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Abstract. This study presents a mathematical inventory model where the demand is 
considered a function of the selling price, indicating its dependence on the selling price. 
Also, the holding cost is assumed to be a linear function of time. The main objective is to 
determine the maximum total profit through the establishment of this model. To achieve 
this, we analyze the effects of varying parameter values used in our model. To illustrate 
the sensitivity analysis, a numerical example is employed. Graphs are generated to depict 
the relationships between the model parameters, the economic order quantity (EOQ), the 
optimal time, and the total profit. 
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1. Introduction  
Inventory encompasses various types of goods, including physical resources, raw 
materials, and finished products. Inventory theory studies optimal resource allocation and 
employs information technology for decision-making. Costs associated with storage and 
maintenance are key considerations. Challenges such as product damage arise in 
inventory management. Over the past 20 years, numerous research papers have focused 
on inventory models. These studies explore various aspects such as demand patterns, 
including ramp, time, selling price, and combinations of time and demand, as well as 
linear and quadratic demand functions. In [2], the authors divided the time cycle into two 
parts and introduced a convex function with time. An inventory model was created for 
deteriorating items considering inflation in [18] and incorporated partial backlogging, 
time-varying replacement cycles, and time-varying shortage intervals. In [10], a 
mathematical inventory model was presented for managing deteriorating items by 
considering demand as a function of time with a ramp-type pattern, and the deterioration 
rate as a Weibull density function. In [11], the demand was taken time-dependent and 
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quadratic, while the deterioration rate was assumed to be constant and maximized the 
overall profit. A stochastic deteriorating inventory (SDI) model was recommended in [5]. 
In [9], the authors explored a joint optimization model for multi-unit systems, specifically 
focusing on block replacement and periodic review inventory policies.  In [3], an 
inventory model where the deterioration cost is assumed to be constant and the demand 
follows an exponential decline was presented. In [17], a mathematical inventory model 
was introduced and developed with an infinite replenishment rate, zero lead time, 
constant deterioration rate, and a holding cost that varies linearly over time. In [4]   an 
innovative fuzzy inventory model was designed that addresses the challenges posed by 
deteriorating items with price and time-dependent demand under influence of inflation. 

An EOQ model was developed considering two-stage deterministic demand in [14]. 
An inventory model introduced in [7] with deterioration of stochastic nature and 
exponential distribution. Various factors such as unreliability function and hazard rate 
function were derived in [12]. An inventory model developed in [1], in which  
deterioration rate taken as Weibull function with three parameter. And cost of 
transportation taken as depending on lot size. In [6], an inventory model was considered 
for a perishable rate modeled as a Pareto distribution and linear holding cost. In [16], the 
concept of inventory level was defined within three distinct intervals and incorporated the 
term "net discount rate of inflation" into the analysis. [8] extended an inventory model by 
dividing the inventory level into three parts. The model incorporated a demand rate that 
depends on the selling price and a Weibull deterioration rate. In [15], an EPQ model was 
presented that considered the carrying cost as a linear function of time and incorporated a 
price-dependent demand.  

 In our present article, we aimed to develop a novel mathematical model for 
inventory management. This model incorporates the concept of item deterioration over 
time, with the demand rate of items being dependent on the selling price. The holding 
cost is considered as a function of time. It is important to note that all these conditions are 
considered while considering the influence of inflation. 

This paper is divided into several parts: Section 2 presents the notations and 
assumptions. The mathematical development of our model is presented in Section 3, 
along with its solution. Section 4, provides a numerical example where specific values of 
parameters are used. A table is included in Section 5, showing the sensitivity of the 
model. Section 6, presents the observations and results. The conclusion of the paper is 
presented in Section 7. 
 
2. Assumption and notations 
The demand rate is depending on selling price or function of selling price, i.e.,        

, 0
m

m a
D a bp p

b
 = − ≤ ≤  
 

 

where a  > 0 and a is initial demand units/year. And b , m > 0 

p(t): selling price/unit at time t.  

 r:  inflation rate.  
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 h(t): h.t, is time dependent holding cost, where h is holding cost parameter and is greater 
than zero.  

A: ordering Cost 

C: unit purchase costs 

T: cycle time.  

θ: deterioration rate and 0 < θ < 1.  

Q: lot size.  

TP: total profit/cycle time.  

 

3. Mathematical formulation of the model  
In this model initial at t=0, inventory level is Q. Then inventory level diminishes due to 
demand and deterioration. It becomes zero at time t=T. Figure 1 describe our 
mathematical model. 
 

 
Figure 1: 

 
Governing Differential equation of the model: -              

  ( )( ) ( )d
I t I t D

dt
θ+ = −  
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With condition  ( )I 0T =  

 
We have  

 ( )( ) ( ) ( )m md
I t I t a bp bp a

dt
θ+ = − − = −                                                        …(1) 

Integrating Factor of equation (1) 
dt te e

θ θ =  
Solution of equation (1) 

1( ) (bp )t m tI t e a e dt cθ θ= − +             with taking   ( )I 0T =  

We get      ( ) ( ) 1
m

T ta bp
I t eθ

θ
− −  = −   

 
                                                          …(2) 

using      ( )0I Q= , level get initial inventory level 

( )1
m

Ta bp
Q eθ

θ
−= −                                                                                                  ….(3) 

Different costs associated with this model are calculated as follows: 
                                                                                                                           

(i) Ordering Cost (O.C.) =A 

(ii)   The Sales revenue (S.R.) =  ( ) ( )
0 0

. . .
t t

m mp Ddt p a bp dt p a bp t= − = −   …..(4) 

(iii)  The deterioration cost (D.C.) 
0

t
rtC Q De dt− 

= − 
 

                                     

                                        ( ) 1 1T rt
m e e

C a bp
r

θ

θ

−    − −= − +    
    

       …..(5) 

(iv) The holding cost (H.C.) 
0

. . . ( )
t

rth t e I t dt−=   

( )
( )

( ) ( ) ( )( )
( )2 22 2

111
m T

t r t T
h a bp t rrte

e e e
r rr r

θ
θ θ θ θ

θ θ θ
− +

  − + ++ 
 = − + + − 

+ +    

     …(6)                                                                                                 

 
 

(v) Total Cost (T.C.) =O.C. + D.C. +H.C 

( ) ( )
( )

( ) ( ) ( )( )
( )2 22 2

111 1 1
mT rt T

t rm t T
h a bp t rrte e e

A C a bp e e e
r r rr r

θ θ
θ θ θ θ

θ θ θ θ

−
− +

  − + +  +   − −  
 = + − + + − + + −     

+ +         

                                                                                                                   …….(7)                
 

(vi) Total Profit =S.R. – (O.C. + D.C. +H.C.) 
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( ) ( ) ( )
( )

( ) ( ) ( )( )
( )2 22 2

111 1 1
.

mT rt T
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h a bp t rrte e e
p a bp t A C a bp e e e
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θ θ
θ θ θ θ

θ θ θ θ

−
− +

  − + +  +   − −  
 = − − − − + − − + + −     
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                                                                                                          …..(8) 
                                   

(vii)  Total Profit per cycle =   ( )1
. .  . .  . . . .S R O C D C H C

T
− + +    

( ) ( ) ( )
( )

( ) ( ) ( )( )
( )2 22 2

. 111 1 1
m m mT rt T

t r t T
p a bp t C a bp h a bp t rrtA e e e

e e e
T T T r T r rr r

θ θ
θ θ θ θ

θ θ θ θ

−
− +

  − − − + +  +   − −  
 = − − + − − + + −     

+ +         

 
                                                                                                       …….(9) 

4. Numerical example 
Values of parameters used in our Inventory Model as:  
 a = 100 units/year, b= 0.2, θ = 0.05, C = 20 units/year, h = 80/year, p = 25/unit, m = 2, 
T=3, r = 0.003, A=1000 
We put these values in equation (3) and (9), and solved this problem by MATLAB 
Software. We obtained the following optimum values:  
t* = 2.7991 
Q* =2832.1 
TAP=89775 
 

5. Sensitivity analysis 
By changing values of parameters used in our model and read out the effects on t*, Q* 
and TAP. Rate of changes in values of parameters are taken -20 %, -10%, +10% and 
+20%. (see the table 1) 

 
 Table 1   Variation of t*, Q* and TAP w.r.t. a, b, p, m, T, r, C, θ, h, and A 
                 

Parameter Change in Parameter t* Q* TAP 
 -20% 2.7991 2184.8 69331 
 -10% 2.7991 2508.4 79553 
a  =1000 0% 2.7991 2832.1 89775 
 10% 2.7991 3155.8 99996 
 20% 2.7991 3479.4 110220 
 -20% 2.7991 2913 92330 
 -10% 2.7991 2872.6 91052 
b =0.2 0% 2.7991 2832.1 89775 
 10% 2.7991 2791.6 88497 
 20% 2.7991 2751.2 87219 
 -20% 2.8229 2977.8 98685 
 -10% 2.8111 2909 94303 
p = 25 0% 2.7991 2832.1 89775 
 10% 2.7871 2747.1 85116 
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 20% 2.7749 2654.1 80344 
 
 
m =2 

-20% 2.7991 3125 99026 
-10% 2.7991 3024.2 95840 
0% 2.7991 2832.1 89775 
10% 2.7991 2466.5 78228 
20% 2.7991 1770.5 56248 

T=3 -20% 2.1377 2231.2 50779 
-10% 2.4729 2529.4 69052 
0% 2.7991 2832.1 89775 
10% 3.1196 3139.4 112910 
20% 3.4360 3451.3 138460 

 -20% 2.7993 2832.1 89856 
 -10% 2.7992 2832.1 89815 
r = 0.003 0% 2.7991 2832.1 89775 
 10% 2.7990 2832.1 89734 
 20% 2.7989 2832.1 89694 
 -20% 2.8181 2832.1 89261 
C=20 -10% 2.8086 2832.1 89515 
 0% 2.7991 2832.1 89775 
 10% 2.7896 2832.1 90039 
 20% 2.7800 2832.1 90310 
 -20% 2.7989 2789 88660 
 -10% 2.7990 2810.4 89215 
θ =0.055 0% 2.7991 2832.1 89775 
 10% 2.7992 2854 90338 
 20% 2.7993 2876.1 90906 
 -20% 2.7442 2832.1 68400 
 -10% 2.7750 2832.1 79067 
h = 80 0% 2.7991 2832.1 89775 
 10% 2.8186 2832.1 100510 
 20% 2.8346 2832.1 111270 
 -20% 2.7991 2832.1 89708 
 -10% 2.7991 2832.1 89741 
 0% 2.7991 2832.1 89775 

A=1000 10% 2.7991 2832.1 89808 
 20% 2.7991 2832.1 89841 

 
 
6. Observations and results  
From above table we find results as following: 
The values of t* (time), TP (total production), and Q* (quantity) show different patterns 
when varying certain parameters. Here's a summary of the trends: 
 
(i)  With increasing parameter a , the values of t* and TP increase linearly, while Q* 
remains unchanged. 
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(ii) With increasing parameter A, the values of t* and Q* remain unchanged, while TP 
increases linearly. 
(iii) With increasing parameter b, the value of t* remains unchanged, while both Q* and 
TP decrease linearly. 
(iv) With increasing parameter c, Q* remains unchanged, t* decreases linearly, and TP 
increases linearly. 
(v) When increasing parameter h, Q* remains unchanged, t* initially increases and then 
remains constant, and TP increases linearly. 
(vi) When increasing parameter m, Q* and TP initially decrease linearly and then become 
constant. The values of t* remain unchanged. 
(vii) When increasing parameter p, Q* initially decreases linearly and then becomes 
constant. Both t* and TP decrease linearly. 
(viii) When increasing parameter r, Q* remains unchanged, while both t* and TP 
decrease linearly. 
(ix) When increasing parameter T, Q* and t* initially increase linearly and then become 
constant, while TP(T) increases linearly. 
From the above results, it can be observed that Q*, t*, and TP all increase linearly with 
increasing values of the parameter Theta. 
 
7. Conclusion 
We tried to develop an inventory model while also aiming to maximize total profit and 
minimize total cost. The value of total profit increases as the values of parameters a, T, C, 
theta, h, and A increase. The value of total profit decreases as the values of parameters b, 
p, m, and r increase. Therefore, this model proves to be very helpful for inventory holders 
who have similar conditions in their business, profession, or companies. By incorporating 
additional considerations, conditions, and special assumptions, we have enhanced the 
benefits and realism of this model for future applications. 
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