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1. Introduction 
The Metric fixed point theory has a wide application in almost all fields of quantitative 
sciences, many authors have directed their attention to generalising the notion of a metric 
space. In this respect, several generalized metric spaces have come through by many 
authors in the last decade. Among all the generalized metric spaces, the notion of � � 
metric space has attracted considerable attention from fixed point theorists. The concept of 
a � � metric space was introduced by Mustafa and Sims [7], wherein the authors discussed 
the topological properties of this space and proved the analogue of the Banach contraction 
principle in the context of � � metric spaces. Following these results, many authors like 
Ali et al. [1], Mustafa and Sims [9], Mustafa et al. [8],  Ranjeth Kumar et al. [10],  Saadati 
et al. [11], Shatanawi et al. [12,13,14], Mannro  [4,5,6],  Vishal and Raman [16] and Vishal 
and Tripathi [17] have studied and developed several common fixed point theorems in this 
framework. Considering the contemplations given by different researchers, the principal 
motive of this paper is to link several outcomes in the literature by discussing the 
phenomenon and discreteness of fixed points for fresh classes of mappings elucidated on a 
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complete metric space. Specifically, we demonstrate common fixed point theorems for four 
self-maps in �–metric space employing the conceptions of sub–compatibility and sub–
sequential continuity. 
 
2.  Preliminaries 
Definition 2.1. Let �  be a nonempty set,  and let �: � × � × � → �	  be a function 
satisfying the following axioms: (�� )   �(�, �, �) = 0  if � = � = �, (�� )   0 < �(�, �, �), for all �, � ∈ �  with � ≠ �, (�� )   �(�, �, �) ≤ �(�, �, �), for all �, �, � ∈ �  with � ≠ �, (�� )   �(�, �, �) = �(�, �, �) = �(�, �, �) = ⋯  (Symmetry in all three variables) (�� )  �(�, �, �) ≤ �(�, �, �) + �(�, �, �), ∀ �, �, �, � ∈ �, (Rectangle inequality) 
then the function � is called a generalised metric or more specifically, a � −metric on  � 
and the pair (�, �) is called a � −metric space. 

Definition 2.2. Let (�, �) be a � −metric space,  and let {� } be a sequence of points in �, a point � ∈ � is said to be the limit of the sequence {� } if  lim%, →& �(�, � , �%) = 0 and 

one says that sequence {� } is � −convergent to �. So, that if � → � or lim →& � → � as ( → ∞ in a � −metric space (�, �) then for each ∈ > 0, there exists + ∈  ,  such that �(�, � , �%) <∈  for all -, ( ≥ +. 
Proposition 2.1. Let (�, �) be a � −metric space. Then the following are equivalent: 

(1) {� } is � −convergent to �, 
(2)  �(� , � , �) → 0  as ( → ∞, 
(3)  � (� , �, �) → 0 as ( → ∞, 
(4) � (�%, � , �) → 0 as  -, ( → ∞.  

 

Definition 2.3. Let (�, �) be a � −metric space. A sequence {� } is called � −cauchy if , 
for each ∈ > 0 there exists + ∈  , such that �(� , �%, �/) <∈ for all (, -, 0 ≥ + that is if �(� , �%, �/) → 0 as (, -, 0 → ∞. 
 
Proposition 2.2. If (�, �) be a � −metric space. Then the following are equivalent: 

(1) The sequence {� } is � −cauchy, 
(2) For each ∈ > 0, there exists + ∈  , such that �(� , �%, �%) <∈ for all (, - ≥ +. 

 
Proposition 2.3. Let (�, �) be a � −metric space, then the function �(�, �, �) is jointly 
continuous in all three of its variables. 
 
Definition 2.4. A � − metric space (�, �)  is called a symmetric � − metric space if    �(�, �, �) = �(�, �, �)  for all �, � ∈ �. 
 
Proposition 2.4. Every � −metric space (�, �) defines a metric space (�, 12) by 

(i) 12(�, �) = �(�, �, �) + �(�, �, �) for all �, � ∈ �.  
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If  (�, �) is a symmetric � −metric space then 

(ii)  12(�, �) = 2�(�, �, �) for all �, � ∈ �. 
However, if  (�, �)  is not symmetric, then it follows from the � −metric properties 
that  

(iii)  
�� �(�, �, �) ≤ 12(�, �) ≤ 3�(�, �, �) for all �, � ∈ �. 

Definition 2.5. A � −metric space (�, �) is said to be � −complete if every � −cauchy 
sequence in (�, �) is � −convergent in �. 
Proposition 2.5. A � −metric space (�, �) is � −complete if and only if  (�, 12) is a 
complete metric space. 

Proposition 2.6. Let (�, �) be a � −metric space, then for any  �, �, �, � ∈ � it follows 
that 

(1) If �(�, �, �) = 0,  then � = � = �, 
(2) �(�, �, �) ≤ �(�, �, �) + �(�, �, �), 
(3) �(�, �, �) ≤ 2�(�, �, �), 
(4) �(�, �, �) ≤ �(�, �, �) + �(�, �, �), 
(5) �(�, �, �) ≤ �� 5�(�, �, �) + �(�, �, �) + �(�, �, �)6, 
(6) �(�, �, �) ≤ 5�(�, �, �) + �(�, �, �) + �(�, �, �)6, 

Definition 2.6. A pair of self mappings (7, 8) of a � −metric space (�, �) is said to be 
compatible if  lim →& �(78� , 87� , 87�  ) = 0, whenever {� } is a sequence in � such 

that  lim  → & 7 � = lim  → & 8 � = �, where � ∈ �. 
Definition 2.7. [3] Let 7  and  8   be self maps on �,  then a point � ∈ �  is called a 
coincidence point of 7 and  8 if and only if  7� = 8�. In this case, 9 = 7� = 8� is called 
a point of coincidence of 7 and  8. 
Definition 2.8. [3] Two self-mappings 7 and  8 on a metric space are said to be weakly 
compatible or coincidently commuting if they commute at their coincidence points, that 
are if  7: = 8: for some  : ∈ � then 78: = 87:. 
Remark 2.1. It can be easily verified that compatible mappings are also weakly compatible 
but the converse is not necessarily true. 

Definition 2.9. [3] Two self-mappings 7  and  8  of a metric space are said to be 
occasionally weakly compatible (owc) if and only if there exists a point � ∈ � which is 
the coincidence point of 7 and  8 at which 7 and  8 commute. 

Definition 2.10. [2] Let (�, �) be a � −metric space. Self maps 7 and 8 on � are said to 
be sub-compatible if and only if there exists a sequence  {� } in � such that lim  → & 7 � =lim  → & 8 � = �,      where � ∈ � and satisfy     lim  → & �(78� , 87� , 87� ) = 0 



Syed Shahnawaz Ali, Niharika Kumari and Arifa Shaheen Khan 

40 
 

 

Remark 2.2. From the above definitions, it is obvious that occasionally weakly compatible 
mappings are sub-compatible. However, in general, the converse is not true. 
 

Definition 2.11. [15] Let (�, �) be a � −metric space. Self maps 7 and 8 on � are said to 
be reciprocal continuous if and only if  lim  → & 78 � = 7;  and  lim  → & 87 � = 8;, 
Whenever Sequence  {� } in � such that  lim  → & 7 � = lim  → & 8 � = ;, where  ; ∈ �. If  7 

and  8  are both continuous then they are obviously reciprocally continuous but the 
converse is not necessarily true. 

Definition 2.12. [15] Let (�, �) be a � −metric space. Self maps 7 and 8 on � are said to 
be sub-sequentially continuous if and only if there exists a sequence  {� } in � such that  lim  → & 7 � = lim  → & 8 � = ;, where ; ∈ �  and satisfy lim  → & 7 8� = 7;   and   lim  → & 87 � = 8;. 

Remark 2.3. If two self-mappings 7 and  8 are continuous or reciprocally continuous, 
they are sub-sequentially continuous. However, in general, the converse is not true. 
 
3. The main results 
Theorem 2.1. Let 7, 8, <  and  = be four self-maps of a � − metric space  (�, �).  If the 
pairs  (7, <) and  (8, =) are sub-compatible and sub-sequentially continuous then 

(1)  7 and  < have a coincidence point; 
(2)  8 and  = have a coincidence point; 
Further, let Φ: (�	)�@ → � be an upper semi-continuous function satisfying the 
following condition: 
(i) Φ(u, u, u, u, u, u, 0,0,0,0,0,0, u, u, u, u, u, u) > 0, for all : > 0. 

We suppose that (7, <) and  (8, =) satisfy, 

(ii)  B

⎩⎪⎪
⎪⎪⎪
⎨
⎪⎪⎪
⎪⎪⎧

�(7�, 8�, 8�), �(7�, =�, =�),�� 5�(8�, 7�, 7�) + �(8�, <�, <�)6, �(8�, 7�, 7�),�� 5�(7�, 8�, 8�) + �(7�, =�, =�)6, �(8�, <�, <�),�(=�, 8�, 8�), �(7�, <�, <�),�� 5�(=�, 8�, 8�) + �(8�, =�, =�)6, �(8�, =�, =�),�� 5�(7�, <�, <�) + �(<�, 7�, 7�)6, �(<�, 7�, 7�),�(<�, =�, =�), �(=�, 7�, 7�),�� 5�(<�, =�, =�) + �(<�, 8�, 8�)6, �(=�, <�, <�),�� 5�(=�, 7�, 7�) + �(=�, <�, <�)6, �(<�, 8�, 8�) ⎭⎪⎪
⎪⎪⎪
⎬
⎪⎪⎪
⎪⎪⎫

≤ 0 

for all �, � ∈ �.  
Then 7, 8, <  and  = have a unique common fixed point.  
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Proof: Since the pairs (7, <)  and  (8, =)  are sub-compatible and sub-sequentially 
continuous, there exist two sequences {� } and  {� } in � such that 
 lim  → & 7� = lim  → & <� = �,    where � ∈ � and which satisfy  lim  → & � (7<� , <7� , <7� ) =  � (7�, <�, <�) = 0 
and   lim  → & 8� = lim  → & =� = �J, where �J  ∈ � and which satisfy lim  → & � (8=� , =8� , =8� ) =  � (8�J, =�J, =�J) = 0 

Therefore,  7� = <� and  8�J = =�J, that is � is a coincidence point of  7 and  < and �J is 
a coincidence point of  8  and =.  
Now, we prove that � =  �J.  
Indeed by inequality (KK), we have  

B

⎩⎪
⎪⎪
⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧ �(7� , 8� , 8� ), �(7� , =� , =� ),12 5�(8� , 7� , 7� ) + �(8� , <� , <� )6, �(8� , 7� , 7� ),12 5�(7� , 8� , 8� ) + �(7� , =� , =� )6, �(8� , <� , <� ),�(=� , 8� , 8� ), �(7� , <� , <� ),12 5�(=� , 8� , 8� ) + �(8� , =� , =� )6, �(8� , =� , =� ),12 5�(7� , <� , <� ) + �(<� , 7� , 7� )6, �(<� , 7� , 7� ),�(<� , =� , =� ), �(=� , 7� , 7� ),12 5�(<� , =� , =� ) + �(<� , 8� , 8� )6, �(=� , <� , <� ),12 5�(=� , 7� , 7� ) + �(=� , <� , <� )6, �(<� , 8� , 8� ) ⎭⎪

⎪⎪
⎪⎪
⎪⎬
⎪⎪⎪
⎪⎪⎪
⎫

≤ 0 

Since B  is upper semi−continuous, taking the limit as  ( →  ∞ yields 

B

⎩⎪
⎪⎪⎪
⎪⎪
⎨
⎪⎪⎪
⎪⎪⎪
⎧ �(�, �J, �J), �(�, �J, �J),12 5�(�J, �, �) + �(�J, �, �)6, �(�J, �, �),12 5�(�, �J, �J) + �(�, �J, �J)6, �(�J, �, �),�(�J, �J, �J), �(�, �, �),12 5�(�J, �J, �J) + �(�J, �J, �J)6, �(�J, �J, �J),12 5�(�, �, �) + �(�, �, �)6, �(�, �, �),�(�, �J, �J), �(�J, �, �),12 5�(�, �J, �J) + �(�, �J, �J)6, �(�J, �, �),12 5�(�J, �, �) + �(�J, �, �)6, �(�, �J, �J) ⎭⎪

⎪⎪⎪
⎪⎪
⎬
⎪⎪⎪
⎪⎪⎪
⎫

≤ 0 
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which contradicts (K, if  � ≠ �J. Hence � = �J 
 
Also, we claim that 7� = �.  
 
If  7� ≠ �, using (KK), we get  

B

⎩⎪
⎪⎪⎪
⎪⎪
⎨
⎪⎪⎪
⎪⎪
⎪⎧ �(7�, 8� , 8� ), �(7�, =� , =� ),12 5�(8� , 7�, 7�) + �(8� , <�, <�)6, �(8� , 7�, 7�),12 5�(7�, 8� , 8� ) + �(7�, =� , =� )6, �(8� , <�, <�),�(=� , 8� , 8� ), �(7�, <�, <�),12 5�(8� , =� , =� ) + �(=� , 8� , 8� )6, �(8� , =� , =� ),12 5�(7�, <�, <�) + �(<�, 7�, 7�)6, �(<�, 7�, 7�),�(<�, =� , =� ), �(=� , 7�, 7�),12 5�(<�, =� , =� ) + �(<�, 8� , 8� )6, �(=� , <�, <�),12 5�(=� , 7�, 7�) + �(=� , <�, <�)6, �(<�, 8� , 8� ) ⎭⎪

⎪⎪⎪
⎪⎪
⎬
⎪⎪⎪
⎪⎪
⎪⎫

≤ 0 

 
Since B  is upper semi−continuous, taking the limit as  ( → ∞ yields 
 

B

⎩⎪
⎪⎪⎪
⎪⎪
⎨
⎪⎪⎪
⎪⎪⎪
⎧ �(7�, �, �), �(7�, �, �),12 5�(�, 7�, 7�) + �(�, 7�, 7�)6, �(�, 7�, 7�),12 5�(7�, �, �) + �(7�, �, �)6, �(�, 7�, 7�),�(�, �, �), �(7�, 7�, 7�),12 5�(�, �, �) + �(�, �, �)6, �(�, �, �),12 5�(7�, 7�, 7�) + �(7�, 7�, 7�)6, �(7�, 7�, 7�),�(7�, �, �), �(�, 7�, 7�),12 5�(7�, �, �) + �(7�, �, �)6, �(�, 7�, 7�),12 5�(�, 7�, 7�) + �(�, 7�, 7�)6, �(7�, �, �) ⎭⎪

⎪⎪⎪
⎪⎪
⎬
⎪⎪⎪
⎪⎪⎪
⎫

≤ 0 

 

B M�(7�, �, �), �(7�, �, �), �(�, 7�, 7�), �(�, 7�, 7�), �(7�, �, �),�(�, 7�, 7�), 0,0,0,0,0,0, �(7�, �, �), �(�, 7�, 7�), �(7�, �, �),�(�, 7�, 7�), �(�, 7�, 7�), �(7�, �, �) N ≤ 0 

 
This contradicts (K). Hence � = 7� = <�. 
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Again, suppose that 8� ≠ �, using (KK), we get 
 

B

⎩⎪
⎪⎪⎪
⎪⎪
⎨
⎪⎪⎪
⎪⎪⎪
⎧ �(7�, 8�, 8�), �(7�, =�, =�),12 5�(8�, 7�, 7�) + �(8�, <�, <�)6, �(8�, 7�, 7�),12 5�(7�, 8�, 8�) + �(7�, =�, =�)6, �(8�, <�, <�),�(=�, 8�, 8�), �(7�, <�, <�),12 5�(=�, 8�, 8�) + �(8�, =�, =�)6, �(8�, =�, =�),12 5�(7�, <�, <�) + �(<�, 7�, 7�)6, �(<�, 7�, 7�),�(<�, =�, =�), �(=�, 7�, 7�),12 5�(<�, =�, =�) + �(<�, 8�, 8�)6, �(=�, <�, <�),12 5�(=�, 7�, 7�) + �(=�, <�, <�)6, �(<�, 8�, 8�) ⎭⎪

⎪⎪⎪
⎪⎪
⎬
⎪⎪⎪
⎪⎪⎪
⎫

≤ 0 

 

B

⎩⎪
⎪⎪⎪
⎪⎪
⎨
⎪⎪⎪
⎪⎪⎪
⎧ �(�, 8�, 8�), �(�, 8�, 8�),12 5�(8�, �, �) + �(8�, �, �)6, �(8�, �, �),12 5�(�, 8�, 8�) + �(�, 8�, 8�)6, �(8�, �, �),�(8�, 8�, 8�), �(�, �, �),12 5�(8�, 8�, 8�) + �(8�, 8�, 8�)6, �(8�, 8�, 8�),12 5�(�, �, �) + �(�, �, �)6, �(�, �, �),�(�, 8�, 8�), �(8�, �, �),12 5�(�, 8�, 8�) + �(�, 8�, 8�)6, �(8�, �, �),12 5�(8�, �, �) + �(8�, �, �)6, �(�, 8�, 8�) ⎭⎪

⎪⎪⎪
⎪⎪
⎬
⎪⎪⎪
⎪⎪⎪
⎫

≤ 0 

 

B M�(7�, �, �), �(7�, �, �), �(�, 7�, 7�), �(�, 7�, 7�), �(7�, �, �),�(�, 7�, 7�), 0,0,0,0,0,0, �(7�, �, �), �(�, 7�, 7�), G(7�, �, �),�(�, 7�, 7�), �(�, 7�, 7�), �(7�, �, �) N ≤ 0 

 
This contradicts (K). Hence � = 8� = =�. 
 
Therefore � = 7� = 8� = <� = =�;  that is � is a common fixed point of 7, 8, < and  =. 
For Uniqueness. Suppose that there exist another fixed point 9 of 7, 8, <  and  = such that � ≠ 9.  Then by condition (KK), we have 
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B

⎩⎪
⎪⎪
⎪⎪
⎪⎨
⎪⎪
⎪⎪
⎪⎪
⎧ �(7�, 89, 89), �(7�, =9, =9),12 5�(89, 7�, 7�) + �(89, <�, <�)6, �(89, 7�, 7�),12 5�(7�, 89, 89) + �(7�, =9, =9)6, �(89, <�, <�),�(=9, 89, 89), �(7�, <�, <�),12 5�(=9, 89, 89) + �(89, =9, =9)6, �(89, =9, =9),12 5�(7�, <�, <�) + �(<�, 7�, 7�)6, �(<�, 7�, 7�),�(<�, =9, =9), �(=9, 7�, 7�),12 5�(<�, =9, =9) + �(<�, 89, 89)6, �(=9, <�, <�),12 5�(=9, 7�, 7�) + �(=9, <�, <�)6, �(<�, 89, 89) ⎭⎪

⎪⎪⎪
⎪⎪
⎬
⎪⎪⎪
⎪⎪⎪
⎫

≤ 0 

B

⎩⎪
⎪⎪⎪
⎪⎪
⎨
⎪⎪⎪
⎪⎪⎪
⎧ �(�, 9, 9), �(�, 9, 9),12 5�(9, �, �) + �(9, �, �)6, �(9, �, �),12 5�(�, 9, 9) + �(�, 9, 9)6, �(9, �, �),�(9, 9, 9), �(�, �, �),12 5�(9, 9, 9) + �(9, 9, 9)6, �(9, 9, 9),12 5�(�, �, �) + �(�, �, �)6, �(�, �, �),�(�, 9, 9), �(9, �, �),12 5�(�, 9, 9) + �(�, 9, 9)6, �(9, �, �),12 5�(9, �, �) + �(9, �, �)6, �(�, 9, 9) ⎭⎪

⎪⎪⎪
⎪⎪
⎬
⎪⎪⎪
⎪⎪⎪
⎫

≤ 0 

B M�(�, 9, 9), �(�, 9, 9), �(9, �, �), �(9, �, �), �(�, 9, 9),�(9, �, �), 0,0,0,0,0,0, �(�, 9, 9), �(9, �, �), �(�, 9, 9),�(9, �, �), �(9, �, �)�(�, 9, 9) N ≤ 0 
This contradicts condition (K). Hence � = 9. Therefore � is a unique common fixed point 
of 7, 8, <  and  =. 
 
Theorem 2.2. Let 7, 8, <  and  = be four self maps of a � − metric space  (�, �). If the 
pairs  (7, <) and  (8, =) are sub-compatible and sub-sequentially continuous then 
      (1) 7 and  < have a coincidence point; 
      (2) 8 and  = have a coincidence point; 
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Further, let Φ: (�	)�� → � be an upper semi-continuous function satisfying the 
following condition: 

(i) Φ(u, u, u, u, u, 0,0,0,0,0, u, u, u, u, u) > 0, for all : > 0. 
         We suppose that (7, <) and  (8, =) satisfy, 

(ii)    B
⎩⎪⎪
⎨
⎪⎪⎧

�(7�, 8�, 8�), �(7�, =�, =�), �(8�, 7�, 7�),�� 5�(7�, 8�, 8�) + �(7�, =�, =�)6, �(8�, <�, <�),�(=�, 8�, 8�), �(7�, <�, <�), �(8�, =�, =�),�� 5�(7�, <�, <�) + �(<�, 7�, 7�)6, �(<�, 7�, 7�),�(<�, =�, =�), �(=�, 7�, 7�), �(=�, <�, <�),�� 5�(=�, 7�, 7�) + �(=�, <�, <�)6, �(<�, 8�, 8�) ⎭⎪⎪
⎬
⎪⎪⎫ ≤ 0 

for all �, � ∈ �.  
Then 7, 8, <  and  = have a unique common fixed point.   
Proof: Since the pairs (7, <)  and  (8, =)  are sub-compatible and sub-sequentially 
continuous, there exist two sequences {� } and  {� } in � such that 
 
 lim  → & 7� = lim  → & <� = �,    where � ∈ � and which satisfy  lim  → & � (7<� , <7� , <7� ) =  � (7�, <�, <�) = 0 
 
and   lim  → & 8� = lim  → & =� = �J, where �J  ∈ � and which satisfy lim  → & � (8=� , =8� , =8� ) =  � (8�J, =�J, =�J) = 0 

 
Therefore,  7� = <� and  8�J = =�J, that is � is a coincidence point of  7 and  < and �J is 
a coincidence point of  8 and  =.  
 
Now, we prove that � =  �J.  
 
Indeed by inequality (KK), we have  

 Φ
⎩⎪⎪
⎨
⎪⎪⎧

G(AxR, ByR, ByR), G(AxR, TyR, TyR), G(ByR, AxR, AxR),�� 5G(AxR, ByR, ByR) + G(AxR, TyR, TyR)6, G(ByR, SxR, SxR),G(TyR, ByR, ByR), G(AxR, SxR, SxR), G(ByR, TyR, TyR),�� 5G(AxR, SxR, SxR) + G(SxR, AxR, AxR)6, G(SxR, AxR, AxR),G(SxR, TyR, TyR), G(TyR, AxR, AxR), G(TyR, SxR, SxR),�� 5G(TyR, AxR, AxR) + G(TyR, SxR, SxR)6, G(SxR, ByR, ByR) ⎭⎪⎪
⎬
⎪⎪⎫ ≤ 0                

Since B  is upper semi−continuous, taking the limit as  ( →  ∞ yields 
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B

⎩⎪
⎪⎪
⎨
⎪⎪
⎪⎧

�(�, �J, �J), �(�, �J, �J), �(�J, �, �),12 5�(�, �J, �J) + �(�, �J, �J)6, �(�J, �, �),�(�J, �J, �J), �(�, �, �), �(�J, �J, �J),12 5�(�, �, �) + �(�, �, �)6, �(�, �, �),�(�, �J, �J), �(�J, �, �), �(�J, �, �),12 5�(�J, �, �) + �(�J, �, �)6, �(�, �J, �J) ⎭⎪⎪
⎪⎬
⎪⎪⎪
⎫

≤ 0 

 
which contradicts (K), if  � ≠ �J. Hence � = �J 
Also, we claim that 7� = �. If  7� ≠ �, using (KK), we get  
 

B
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ �(7�, 8� , 8� ), �(7�, =� , =� ), �(8� , 7�, 7�),12 5�(7�, 8� , 8� ) + �(7�, =� , =� )6, �(8� , <�, <�),�(=� , 8� , 8� ), �(7�, <�, <�), �(8� , =� , =� ),12 5�(7�, <�, <�) + �(<�, 7�, 7�)6, �(<�, 7�, 7�),�(<�, =� , =� ), �(=� , 7�, 7�), �(=� , <�, <�),12 5�(=� , 7�, 7�) + �(=� , <�, <�)6, �(<�, 8� , 8� ) ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

≤ 0 

 
Since B  is upper semi−continuous, taking the limit as  ( → ∞ yields 
 

B
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ �(7�, �, �), �(7�, �, �), �(�, 7�, 7�),12 5�(7�, �, �) + �(7�, �, �)6, �(�, 7�, 7�),�(�, �, �), �(7�, 7�, 7�), �(�, �, �),12 5�(7�, 7�, 7�) + �(7�, 7�, 7�)6, �(7�, 7�, 7�),�(7�, �, �), �(�, 7�, 7�), �(�, 7�, 7�),12 5�(�, 7�, 7�) + �(�, 7�, 7�)6, �(7�, �, �) ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

≤ 0 

 

B W�(7�, �, �), �(7�, �, �), �(�, 7�, 7�), �(7�, �, �), �(�, 7�, 7�),0,0,0,0,0, �(7�, �, �), �(�, 7�, 7�), �(�, 7�, 7�), �(�, 7�, 7�),�(7�, �, �) X ≤ 0 

 
This contradicts (K). Hence � = 7� = <�. 
 
Again, suppose that 8� ≠ �, using (KK), we get 
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B

⎩⎪
⎪⎪
⎨
⎪⎪
⎪⎧

�(7�, 8�, 8�), �(7�, =�, =�), �(8�, 7�, 7�),12 5�(7�, 8�, 8�) + �(7�, =�, =�)6, �(8�, <�, <�),�(=�, 8�, 8�), �(7�, <�, <�), �(8�, =�, =�),12 5�(7�, <�, <�) + �(<�, 7�, 7�)6, �(<�, 7�, 7�),�(<�, =�, =�), �(=�, 7�, 7�), �(=�, <�, <�),12 5�(=�, 7�, 7�) + �(=�, <�, <�)6, �(<�, 8�, 8�) ⎭⎪⎪
⎪⎬
⎪⎪⎪
⎫

≤ 0 

 

B
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ �(�, 8�, 8�), �(�, 8�, 8�), �(8�, �, �),12 5�(�, 8�, 8�) + �(�, 8�, 8�)6, �(8�, �, �),�(8�, 8�, 8�), �(�, �, �), �(8�, 8�, 8�),12 5�(�, �, �) + �(�, �, �)6, �(�, �, �),�(�, 8�, 8�), �(8�, �, �), �(8�, �, �),12 5�(8�, �, �) + �(8�, �, �)6, �(�, 8�, 8�) ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

≤ 0 

 

B W�(�, 8�, 8�), �(�, 8�, 8�), �(8�, �, �), �(�, 8�, 8�), �(8�, �, �),0,0,0,0,0, �(�, 8�, 8�), �(8�, �, �), �(8�, �, �), �(8�, �, �)�(�, 8�, 8�) X ≤ 0 

 
This contradicts (K).  
Hence � = 8� = =�. 
Therefore � = 7� = 8� = <� = =�;  that is � is a common fixed point of 7, 8, < and  =. 
For Uniqueness. Suppose that there exist another fixed point 9 of 7, 8, <  and  = such that � ≠ 9.  Then by condition (KK), we have 

B
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ �(7�, 89, 89), �(7�, =9, =9), �(89, 7�, 7�),12 5�(7�, 89, 89) + �(7�, =9, =9)6, �(89, <�, <�),�(=9, 89, 89), �(7�, <�, <�), �(89, =9, =9),12 5�(7�, <�, <�) + �(<�, 7�, 7�)6, �(<�, 7�, 7�),�(<�, =9, =9), �(=9, 7�, 7�), �(=9, <�, <�),12 5�(=9, 7�, 7�) + �(=9, <�, <�)6, �(<�, 89, 89) ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

≤ 0 
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B

⎩⎪
⎪⎪
⎨
⎪⎪
⎪⎧

�(�, 9, 9), �(�, 9, 9), �(9, �, �),12 5�(�, 9, 9) + �(�, 9, 9)6, �(9, �, �),�(9, 9, 9), �(�, �, �), �(9, 9, 9),12 5�(�, �, �), +�(�, �, �)6, �(�, �, �),�(�, 9, 9), �(9, �, �), �(9, �, �),12 5�(9, �, �) + �(9, �, �)6, �(�, 9, 9) ⎭⎪⎪
⎪⎬
⎪⎪⎪
⎫

≤ 0 

 

B W�(�, 8�, 8�), �(�, 8�, 8�), �(8�, �, �), �(�, 8�, 8�), �(8�, �, �),0,0,0,0,0, �(�, 8�, 8�), �(8�, �, �), �(8�, �, �), �(8�, �, �)�(�, 8�, 8�) X ≤ 0 
 
This contradicts condition (K).  
Hence � = 9.  
Therefore � is a unique common fixed point of 7, 8, <  and  =. 
 
4. Conclusions 
Considering the contemplations given by different researchers, the principal motive of this 
chapter is to link several outcomes in the literature by discussing the phenomenon and 
discreteness of fixed points for fresh classes of mappings elucidated on a complete metric 
space. Specifically, we demonstrate common fixed point theorems for four self-maps in �–
Metric Space, employing sub–compatibility and sub–sequential Continuity. This can be 
further extended for more number of self−mappings satisfying a more complex class of 
inequality. 
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