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1. Introduction

We consider only finite undirected graphs withaggds or multiple edges. Notation and
terminology not defined here follow those in [1prFa graph G, we use n to denote its
order |V(G)|. The minimum degree and connectivitg graph G are denoted b¢G) and
k(G), respectively. A subset;\6f the vertex set V(G) of G is independent if wo tertices

in V1 are adjacent in G. We define E(X, Y) as {e : eyexE, Xe X, ye€ Y }. Agraph G

is semiregular if G is bipartite and all the vezdn the same part of bipartition have the
same degree. The signless Laplacian of a grapre@ted Q(G), is defined as D(G) +
A(G), where D(G) is a diagonal matrix whose entees the degrees of vertices in G and
A(G) is the adjacency matrix of G. We us€@) to denote the largest eigenvalue of Q(G).
A cycle C in a graph G is called a Hamiltonian eyof G if C contains all the vertices of
G. A graph G is called Hamiltonian if G has a Haamlan cycle. A path P in a graph G is
called a Hamiltonian path of G if P contains ak trertices of G. A graph G is called
traceable if G has a Hamiltonian path. In this pate present sufficient conditions
involving the largest eigenvalue of the signlesgplaeian, minimum degree, and
connectivity for the Hamiltonian and traceable ¢x@prhe main results are as follows.

Theorem 1.1.Let G be a graph of ordern3 and e edges with connectivityfk > 2). If
qu<(k+1)6%/e+e/(n—x—1),
then G is Hamiltonian or G is + 1.

Theorem 1.2.Let G be a graph of order>n12 and e edges with connectivityfk > 1). If
< (i + 2) 6%/e + €/(n —x — 2), then G is traceable or G i K 2.
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2.Lemmas
We need the following results as our lemmas wheprwge Theorem 1.1 and Theorem
1.2.

Lemma 2.1 below is from [4].

Lemma 2.1.Let G be a balanced bipartite graph of order 2h Wipartition (A, B). If d(xX)
+ d(y)>n + 1 for any > A and any ye B with xy € E, then G is Hamiltonian.

Lemma 2.2 below is from [2].

Lemma 2.2.Let G be a 2-connected bipartite graph with bigiarti(A, B), where |A}
|B]. If each vertex in A has degree at least kemah vertex in B has degree at least i,
then G contains a cycle of length at least 2miniB{i - 1, 2k - 2).

Lemma 2.3 below is from [5].

Lemma 2.3.Let G be a graph with at least one edge, then

0= ZVGV d2 (U)/e'

3. Proofs

Proof of Theorem 1.1.Let G be a graph satisfying the conditions in Theod.1.
Suppose, to the contrary, that G is not Hamiltenidhen r> 2k + 1 (otherwise >« >

n/2 and G is Hamiltonian). Singe> 2, G has a cycle. Choose a longest cycle C ind5 an
give an orientation on C. Since G is not Hamiltmithere exists a vertex & V(G) -
V(C). By Menger's theorem, we can find $(s) pairwise disjoint (except forgupaths

Pi, P, ..., Rbetween pland V(C). Let vbe the end vertex of Bn C, where Xi<s.
Without loss of generality, we assume that the apgree of v, v, ..., \& agrees with the
orientation of C. We usawto denote the successor palong the orientation of C,
where 1<i <s. Since C is a longest cycle in G, we haV#w; .1, where 1<i < s and the
index s + 1 is regarded as 1. Moreoves, {u", V2, ..., &'} is independent (otherwise, G
would have cycles which are longer than C). Set fig, vi*,V2", ..., \'}. Then S is
independent. Letigr vi* for each i with Ki<x. SetT:=V -S ={w, Wy, ..., Wy -«-1}.
Some ideas in [3] will be used below. Notice Hat ¢d(u) = |[E(S, V - S)k
Ywev_sdWw) and) ,csd) + Y, ev_sd(w) = 2e, we have that

Yuesdw) <e < Y,ev-sd(w).

By the conditions of Theorem 1.1, Lemma 2.3, anddBg-Schwarz inequality, we have
(k+1)6%/e+e/(n—x—1)>q
> Yyev d>(W)/e
> Yues d*(W)/e+ Yyey-s d*(w)/e
> (K +1) 6%/ + (Tyev-s dW))*/(e(n—x - 1))
>(k+1)6%* e+ e/(n—Kk— 1).
Thus all the inequalities above become equalifiesrefore d(b) = d(w) = ... = d(U+1)
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=5, dwp) =d(wa) = ... =dWi-c-1) =8, and e 2, e sd(U) =X ev_sd(w). Since e
=Y. esd(u), there is no edge between any pair of verticds-15. SoV - Sis
independent. Notice again that

e Yyesdw) =k +1)8=Yyey-sdWw) =(n-x-1)51>(n-k-1)3,
we have that g 2« + 2. Since nic- 1 = |V - Si d(w) > 6 >k, we have that r 2« + 1.
Hencen=Rk+1orn=2+ 2.

Whenn=2+1, then n « -1 =«. Since d() =3 >« for i with 0<i <x, uw; € E for
each i with i<k and for each jwith ¥ j<n-x-1. Hence G is K+ 1.

Whenn=2+2,thenn «-1=«x+1and G is a balanced bipartite graph. From Lamm
2.1, we have G is Hamiltonian, a contradiction.

This completes the proof of Theorem 1.1. ]

Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorl.2.
Suppose, to the contrary, that G is not tracedlfien n> 2« + 2 (otherwised > k > (n —
1)/2 and G is traceable). Choose a longest path@dnd give an orientation on P. Let x
and y be the two end vertices of P. Since G igmagtable, there exists a vertexew(G)
- V(P). By Menger's theorem, we can find £ (g) pairwise disjoint (except forolpaths
P, P, ..., R between pand V(P). Let vbe the end vertex ofiBn P, where X i <s.
Without loss of generality, we assume that the app®e of y, v, ..., & agrees with the
orientation of P. Since P is the longest path ix &,v;and y# vi. for each i with i <
s, otherwise G would have paths which are longat fh We use to denote the successor
of v; along the orientation of P, where<i < s. Since P is the longest path in G, we have
that v* # vi+1, where 1<i <s - 1. Moreover, {& vi*, V2, ..., &, X} is independent
(otherwise, G would have paths which are longen g Set S = {y vi*,v2", ..., ", x}.
Then S is independent. Laetuvi* for each i with i<k and u+1=x. SetT:=V -S =
{W1, W, ..., Wi-«-2}. Some ideas in [3] will be used below. Noticatth

Zuesd) =|E(S,V-S}Xwev-sdw)

QuesdW) + Xyev_sd(w) =2e,

and

we have that

Yuesdw) <e < Yyev-sdw).
By the conditions of Theorem 1.2, Lemma 2.3, anddBg-Schwarz inequality, we have
(k+2)6%/e+e/(n—x-2)>q
> Yvey d>(v)/e
>Yuesd*W/e+ Yyev-s d*(w)/e
> (k+2)8%/e + QBwev-sdw))?/(e(n— Kk —2))
> (k+2)6%* e+ e/(n—k— 2).
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Thus all the inequalities above become equalifibsrefore d(e) = d(w) = ... = d(u +1)
=9, dw) =d(w) = ... =d(Wi-c-2) =6, and e P esd(W) =X wev_sd(w). Since e
=Y. esd(w), there is no edge between any pair of vertic®¥s-i6. So V - S is independent.
Notice againthate £, csd(u) =K+ 2)0 =), cp_sdwW) =(n-x-2)61>(n -k - 2)

3, we have that 8 2< + 4. Since nx - 2 = |V - S d(w) > 6 > k, we have that k 2« +

2.

Hencen=+2,n=2Z+3,orn=2 + 4.

Whenn=2+2,thenn«-2=x. Sinced() =d>«kforiwith0<i<x+1,uw,€E
for each i with <i <k + 1 and for eachjwith4j<n-«x- 2. Hence G is K¢+ 2.

Whenn=2+ 3,thenn «-2=x + 1. Since n =R+ 3> 12,k > 5. Notice that each
vertex in S or T has a degree at legastk. From Lemma 2.2, we have G has a cycle of
length Z + 2. Since n =R+ 3 andk > 5, G has a path containing all the vertices of G.
Namely, G is traceable, a contradiction.

Whenn=2+4,thenn «x-2=x+ 2. Sincen=®2+ 4> 12,k > 4. Notice that each
vertex in S or T has degree at leastc. From Lemma 2.2, we have G has a cycle of length
2« + 4, which implies that G is traceable, a contrdi.

This completes the proof of Theorem 1.2. ]

4. Conclusion

In this note, we present new sufficient conditiamsolving the largest eigenvalue of the
signless Laplacian, minimum degree, and connegtifidt Hamiltonian and traceable
graphs.
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