, we study the Diophantine equafiéh— 13 = z*. We use Modular
Arithmetic to show all solutions to the equation.

2. Preliminaries

In this section, we introduce basic knowledge apglyn the proof.

Lemma 2.1.For alln € N*. Then2*"™* = 2,5,6,7,80r 11( mod13 .

Proof: LetP(n):2*"*=2,5,6,7,80r 11( mod13 .

For n=1, we get 22¥"=2= 2(mod13 . So P(1)is true.

We assume tha (k) is true fork € N* that is

2*1=2,5,6,7,80r 11 mod13 .

Now, to prove tha1P( k+1) is true, we consideP? 9 = 221 = 4P Then we have
207=4(2),49 4§ .47 .6 Fora(1)(mod13

=8,20,24,28,30r44( mod13

=8,7,11,2,tor5(mod13.
Hence
2" =2,5,6,7,80r11( mod13 .

Thus, P(k+1)is true.Therefore, by the Principle of Mathematical IndantiP(n)is
true for alln € N*. ]

Lemma 2.2.Forall x € N . Thenx*=0,1,3,4,9,1Cor 12( mod13 .

Proof: Letx € N. There argy, € N such thatx =13+ rfor 0<r <13 . It follows
that x=r(mod13and x* = r?(mod13.

Case 11 =0, then we gex’ =0(mod13.

Case 2rr =1 or 12, then we gex’ =1(mod13.

Case 3 =2 or 11, then we gex’ =4(mod13.

Case 4 =3 or 10, then we gex’ =9(mod13.

Case 51 =4 or 9, then we gex’ =3(mod13.

Case 6 =5 or 8, then we gex’ =12( mod13.

Case 7 =6 or 7, then we gex® =10( mod13.
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From all cases, we hav€ =0,1,3,4,9,1Cor12( mod13 . O

3. Main result
Theorem 3.1.For allx,y,z € N* U {0}. The Diophantine equatiat5* - 13 = z°has a
unique solution(x, y, 2 =(0,0,0 .
Proof: Letx,y,z € N* U {0} such that
15 -13 =722, 1)

The equation can be solved by considering thewiatig four cases. 1x =0 andy =0
2) x=0andy>0 3) x>0andy=0 4) x>0andy >0.
Case 1:x=0 andy =0. It is easy to see tha=0. We get the solution
(xy,2=(0,0,0.
Case 2:x =0andy > 0. The equation (1) becomks13 = 7z*. Becaust-13 < 0, we
obtainz? < 0, impossible.
Case 3:x>0andy = 0. So (1) becomeg® =15 - 1. Becausel5= 0( mod 3 , this
implies thatz’ = -1(modJ or 2 =2(modJ , impossible.
Case 4:x>0andy >0, we consider the following two subcases.

Subcase 4.1xis odd. By Lemma 2.1, it is easy to see that

¥=2,5,6,7,8,1f modiz. By (1), we have® =2*(mod13. This yields

z*=2,5,6,7,8,1{ modi3. By Lemma 2.2, this is impossible.

Subcase 4.2xis even. Ther = 2k, 3k € N* U {0}. It follows that
13 =15% - 7%, This is equivalent tb3’ = (15k - z)( 15 + z) . There arax and 8 €

N* U {0} such thatl5 - z=1F and15 + z=1F wherea < fanda + S =y. This
implies that2 (15 = 13 + 1§or 203 (5 = 13 ( & 1§7).

Since13/12[3< B, we easily getr =0. This implies that3 = y and we obtain
208 5 =1+ 13. ) (2
Since13=1( mod 3, (2) implies tha? = 0( mod 3 . This is impossible. In all cases, it
can be concluded th§0,0,0)is a solution to the equation. |

4. Conclusion

In this work, we have proved that the Diophantigeation15 —13 = z? has a unique
solution (x, Y, 2)=(0,0,0 . In the proof, we consider four cases, includimges 1:
x=0andy =0, case 2x=0andy >0, case 3:x>0andy =0, and case 4x>0
andy >0, and we use Modular Arithmetic. We obtain thatelgeation has only a trivial
solution(X, y, 2) =(0,0,0..
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