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Abstract. In this article, we prove that the Diophantine equation 15x – 13y = z2 has non-
negative integer solution. The result reveals that the solution (x, y, z) = (0, 0, 0).  
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1. Introduction 
A popular topic in Mathematics is the Diophantine equation. This topic concerns finding a 
solution to an equation over an integer number. In [6], Mihailescu proved Catalan’s 
conjecture. This theorem is very important because it has been applied to prove many 

Diophantine equations.  In [1], the Diophantine equation 22 5x y z+ =  was presented by 
Acu. He applied congruent and modular arithmetic theories to prove that the two solutions 

( ), ,x y z  include ( )3,0,3 and ( )2,1,3 . In [8], Suvarnamani et al. proved that 
24 7x y z+ =  and 24 11x y z+ =  have no integer solution. Next, Chotchaisthit [5] 

demonstrated that  24x yp z+ =  where p is any positive prime number have no solution. 

In 2018, Rabago [7] proved that 24 3x yp z− =  wherep is prime has the set of all solutions 

( ), ,x y z  including ( )0,0,0 and ( )11,1,2 1qq −− − where 2 1qp = − and q are prime. In 

2019, Nechemia [3, 4] showed no solution to the Diophantine equation 27 10x y z+ =  

when , ,x y zare positive integers, and presented the equation 26 11x y z− =  when , ,x y z 

are positive integers. He suggested that the equation has one solution when 2x = , and no 

solution for 2 16x< ≤ . Next, the Diophantine equation 22 3x y z− =  was presented [9].  
The authors proved that there are three solutions to the equation. Then, a group of 

researchers suggested that 22x yp z− = where 2 2p k= + is a prime number has two 

solutions including ( ) ( ), , 0,0,0x y z = or( )1,1,k  [2]. After that, the Diophantine equation 
27 5x y z− =  was proved that the solution ( ), ,x y z  is ( )0,0,0  [10]. Recently, the 

Diophantine equation 27 2x y z− =  has been proved to have only one trivial solution 
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( ) ( ), , 0,0,0x y z = [11]. From the previous works, there is no general method to prove all 

sets of the Diophantine equation in the form 2x ya b z− = . We still need to prove individual 
equations.  

In this work, we study the Diophantine equation 215 13x y z− = . We use Modular 
Arithmetic to show all solutions to the equation.   
 
2. Preliminaries  
In this section, we introduce basic knowledge applying in the proof. 
 
Lemma 2.1. For all � ∈ ℕ�. Then 2 12 2,5,6,7,8n− ≡ or ( )11 mod13 . 

Proof:  Let ( ) 2 1: 2 2,5,6,7,8nP n − ≡ or ( )11 mod13 .  

For 1n = , we get  ( ) ( )2 1 12 2 2 mod13− = ≡ . So ( )1P is true. 

We assume that ( )P k is true for � ∈ ℕ� that is  

 2 12 2,5,6,7,8k− ≡ or ( )11 mod13 . 

Now, to prove that ( )1P k+  is true, we consider ( )2 1 1 2 1 2 12 2 4 2k k k+ − + −= = ⋅ . Then we have  

( ) ( ) ( ) ( ) ( ) ( )2 1 12 4 2 , 4 5 ,4 6 ,4 7 ,4 8k+ − ≡ or ( ) ( )4 11 mod13 

8,20,24,28,32≡ or ( )44 mod13  

8,7,11,2,6≡ or ( )5 mod13 . 

Hence  

 ( )2 1 12 2,5,6,7,8k+ − ≡ or ( )11 mod13 . 

Thus, ( )1P k+ is true. Therefore, by the Principle of Mathematical Induction, ( )P n is 

true for all � ∈ ℕ�.  
 

Lemma 2.2. For all  � ∈ ℕ . Then 2 0,1,3,4,9,10x ≡ or ( )12 mod13 . 

Proof:  Let � ∈ ℕ. There are �, 	 ∈ ℕ such that 13x q r= + for 0 13r≤ <  . It follows 

that ( )mod13x r≡ and ( )2 2 mod13x r≡ . 

Case 1: 0r = , then we get ( )2 0 mod13x ≡ . 

Case 2: 1r =  or 12, then we get ( )2 1 mod13x ≡ . 

Case 3: 2r =  or 11, then we get ( )2 4 mod13x ≡ . 

Case 4: 3r =  or 10, then we get ( )2 9 mod13x ≡ . 

Case 5: 4r =  or 9, then we get ( )2 3 mod13x ≡ . 

Case 6: 5r =  or 8, then we get ( )2 12 mod13x ≡ . 

Case 7: 6r =  or 7, then we get ( )2 10 mod13x ≡ . 
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From all cases, we have 2 0,1,3,4,9,10x ≡ or ( )12 mod13 .  

 
3. Main result 
Theorem 3.1. For all �, 
, � ∈ ℕ� ∪ {0}. The Diophantine equation 215 13x y z− = has a  

unique solution ( ) ( ), , 0,0,0x y z = .   

Proof:  Let �, 
, � ∈ ℕ� ∪ {0} such that  

                        215 13x y z− = .                                   (1) 
The equation can be solved by considering the following four cases. 1) 0x =  and 0y =               

2) 0x = and 0y >  3) 0x > and 0y =  4) 0x > and 0y > . 

Case 1: 0x =  and 0y = . It is easy to see that 0z = . We get the solution 

( ) ( ), , 0,0,0x y z = . 

Case 2: 0x = and 0y > . The equation (1) becomes 21 13y z− = . Because1 13 0y− < , we 

obtain 2 0z < , impossible. 

Case 3: 0x > and 0y = . So (1) becomes 2 15 1xz = − . Because ( )15 0 mod3≡ , this 

implies that ( )2 1 mod3z ≡ − or ( )2 2 mod3z ≡ , impossible.                                             

Case 4: 0x > and 0y > , we consider the following two subcases.  

Subcase 4.1, x is odd. By Lemma 2.1, it is easy to see that 

( )2 2,5,6,7,8,11 mod13x ≡ . By (1), we have ( )2 2 mod13xz ≡ . This yields 

( )2 2,5,6,7,8,11 mod13z ≡ . By Lemma 2.2, this is impossible.  

Subcase 4.2, x is even. Then � = 2�, ∃� ∈ ℕ� ∪ {0}. It follows that 
2 213 15y k z= − . This is equivalent to ( )( )13 15 15y k kz z= − + . There are α and  � ∈

ℕ� ∪ {0} such that 15 13k z α− = and 15 13k z β+ = where α β< and yα β+ = . This 

implies that 2 15 13 13k α β⋅ = + or ( )2 3 5 13 1 13k k α β α−⋅ ⋅ = + . 

Since 13|2 3 5k k⋅ ⋅ , we easily get 0α = . This implies that yβ = and we obtain 

                                              2 3 5 1 13k k y⋅ ⋅ = + .                                                (2) 

Since ( )13 1 mod3≡ , (2) implies that ( )2 0 mod3≡ . This is impossible. In all cases, it 

can be concluded that ( )0,0,0 is a solution to the equation.    

 
4. Conclusion  
In this work, we have proved that the Diophantine equation 215 13x y z− = has a unique 

solution ( ) ( ), , 0,0,0x y z = . In the proof, we consider four cases, including cases 1: 

0x = and 0y = , case 2: 0x = and 0y > , case 3: 0x > and 0y = , and case 4: 0x >  

and 0y > , and we use Modular Arithmetic. We obtain that the equation has only a trivial 

solution( ) ( ), , 0,0,0x y z = .  
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