Annals of Pure and Applied Mathematics Vol. 27, No. 1, 2023, 23-26 ISSN: 2279-087X (P), 2279-0888(online) Published on 17 February 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v27n1a05896

Annals of Pure and Applied <u>Mathematics</u>

On the Diophantine Equation $15^{x} - 13^{y} = z^{2}$

Sutthiwat Thongnak^{*1}, Wariam Chuayjan² and Theeradach Kaewong³

^{1,2,3}Department of Mathematics and Statistics, Thaksin University Phatthalung 93210, Thailand

²Email: <u>cwariam@tsu.ac.th</u>; ³Email: <u>theeradachkaewong@gmail.com</u> *Corresponding author. ¹Email: <u>tsutthiwat@tsu.ac.th</u>

Received 3 January 2023; accepted 14 February 2023

Abstract. In this article, we prove that the Diophantine equation $15^x - 13^y = z^2$ has non-negative integer solution. The result reveals that the solution (x, y, z) = (0, 0, 0).

Keywords: Diophantine equation; factoring method; modular arithmetic method

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

A popular topic in Mathematics is the Diophantine equation. This topic concerns finding a solution to an equation over an integer number. In [6], Mihailescu proved Catalan's conjecture. This theorem is very important because it has been applied to prove many Diophantine equations. In [1], the Diophantine equation $2^{x} + 5^{y} = z^{2}$ was presented by Acu. He applied congruent and modular arithmetic theories to prove that the two solutions (x, y, z) include (3, 0, 3) and (2, 1, 3). In [8], Suvarnamani et al. proved that $4^{x} + 7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$ have no integer solution. Next, Chotchaisthit [5] demonstrated that $4^{x} + p^{y} = z^{2}$ where p is any positive prime number have no solution. In 2018, Rabago [7] proved that $4^x - p^y = 3z^2$ where p is prime has the set of all solutions (x, y, z) including (0, 0, 0) and $(q-1, 1, 2^{q-1}-1)$ where $p = 2^q - 1$ and q are prime. In 2019, Nechemia [3, 4] showed no solution to the Diophantine equation $7^{x} + 10^{y} = z^{2}$ when x, y, z are positive integers, and presented the equation $6^x - 11^y = z^2$ when x, y, z are positive integers. He suggested that the equation has one solution when x = 2, and no solution for $2 < x \le 16$. Next, the Diophantine equation $2^x - 3^y = z^2$ was presented [9]. The authors proved that there are three solutions to the equation. Then, a group of researchers suggested that $p^{x} - 2^{y} = z^{2}$ where $p = k^{2} + 2$ is a prime number has two solutions including (x, y, z) = (0, 0, 0) or (1, 1, k) [2]. After that, the Diophantine equation $7^{x} - 5^{y} = z^{2}$ was proved that the solution (x, y, z) is (0, 0, 0) [10]. Recently, the Diophantine equation $7^{x} - 2^{y} = z^{2}$ has been proved to have only one trivial solution

Sutthiwat Thongnak, Wariam Chuayjan and Theeradach Kaewong

(x, y, z) = (0, 0, 0) [11]. From the previous works, there is no general method to prove all sets of the Diophantine equation in the form $a^x - b^y = z^2$. We still need to prove individual equations.

In this work, we study the Diophantine equation $15^x - 13^y = z^2$. We use Modular Arithmetic to show all solutions to the equation.

2. Preliminaries

In this section, we introduce basic knowledge applying in the proof.

Lemma 2.1. For all $n \in \mathbb{N}^+$. Then $2^{2n-1} \equiv 2, 5, 6, 7, 8$ or $11 \pmod{13}$.

Proof: Let $P(n): 2^{2n-1} \equiv 2, 5, 6, 7, 8 \text{ or } 11 \pmod{13}$.

For n = 1, we get $2^{2(1)-1} = 2 \equiv 2 \pmod{13}$. So P(1) is true.

We assume that P(k) is true for $k \in \mathbb{N}^+$ that is

 $2^{2k-1} \equiv 2, 5, 6, 7, 8 \text{ or } 11 \pmod{13}$.

Now, to prove that P(k+1) is true, we consider $2^{2(k+1)-1} = 2^{2k+1} = 4 \cdot 2^{2k-1}$. Then we have

$$2^{2^{(k+1)-1}} \equiv 4(2), 4(5), 4(6), 4(7), 4(8) \text{ or } 4(11) \pmod{13}$$
$$\equiv 8, 20, 24, 28, 32 \text{ or } 44 \pmod{13}$$
$$\equiv 8, 7, 11, 2, 6 \text{ or } 5 \pmod{13}.$$

Hence

$$2^{2^{(k+1)-1}} \equiv 2,5,6,7,8 \text{ or } 11 \pmod{13}$$

Thus, P(k+1) is true. Therefore, by the Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{N}^+$.

Lemma 2.2. For all $x \in \mathbb{N}$. Then $x^2 \equiv 0,1,3,4,9,10$ or $12 \pmod{13}$. Proof: Let $x \in \mathbb{N}$. There are $q, r \in \mathbb{N}$ such that x = 13q + r for $0 \le r < 13$. It follows that $x \equiv r \pmod{13}$ and $x^2 \equiv r^2 \pmod{13}$. Case 1: r = 0, then we get $x^2 \equiv 0 \pmod{13}$. Case 2: r = 1 or 12, then we get $x^2 \equiv 1 \pmod{13}$. Case 3: r = 2 or 11, then we get $x^2 \equiv 4 \pmod{13}$. Case 4: r = 3 or 10, then we get $x^2 \equiv 9 \pmod{13}$. Case 5: r = 4 or 9, then we get $x^2 \equiv 3 \pmod{13}$. Case 6: r = 5 or 8, then we get $x^2 \equiv 12 \pmod{13}$. Case 7: r = 6 or 7, then we get $x^2 \equiv 10 \pmod{13}$. On the Diophantine Equation $15^{x} - 13^{y} = z^{2}$

From all cases, we have $x^2 \equiv 0, 1, 3, 4, 9, 10 \text{ or} 12 \pmod{13}$.

3. Main result

Theorem 3.1. For all $x, y, z \in \mathbb{N}^+ \cup \{0\}$. The Diophantine equation $15^x - 13^y = z^2$ has a unique solution (x, y, z) = (0, 0, 0). Proof: Let $x, y, z \in \mathbb{N}^+ \cup \{0\}$ such that $15^x - 13^y = z^2$. (1) The equation can be solved by considering the following four cases. 1) x = 0 and y = 02) x = 0 and y > 0 3) x > 0 and y = 0 4) x > 0 and y > 0.

Case 1: x = 0 and y = 0. It is easy to see that z = 0. We get the solution (x, y, z) = (0, 0, 0).

Case 2: x = 0 and y > 0. The equation (1) becomes $1 - 13^y = z^2$. Because $1 - 13^y < 0$, we obtain $z^2 < 0$, impossible.

Case 3: x > 0 and y = 0. So (1) becomes $z^2 = 15^x - 1$. Because $15 \equiv 0 \pmod{3}$, this implies that $z^2 \equiv -1 \pmod{3}$ or $z^2 \equiv 2 \pmod{3}$, impossible.

Case 4: x > 0 and y > 0, we consider the following two subcases.

Subcase 4.1, x is odd. By Lemma 2.1, it is easy to see that

 $2^x \equiv 2,5,6,7,8,11 \pmod{13}$. By (1), we have $z^2 \equiv 2^x \pmod{13}$. This yields

 $z^2 \equiv 2,5,6,7,8,11 \pmod{13}$. By Lemma 2.2, this is impossible.

Subcase 4.2, x is even. Then x = 2k, $\exists k \in \mathbb{N}^+ \cup \{0\}$. It follows that $13^y = 15^{2k} - z^2$. This is equivalent to $13^y = (15^k - z)(15^k + z)$. There are α and $\beta \in \mathbb{N}^+ \cup \{0\}$ such that $15^k - z = 13^{\alpha}$ and $15^k + z = 13^{\beta}$ where $\alpha < \beta$ and $\alpha + \beta = y$. This implies that $2 \cdot 15^k = 13^{\alpha} + 13^{\beta}$ or $2 \cdot 3^k \cdot 5^k = 13^{\alpha} (1 + 13^{\beta - \alpha})$.

Since $13/2 \cdot 3^k \cdot 5^k$, we easily get $\alpha = 0$. This implies that $\beta = y$ and we obtain $2 \cdot 3^k \cdot 5^k = 1 + 13^y$. (2)

Since $13 \equiv 1 \pmod{3}$, (2) implies that $2 \equiv 0 \pmod{3}$. This is impossible. In all cases, it can be concluded that (0,0,0) is a solution to the equation.

4. Conclusion

In this work, we have proved that the Diophantine equation $15^x - 13^y = z^2$ has a unique solution (x, y, z) = (0, 0, 0). In the proof, we consider four cases, including cases 1: x = 0 and y = 0, case 2: x = 0 and y > 0, case 3: x > 0 and y = 0, and case 4: x > 0 and y > 0, and we use Modular Arithmetic. We obtain that the equation has only a trivial solution (x, y, z) = (0, 0, 0).

Sutthiwat Thongnak, Wariam Chuayjan and Theeradach Kaewong

Acknowledgements. We would like to thank reviewers for careful reading of our manuscript and the useful comments.

Conflict of interest. The paper is written by single author so there is no conflict of interest.

Authors' Contributions. It is a single author paper. So, full credit goes to the author.

REFERENCES

- 1. D.Acu, On a Diophantine equation, *General Mathematics*, 15 (4) (2007) 145-148.
- 2. M.Buosi, A. Lemos, A.L.P. Porto and D.F.G. Santiago, On the exponential diophantine equation $p^x 2^y = z^2$ with $p = k^2 + 2$, a prime number, *Southeast-Asian Journal of Science*, 8 (2) (2020) 103-109.
- 3. N.Burshtein, On solutions to the Diophantine equation $7^{x} + 10^{y} = z^{2}$ when x, y, z are positive integers, *Annals of Pure and Applied Mathematics*, 20 (2) (2019) 75 77.
- 4. N.Burshtein, A short note on solutions of the Diophantine equations $6^x + 11^y = z^2$ and $6^x 11^y = z^2$ in positive integers *x*, *y*, *z*, *Annals of Pure and Applied Mathematics*, 19 (2) (2019) 55 56.
- 5. S.Chotchaisthit, On the Diophantine equation $4^{x} + p^{y} = z^{2}$ where *p* is a prime number. *American Journal Mathematics and Sciences*, 1 (1) (2012) 191 193.
- 6. P. Mihailescu, Primary Cycolotomic units and a proof of Catalan's Conjecture, *Journal für die Reine und Angewandte Mathematik*, 27 (2004) 167-195.
- 7. J.F.T. Rabago, On the Diophantine equation $4^x p^y = 3z^2$ where *p* is a Prime, *Thai Journal of Mathematics*, 16 (2018) 643-650.
- 8. A.Suvarnamani, A.Singta and S.Chotchaisthit, On two Diophantine equations $4^{x} + 7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$, *Science and Technology RMUTT Journal*, 1 (1) (2011) 25-28.
- 9. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential Diophantine equation $2^x 3^y = z^2$, *Southeast-Asian Journal of Sciences*, 7 (1) (2019) 1-4.
- 10. S.Thongnak, W.Chuayjan and T.Kaewong, The solution of the exponential Diophantine equation $7^x 5^y = z^2$, *Mathematical Journal*, 66 (703) (2021) 62-67.
- 11. S.Thongnak, W.Chuayjan and T.Kaewong, On the Diophantine equation $7^x 2^y = z^2$ where *x*, *y* and *z* are non-negative integers, *Annals of Pure and Applied Mathematics*, 25 (2) (2022) 63-66.