Annals of Pure and Applied Mathematics Vol. 27, No. 2, 2023, 63-71 ISSN: 2279-087X (P), 2279-0888(online) Published on 28 June 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v27n2a04905

# Annals of Pure and Applied <u>Mathematics</u>

# **Radio Labeling of Double Triangular Snake Graphs**

K.Sunitha

Department of Mathematics, Scott Christian College (Autonomous) Nagercoil, Tamilnadu, India Email: <u>ksunithasam@gmail.com</u>

# Received 2 May 2023; accepted 26 June 2023

*Abstract.* One important problem in graph theory is graph coloring or graph labeling. Labeling problem is a well-studied problem due to its wide applications, especially in frequency assignment in(mobile) communication systems, coding theory, x-ray crystallography, radar, circuit design, etc. For two non-negative integers, labeling of a graph is a function from the node set to the set of non-negative integers. For any two distinct vertices x and y of G, a radio labeling is an injective function  $h: V(G) \to N \cup \{0\}$  such that  $d(x, y) + |h(x) - h(y)| \ge 1 + D$  where D is the diameter of G. The radio number of h, rn(h) is the maximum value of rn(h) taken overall radio labelings h of G. This paper determines the radio number of double triangular snake graphs.

Keywords: Radio labeling, Radio number, Triangular snake, Double triangular snake.

AMS Mathematics Subject Classification (2010): 90B05

# **1. Introduction**

The graphs considered here are finite, undirected and simple. Let V(G) and E(G) denote the vertex and edge sets of *G*. A labeling of a graph *G* is an assignment of integers to the vertices, edges, or both subject to certain conditions. In 1980, Hale [5] introduced the notion of Radio labeling. In 1988, Roberts suggested a solution for the channel assignment problem. Chartrand et al. [4] investigated the radio number for paths and cycles and were completely solved by Liu and Zhu [3]. The span of a labeling *h* is the maximum integer that *h* maps to a vertex of *G*. The radio number of G, rn(G), is the lowest span taken overall radio labeling of the graph *G*. The distance between two vertices *x* and *y* of *G* is denoted by d(x, y). We follow J.A.Bondy [2] and Gallian[1] for standard terminology and notations. Some basic results and definitions are taken from [6] - [12].

**Definition 1.1.** A snake graph G is a connected planar graph consisting of a finite sequence of tiles  $G_1, G_2, \ldots, G_d$ , such that  $G_i$  and  $G_{i+1}$  share exactly one edge  $e_i$  and this edge is either the north edge of  $G_i$  and the south edge of  $G_{i+1}$  or the east edge of  $G_i$  and the west edge of  $G_{i+1}$ . Denote by  $Int(G) = \{e_1, e_2, \ldots, e_{d-1}\}$  the set of interior edges of the snake graph G.





**Definition 1.3.** [3] The distance d(x, y) from a vertex x to a vertex y in a connected graph G is the minimum length of the x - y paths in G.

**Definition 1.4.** [4] The eccentricity e(x) of a vertex x in a connected graph G is the distance between x and a vertex farthest from x in G.

**Definition 1.5.** [10] The diameter D is the greatest eccentricity among the vertices of G.

**Definition 1.6.** [6] A triangular snake  $T_n$  is obtained from a path  $x_1, x_2, x_3, ..., x_n$  by joining  $x_i$  and  $x_{i+1}$  to a new vertex  $y_i$  for  $1 \le i \le n-1$ .

**Definition 1.7.** A Double Triangular Snake consists of two triangular snakes that have a common path. That is, a double triangular snake  $DT_n$  is a graph obtained from a path  $x_1, x_2, ..., x_n$  by joining  $x_i$  and  $x_{i+1}$  to two new vertices  $y_i$  and  $z_i, 1 \le i \le n-1$ .

**Definition 1.8.** [4] The level function  $L: V(G) \rightarrow \{0, 1, 2, ..., N\}$  with respect to a centre vertex z by  $L(x) = min\{d(z, x)/z \in V(C(G)), x \in V(G)\}$  where V(C(G)) is the vertices of the centre of a graph G.

**Definition 1.9.** [4] The total level of a graph G, denoted by L(G), is defined as  $L(G) = \sum_{x \in V(G)} L(x)$ 

## 2. Observations

For the double triangular snake graph  $DT_n$  with diameter D, we have the following observations.

The total number of vertices of the double triangular snake graph 
$$DT_n$$
 is  
 $|V(DT_n)| = p = 3n - 2$  (2.1)

The distance between any two vertices of the double triangular snake graph  $DT_n$  is

$$d(x,y) \le \begin{cases} L(x) + L(y) & \text{if } n \text{ is odd} \\ L(x) + L(y) + 1, & \text{if } n \text{ is even} \end{cases}$$
(2.2)

The total level of the double triangular snake graph  $DT_n$  is

$$L(DT_n) = \begin{cases} \frac{3}{4}(n^2 + 1) & \text{if } n \text{ is odd} \\ \frac{3}{4}n(n-2), & \text{if } n \text{ is even} \end{cases}$$
(2.3)

The level function with respect to the vertices  $x_1$  and  $x_p$  is

$$L(x_1) = 0; L(x_p) = \frac{n-1}{2}$$
 when n is odd and  $L(x_1) = 0; L(x_p) = 0$  when n is even  
(2.4)

#### 3. Main results

In this section, we proved one Lemma and determine two results of the radio number of double triangular snake graphs.

**Lemma 3.1.** Let  $\{x_1, x_2, ..., x_p\}$  be the ordering of  $V(DT_n)$  such that  $h(x_i) < h(x_{i+1})$ . Define  $h: V(DT_n) \to N$  by  $h(x_1) = 0$ ,  $h(x_{i+1}) = h(x_i) + D + 1 - d(x_i, x_{i+1})$  and  $d(x_i, x_{i+1}) \le a + 1$  where  $a = \lfloor \frac{n}{2} \rfloor, 1 \le i \le p - 1$ . Then h is a radio labeling. **Proof:** Let h be an assignment of distinct non-negative integers to  $V(DT_n)$  such that  $h(x_1) = 0$  and  $h(x_{i+1}) = h(x_i) + D + 1 - d(x_i, x_{i+1})$  and  $d(x_i, x_{i+1}) \le a + 1, 1 \le i \le p - 1$  where  $a = \lfloor \frac{n}{2} \rfloor$ . Let  $h_i = h(x_{i+1}) - h(x_i), 1 \le i \le p - 1$ .

Now, we want to prove that h is a radio labeling. That is, for any  $i \neq i$  $j, d(x_i, x_j) + |h(x_j) - h(x_i)| \ge 1 + D$ . Without loss of generality, let  $j \ge i + 2$  then  $h(x_i) - h(x_i) = h_i + h_{i+1} + \ldots + h_{i-1}$  $= (D+1) - d(x_i, x_{i+1}) + (d+1) - d(x_{i+1}, x_{i+2}) + \dots + (D+1) - d(x_{i-1}, x_i)$  $= (j-i)(D+1) - d(x_i, x_{i+1}) - d(x_{i+1}, x_{i+2}) - \dots - d(x_{j-1}, x_j)$ = (j - i)(D + 1) - (j - i)(a + 1)as  $d(x_i, x_{i+1}) \le a + 1$ Let n = 2a + 1. In this case, diameter D = 2a $h(x_i) - h(x_i) \ge (j - i)(2a + 1) - (j - i)(a + 1)$ = (j - i)(2a + 1 - a - 1) = (j - i)(a) $\geq 2a$  as  $j \geq i+2$  $= D + 1 - d(x_i, x_j)$  as  $d(x_i, x_j) \ge 1$ Let n = 2a. In this case D = 2a - 1. If j - i = even then  $h(x_j) - h(x_i) \ge (j-i)(D+1) - \left(\frac{j-i}{2}\right)(a+1) - \left(\frac{j-i}{2}\right)(a)$  $= (j-i)(2a) - \left(\frac{j-i}{2}\right)(2a+1) = (j-i)\left[a - \frac{1}{2}\right]$  $\geq 2\left(a - \frac{1}{2}\right) = 2a - 1 = D + 1 - 1$  $\geq D + 1 - d(x_i, x_j)$  as  $d(x_i, x_j) \geq 1$ If i - i = odd then

K.Sunitha

$$\begin{split} h(x_j) - h(x_i) &\geq (j-i)(D+1) - \left(\frac{j-i-1}{2}\right)(a+1) - \left(\frac{j-i-1}{2}\right)(a) \\ &\geq D+1 - d(x_i, x_j) \\ &\text{Hence } d(x_i, x_j) + |h(x_j) - h(x_i)| \geq 1 + D. \\ &\text{Thus, } h \text{ is a radio labeling.} \end{split}$$

**Theorem 3.2.** Let  $DT_n$  be a Double Triangular snake graph on n vertices. Then  $rn(DT_n) = \frac{3n^2 - 5n + 2}{2}$  if n is odd. **Proof:** Let h be an optimal radio labeling for  $DT_n$  and  $\{x_1, x_2, ..., x_p\}$  be the ordering of  $V(DT_n)$  such that  $0 = h(x_1) < h(x_2) < ... < h(x_p)$ . Then  $h(x_{i+1}) - h(x_i) \ge (D+1) - h(x_i) = h(x_$  $d(x_i, x_{i+1})$  for all  $1 \le i \le p - 1$ . Summing up these p - 1 inequalities, we get  $\sum_{i=1}^{p-1} [h(x_{i+1}) - h(x_i)] \ge \sum_{i=1}^{p-1} (D+1) - \sum_{i=1}^{p-1} d(x_i, x_{i+1})$   $h(x_p) - h(x_1) \ge (p-1)(D+1) - \sum_{i=1}^{p-1} d(x_i, x_{i+1})$  $h(x_p) \ge (p-1)(D+1) - \sum_{i=1}^{p-1} d(x_i, x_{i+1})$ Therefore,  $rn(DT_n) = h(x_p) \ge (p-1)(D+1) - \sum_{i=1}^{p-1} d(x_i, x_{i+1})$ (3.1)Let n = 2a + 1 and  $a = \lfloor \frac{n}{2} \rfloor, a \ge 1$ In this case, diameter D = 2a and p = 3n - 2From (2.2), we have  $d(x_i, x_{i+1}) \le L(x_i) + L(x_{i+1}), 1 \le i \le p - 1$  $\sum_{i=1}^{p-1} d(x_i, x_{i+1}) \le \sum_{i=1}^{p-1} [L(x_i) + L(x_{i+1})]$  $= [L(x_1) + L(x_2) + \dots + L(x_{p-1})] + [L(x_2) + L(x_3) + \dots + L(x_p)]$ =  $\sum_{x \in V(DT_n)} L(x) - L(x_p) + \sum_{x \in V(DT_n)} L(x) - L(x_1)$  $= 2\sum_{x \in V(DT_n)} L(x) - L(x_1) - L(x_p) = 2L(DT_n) - L(x_1) - L(x_p)$  $= 2 \times \frac{3}{4} (n^2 - 1) - \left(\frac{n-1}{2}\right) \text{ [choosing } x_1 \in V(C(DT_n)),$  $L(x_1) = 0, L(x_p) = \frac{n-1}{2} = \frac{3}{2}(n^2 - 1) - (\frac{n-1}{2}) = \frac{3n^2 - n - 2}{2}$ (3.2)substituting (3.2) in (3.1), we get  $rn(DT_n) = h(x_p) \ge (p-1)(D+1) - (\frac{3n^2 - n - 2}{2})$  $= (3n-3)(n-1+1) - (\frac{3n^2 - n - 2}{2})$  $= (3n-3)n - (\frac{3n^2 - n - 2}{2})$  $= \frac{3n^2 - 5n + 2}{2}$ 

Define a function  $h: V(DT_n) \to \{0, 1, 2, \dots, \frac{3n^2 - 5n + 2}{2}\}$  by  $h(x_1) = 0$  and  $h(x_{i+1}) = h(x_i) + D + 1 - d(x_i, x_{i+1})$ , for  $1 \le i \le p - 1$ 

Now, we label the vertices in the ordering as follows.

Let  $V'_c$  be the centre of  $DT_n$ . Let  $V_{Li}^j$ , i = 1, 2, ..., a, j = 1, 2, 3 be the vertices on the left side while  $V_{Ri}^j$ , i = 1, 2, ..., a, j = 1, 2, 3 be the vertices on the right side with respect to the centre  $V'_c$  of  $DT_n$ . Let  $\{x_1, x_2, ..., x_p\}$  be the ordering of the vertices of  $DT_n$ . Label the vertices  $x_1, x_2, ..., x_p$  as in the following procedure.

$$V'_{c} \rightarrow V^{2}_{Ra} \rightarrow V^{3}_{L1} \rightarrow V^{1}_{Ra} \rightarrow V^{2}_{L1} \rightarrow V^{3}_{Ra} \rightarrow V^{1}_{L1}$$

$$V^{2}_{R(a-1)} \rightarrow V^{3}_{L2} \rightarrow V^{1}_{R(a-1)} \rightarrow V^{2}_{L2} \rightarrow V^{3}_{R(a-1)} \rightarrow V^{1}_{L2}$$

$$V^{2}_{R(a-2)} \rightarrow V^{3}_{L3} \rightarrow V^{1}_{R(a-2)} \rightarrow V^{2}_{L3} \rightarrow V^{3}_{R(a-2)} \rightarrow V^{1}_{L3}$$

$$V_{R1}^2 \rightarrow V_{La}^3 \rightarrow V_{R1}^1 \rightarrow V_{La}^2 \rightarrow V_{R1}^3 \rightarrow V_{La}^1$$

Thus, it is possible to assign labeling to the vertices of  $DT_n$  with span equal to the lower bound and satisfy the condition of lemma 3.1; hence h is a radio labeling.

Thus, we have  $rn(DT_n) \le \frac{3n^2 - 5n + 2}{2}$ Hence,  $rn(DT_n) = \frac{3n^2 - 5n + 2}{2}$ 

..

**Example 3.3.** In Table 1, Figure 1, Figure 2 and Figure 3 an ordering of the vertices, renamed version, ordering version and optimal radio labeling for  $DT_9$  are shown.  $V_c^1 \rightarrow V_{R_4}^2 \rightarrow V_{I_1}^3 \rightarrow V_{R_4}^1 \rightarrow V_{I_1}^2 \rightarrow V_{R_4}^3 \rightarrow V_{I_1}^1$ 

$$\rightarrow V_{R4}^{2} \rightarrow V_{L1}^{3} \rightarrow V_{R4}^{1} \rightarrow V_{L1}^{2} \rightarrow V_{R4}^{3} \rightarrow V_{L1}^{1} \\ V_{R3}^{2} \rightarrow V_{L2}^{3} \rightarrow V_{R3}^{1} \rightarrow V_{L2}^{2} \rightarrow V_{R3}^{3} \rightarrow V_{L2}^{1} \\ V_{R2}^{2} \rightarrow V_{L3}^{3} \rightarrow V_{R2}^{1} \rightarrow V_{L3}^{2} \rightarrow V_{R2}^{3} \rightarrow V_{L3}^{1} \\ V_{R1}^{2} \rightarrow V_{L4}^{3} \rightarrow V_{R1}^{1} \rightarrow V_{L4}^{2} \rightarrow V_{R1}^{3} \rightarrow V_{L4}^{1} \\ Table 1:$$



Figure 1:



$$rn(DT_9)=100.$$

**Theorem 3.4.** Let  $DT_n$  be a Double Triangular snake graph on n vertices, Then  $rn(DT_n) = \frac{3n^2-6n+6}{2}$  if n is even. Proof. Let h be an optimal radio labeling for  $DT_n$  and  $\{x_1, x_2, ..., x_p\}$  be the ordering of  $DT_n$  such that  $0 = h(x_1) < h(x_2) < ... < h(x_p)$ . Then  $h(x_{i+1}) - h(x_i) \ge (D+1) - d(x_i, x_{i+1})$  for all  $1 \le i \le p - 1$ Summing up these p - 1 inequalities, we get

In gup these 
$$p = 1$$
 inequalities, we get  

$$\sum_{i=1}^{p-1} [h(x_{i+1}) - h(x_i)] \ge \sum_{i=1}^{p-1} (D+1) - \sum_{i=1}^{p-1} d(x_i, x_{i+1})$$

$$h(x_p) - h(x_1) \ge (p-1)(D+1) - \sum_{i=1}^{p-1} d(x_i, x_{i+1})$$

$$h(x_p) \ge (p-1)(D+1) - \sum_{i=1}^{p-1} d(x_i, x_{i+1})$$
ore.

Therefore,

$$rn(DT_n) = h(x_p) \ge (p-1)(D+1) - \sum_{i=1}^{p-1} d(x_i, x_{i+1})$$
(3.3)

Let n = 2a and  $a = \lfloor \frac{n}{2} \rfloor, a \ge 1$ In this case, diameter D = 2a - 1 and p = 3n - 2From (2.2), we have  $d(x_i, x_{i+1}) \le L(x_i) + L(x_{i+1}) + 1, 1 \le i \le p - 1$  $\sum_{i=1}^{p-1} d(x_i, x_{i+1}) \le \sum_{i=1}^{p-1} [L(x_i) + L(x_{i+1}) + 1]$ 

$$\leq \sum_{i=1}^{p-1} [L(x_i) + L(x_{i+1})] + p - 1$$
  

$$= [L(x_1) + L(x_2) + \dots + L(x_{p-1})] + [L(x_2) + L(x_3) + \dots + L(x_p)] + p - 1$$
  

$$= \sum_{x \in V(DT_n)} L(x) - L(x_p) + \sum_{x \in V(DT_n)} L(x) - L(x_1) + p - 1$$
  

$$= 2\sum_{x \in v(DT_n)} L(x) - L(x_1) - L(x_p) + p - 1$$
  

$$= 2L(DT_n) + p - 1 \text{ [choosing } x_1, x_p \in V(C(DT_n)), L(x_1) = L(x_p) = 0]$$
  

$$= \frac{3}{2}n(n-2) + 3n - 3 = \frac{3n^2 - 6}{2} \qquad (3.4)$$
  
substituting (3.4) in (3.3) we get  

$$rn(DT_n) = h(x_p) \ge (3n - 3)n - (\frac{3n^2 - 6}{2})$$
  

$$= \frac{3n^2 - 6n + 6}{2}$$
  

$$rn(DT_n) \ge \frac{3n^2 - 6n + 6}{2}$$

Define a function  $h: V(DT_n) \to \{0, 1, 2, \dots, \frac{3n^2 - 6n + 6}{2}\}$  by  $h(x_1) = 0$  and  $h(x_{i+1}) = h(x_i) + D + 1 - d(x_i, x_{i+1})$ , for  $1 \le i \le p - 1$ Now, we label the vertices in the ordering as follows.

Let  $V_c^1, V_c^2, V_c^3$  and  $V_c^4$  be the central vertices of  $DT_n$ . We ordering the vertices of  $DT_n$  as follows. Let  $v_{Li}^j, i = 1, 2, ..., a, j = 1, 2, 3$  be the vertices on the left side with respect to the centres  $v_c^1, v_c^2$  and  $v_c^3$  while  $v_{Ri}^j, i = 1, 2, ..., a, j = 1, 2, 3$  be the vertices on the right side with respect to the centres  $v_c^2, v_c^3$  and  $v_c^3$  while  $v_{Ri}^j, i = 1, 2, ..., a, j = 1, 2, 3$  be the vertices on the right side with respect to the centres  $v_c^2, v_c^3$  and  $v_c^4$  of  $DT_n$ .

Let  $\{x_1, x_2, ..., x_p\}$  be the ordering of the vertices of  $DT_n$ . Label the vertices  $x_1, x_2, ..., x_p$  as in the following procedure.

$$\begin{array}{c} V_{c}^{2} \rightarrow V_{R(a-1)}^{1} \rightarrow V_{L1}^{3} \rightarrow V_{R(a-1)}^{2} \rightarrow V_{L1}^{1} \rightarrow V_{R(a-1)}^{3} \rightarrow V_{L1}^{2} \\ V_{R(a-2)}^{1} \rightarrow V_{L2}^{3} \rightarrow V_{R(a-2)}^{2} \rightarrow V_{L2}^{1} \rightarrow V_{R(a-2)}^{3} \rightarrow V_{L2}^{2} \\ V_{R(a-3)}^{1} \rightarrow V_{L3}^{3} \rightarrow V_{R(a-3)}^{2} \rightarrow V_{L3}^{1} \rightarrow V_{R(a-3)}^{3} \rightarrow V_{L3}^{2} \\ & \cdots \\ V_{c}^{3} \rightarrow V_{c}^{4} \rightarrow V_{c}^{1} \end{array}$$

Thus, it is possible to assign labels to the vertices of  $DT_n$  with span equal to the lower bound satisfying the condition of lemma 3.1 and hence h is a radio labeling.

Thus, we have 
$$rn(DT_n) \le \frac{3n^2 - 6n + 6}{2}$$
  
Hence,  $rn(DT_n) = \frac{3n^2 - 6n + 6}{2}$ 

**Example 3.5.** In Table 2, Figure 4, Figure 5 and Figure 6 an ordering of the vertices, renamed version, ordering version and optimal radio labeling for  $DT_8$  are shown.

$$\begin{array}{c} V_c^2 \to V_{R3}^1 \to V_{L1}^3 \to V_{R3}^2 \to V_{L1}^1 \to V_{R3}^3 \to V_{L1}^2 \\ V_{R2}^1 \to V_{L2}^3 \to V_{R2}^2 \to V_{L2}^1 \to V_{R2}^3 \to V_{L2}^2 \end{array}$$





Figure 6:

 $rn(DT_8) = 75.$ 

#### 4. Conclusion

In this paper, we investigate the radio number of Double Triangular snake graphs. This can be extended to find the radio number of higher folds of Triangular snake graphs.

*Acknowledgements.* The author is thankful to the referee for the suggestions and comments, which helped to improve the paper.

Conflict of interest. As a sole author, there is no question of conflict of interest.

Authors' Contributions. The author did all the work for this paper.

## REFERENCES

- 1. J.A.Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatories*, 18 (2016), #DS6
- 2. J.A. Bondy and U.S.R. Murthy, Graph Theory and Applications, Newyork (1976).
- 3. D.Liu and X.Zhu, multilevel distance labelings for path and cycles, *SIAM Journal of Discrete Mathematics*, 19(3) (2005) 281-293.
- 4. Gary Chartrand, David Erwin, Ping Zhang, Radio labeling of graphs, *Bell.Inst. combin. Appl.* 33 (2001) 77-85.
- 5. W.K,Hale, Frequently assignment : Theory and Applications, *Proc. IEEE*, 68 (1980) 1497-1514.
- 6. P.Agasthi, N.Parvathi and K.Thirusangu, On some labelings of subdivision of snake graphs, *Annals of Pure and Applied Mathematics*, 16(1) (2018) 245-254.
- K. Thirusangu, P.P.Ulaganathan and P.Vijaya Kumar, Some cordial labeling of duplicate graph of ladder graph, *Annals of Pure and Applied Mathematics*, 8(2) (2014) 169-174.
- 8. P.Agasthi, N.Parvathi and K.T.Thirusangu, New results on labelings of central graph of barbell graph, *Annals of Pure and Applied Mathematics*, 14(1) (2017) 11-19.
- 9. K.Sutha, K.Thirusangu and S.Bala, Some graph labeling on middle graph of extended duplicate graph of a path, *Annals of Pure and Applied Mathematics*, 8(2) (2014) 169-174.
- 10. D. Bantva, D. Liu, Optimal radio labelings of block graphs and line graph of trees, *Theoretical Compu. Sci.*, 891 (2021) 90-104.
- 11. D. Bantva, S. Vaidya, S. Zhou, Radio number of trees, *Discrete Appl. Math.*, 217 (2017) 110-122.
- Sk. Amanathulla and M. Pal, L(h,k)-labeling of intersection graphs, *Handbook of Research on Advanced Applications of Graph Theory in Modern Society*, 36(2020) 135-170, IGI Global, USA.