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1. Introduction 
We consider only finite undirected graphs without loops or multiple edges. Notation and 
terminology not defined here follow those in [1]. For a graph G, we use n to denote its 
order |V(G)|. The minimum degree and connectivity of a graph G are denoted by δ(G) and 
κ(G), respectively. A subset V1 of the vertex set V(G) of G is independent if no two vertices 
in V1 are adjacent in G. We define E(X, Y) as {e : e = xy ∈ E, x ∈ X, y ∈ Y }. A graph G 
is semiregular if G is bipartite and all the vertices in the same part of bipartition have the 
same degree. The signless Laplacian of a graph G, denoted Q(G), is defined as D(G) + 
A(G), where D(G) is a diagonal matrix whose entries are the degrees of vertices in G and 
A(G) is the adjacency matrix of G. We use q1(G) to denote the largest eigenvalue of Q(G). 
A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of 
G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is 
called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called 
traceable if G has a Hamiltonian path. In this note, we present sufficient conditions 
involving the largest eigenvalue of the signless Laplacian, minimum degree, and 
connectivity for the Hamiltonian and traceable graphs. The main results are as follows.  
 
Theorem 1.1. Let G be a graph of order n ≥ 3 and e edges with connectivity κ (κ ≥ 2). If  

q1 ≤ �� � 1� �2/
 + e/(n – κ – 1), 

then G is Hamiltonian or G is Kκ, κ + 1. 

Theorem 1.2. Let G be a graph of order n ≥ 12 and e edges with connectivity κ (κ ≥ 1). If  
q1 ≤ �� � 2� �2/
 + e/(n – κ – 2), then G is traceable or G is Kκ, κ + 2. 



Rao Li 

52 
 

2. Lemmas 
We need the following results as our lemmas when we prove Theorem 1.1 and Theorem 
1.2.     
        Lemma 2.1 below is from [4]. 
 
Lemma 2.1. Let G be a balanced bipartite graph of order 2n with bipartition (A, B). If d(x) 
+ d(y) ≥ n + 1 for any x ∈ A and any y ∈ B with xy ∉ E, then G is Hamiltonian. 
 
Lemma 2.2 below is from [2].  
 
Lemma 2.2. Let G be a 2-connected bipartite graph with bipartition (A, B), where |A| ≥ 
|B|. If each vertex in A has degree at least k and each vertex in B has degree at least i, 
then G contains a cycle of length at least 2min(|B|, k + i - 1, 2k - 2). 
 
Lemma 2.3 below is from [5].  
 
Lemma 2.3. Let G be a graph with at least one edge, then  
 

q1 ≥ ∑  �� (�)� ∈ � /e. 
 

3. Proofs  
Proof of Theorem 1.1. Let G be a graph satisfying the conditions in Theorem 1.1. 
Suppose, to  the contrary, that G is not Hamiltonian. Then n ≥ 2κ + 1 (otherwise δ ≥ κ ≥ 
n/2 and G is Hamiltonian). Since κ ≥ 2, G has a cycle. Choose a longest cycle C in G and 
give an orientation on C.  Since G is not Hamiltonian, there exists a vertex u0 ∈ V(G) - 
V(C). By Menger's theorem, we can find s (s ≥ κ) pairwise disjoint (except for u0) paths 
P1, P2, ..., Ps between u0 and V(C). Let vi be the end vertex of Pi on C, where 1 ≤ i ≤ s. 
Without loss of generality, we assume that the appearance of v1, v2, ..., vs agrees with the 
orientation of C. We use vi

+ to denote the successor of vi along the orientation of C, 
where 1 ≤ i ≤ s. Since C is a longest cycle in G, we havt vi

+ ≠ vi + 1, where 1 ≤ i ≤ s and the 
index s + 1 is regarded as 1.  Moreover, {u0, v1

+, v2
+, ..., vs

+} is independent (otherwise, G 
would have cycles which are longer than C). Set S := {u0, v1

+,v2
+, ..., vκ+}. Then S is 

independent. Let ui = vi
+ for each i with 1 ≤ i ≤ κ. Set T := V - S = {w1, w2, ..., wn - κ - 1}. 

Some ideas in [3] will be used below.  Notice that ∑ �(�)� ∈ �  = |E(S, V - S)| ≤ 
∑ �(�)� ∈ ���  and ∑ �(�)� ∈ � +   ∑ �(�)� ∈ ���  = 2e, we have that 
 

∑ �(�)� ∈ � ≤ 
 ≤  ∑ �(�)� ∈ ��� . 
 

By the conditions of Theorem 1.1, Lemma 2.3, and Cauchy-Schwarz inequality, we have 
(� + 1) �2/
 + e/(n – κ – 1) ≥ q1 

≥  ∑  �� (�)� ∈ � 
⁄  
 ≥  ∑ �� (�)� ∈ � 
⁄  +   ∑  �� (�)� ∈ ��� 
⁄  

≥ (� + 1) �2/
 + (∑ �(�)� ∈ ��� )2/(
(� – κ – 1)) 
≥ (� + 1) �2/
 +  
 (� − � −  1)⁄ .  

Thus all the inequalities above become equalities. Therefore d(u0) = d(u1) = … = d(uκ + 1) 
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= δ,  d(w0) = d(w1) = … = d(wn - κ - 1) := δ1, and e = ∑ ����� ∈ �  = ∑ �(�)� ∈ ��� .  Since e 
= ∑ �(�)� ∈ � , there is no edge between any pair of vertices in V - S. So V - S is 
independent. Notice again that 
           e = ∑ �(�)� ∈ �  = (κ + 1) δ = ∑ �(�)� ∈ ��� = (n - κ - 1) δ1 ≥ (n - κ - 1) δ, 
we have that n ≤ 2κ + 2. Since n - κ - 1 = |V - S| ≥ d(u0) ≥ δ ≥ κ, we have that n ≥ 2κ + 1. 
Hence n = 2κ + 1 or n = 2κ + 2.  
 
When n = 2κ + 1, then n - κ - 1 = κ. Since d(ui) = δ ≥ κ for i with 0 ≤ i ≤ κ, uiwj ∈ E for 
each i with 0 ≤ i ≤ κ and for each j with 1 ≤  j ≤ n - κ - 1. Hence G is Kκ, κ + 1. 
 
When n = 2κ + 2, then n - κ - 1 = κ + 1 and G is a balanced bipartite graph. From Lemma 
2.1, we have G is Hamiltonian, a contradiction. 
 
This completes the proof of Theorem 1.1.                ∎ 
 
Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorem 1.2. 
Suppose, to the contrary, that G is not traceable. Then n ≥ 2κ + 2 (otherwise δ ≥ κ ≥ (n – 
1)/2 and G is traceable). Choose a longest path P in G and give an orientation on P. Let x 
and y be the two end vertices of P. Since G is not traceable, there exists a vertex u0 ∈ V(G) 
- V(P). By Menger's theorem, we can find s (s ≥ κ) pairwise disjoint (except for u0) paths 
P1, P2, ..., Ps between u0 and V(P). Let vi be the end vertex of Pi on P, where 1 ≤ i ≤ s. 
Without loss of generality, we assume that the appearance of v1, v2, ..., vs agrees with the 
orientation of P. Since P is the longest path in G, x ≠ vi and y ≠ vi. for each i with 1 ≤ i ≤ 
s, otherwise G would have paths which are longer than P. We use vi

+ to denote the successor 
of vi along the orientation of P, where 1 ≤ i ≤ s. Since P is the longest path in G, we have 
that vi

+ ≠ vi + 1, where 1 ≤ i ≤ s - 1.  Moreover, {u0, v1
+, v2

+, ..., vs
+, x} is independent 

(otherwise, G would have paths which are longer than P). Set S := {u0, v1
+,v2

+, ...,  vκ+, x}. 
Then S is independent. Let ui = vi

+ for each i with 1 ≤ i ≤ κ and uκ + 1 = x. Set T := V - S = 
{w 1, w2, ..., wn - κ - 2}. Some ideas in [3] will be used below.  Notice that 

∑ �(�)� ∈ �  = |E(S, V – S)| ≤ ∑ �(�)� ∈ ���  
and  
                                             ∑ �(�)� ∈ � +   ∑ �(�)� ∈ ���  = 2e,  
we have that 
 

∑ �(�)� ∈ � ≤ 
 ≤  ∑ �(�)� ∈ ��� . 
 

By the conditions of Theorem 1.2, Lemma 2.3, and Cauchy-Schwarz inequality, we have 
(� + 2) �2/
 + e/(n – κ – 2) ≥ q1 

≥  ∑  �� (�)� ∈ � 
⁄  

 ≥  ∑ �� (�)� ∈ � 
⁄  +   ∑  �� (�)� ∈ ��� 
⁄  

≥ (� + 2) �2/
 + (∑ �(�)� ∈ ��� )2/(
( � −  � − 2)) 

≥ (� + 2) �2/
 +  
 (� − � −  2)⁄ .  
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Thus all the inequalities above become equalities. Therefore d(u0) = d(u1) = … = d(uκ + 1) 
= δ,  d(w0) = d(w1) = … = d(wn - κ - 2) := δ1, and e = ∑ ����� ∈ �  = ∑ �(�)� ∈ ��� .  Since e 
=∑ �(�)� ∈ � , there is no edge between any pair of vertices in V - S. So V - S is independent. 
Notice again that e = ∑ �(�)� ∈ �  = (κ + 2) δ = ∑ �(�)� ∈ ��� = (n - κ - 2) δ1 ≥ (n - κ - 2) 
δ, we have that n ≤ 2κ + 4. Since n - κ - 2 = |V - S| ≥ d(u0) ≥ δ ≥ κ, we have that n ≥ 2κ + 
2. 
 
Hence n = 2κ + 2, n = 2κ + 3, or n = 2κ + 4.  
 
When n = 2κ + 2, then n - κ - 2 = κ. Since d(ui) = δ ≥ κ for i with 0 ≤ i ≤ κ + 1, uiwj ∈ E 
for each i with 0 ≤ i ≤ κ + 1 and for each j with 1 ≤ j ≤ n - κ - 2. Hence G is Kκ, κ + 2. 
 
When n = 2κ + 3, then n - κ - 2 = κ + 1. Since n = 2κ + 3 ≥ 12, κ ≥ 5. Notice that each 
vertex in S or T has a degree at least δ ≥ κ. From Lemma 2.2, we have G has a cycle of 
length 2κ + 2. Since n = 2κ + 3 and κ ≥ 5, G has a path containing all the vertices of G. 
Namely, G is traceable, a contradiction. 
 
When n = 2κ + 4, then n - κ - 2 = κ + 2. Since n = 2κ + 4 ≥ 12, κ ≥ 4. Notice that each 
vertex in S or T has degree at least δ ≥ κ. From Lemma 2.2, we have G has a cycle of length 
2κ + 4, which implies that G is traceable, a contradiction. 
 
This completes the proof of Theorem 1.2.                                                                ∎ 
      
4. Conclusion 
In this note, we present new sufficient conditions involving the largest eigenvalue of the 
signless Laplacian, minimum degree, and connectivity for Hamiltonian and traceable 
graphs. 
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