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Abstract. One important problem in graph theory is graph coloring or graph labeling.
Labeling problem is a well-studied problem due to its wide applications, especidly in
frequency assignment in(mobile) communication systems, coding theory, x-ray
crystallography, radar, circuit design, etc. For two non-negative integers, labeling of a
graphisafunction fromthe node set to the set of non-negative integers. For any two distinct
vertices x and y of G, aradio labeling is an injective function h: V(G) - N U {0} such
that d(x,y) + |h(x) — h(y)| = 1+ D where D isthe diameter of G. The radio number
of h,rn(h) isthe maximum vaue of rn(h) taken overal radio labelings h of G. This
paper determines the radio number of double triangular snake graphs.

Keywords. Radio labeling, Radio number, Triangular snake, Double triangular snake.
AMS Mathematics Subject Classification (2010): 90B05

1. Introduction

The graphs considered here are finite, undirected and simple. Let V(G) and E(G) denote
the vertex and edge setsof G. A labeling of agraph G isan assignment of integersto the
vertices, edges, or both subject to certain conditions. In 1980, Hale [5] introduced the
notion of Radio labdling. In 1988, Raoberts suggested a sol ution for the channel assignment
problem. Chartrand et a. [4] investigated the radio number for paths and cycles and were
completely solved by Liu and Zhu [3]. The span of alabeling h is the maximum integer
that h maps to a vertex of G. The radio number of G,rn(G), is the lowest span taken
overall radio labeling of the graph G. The distance between two vertices x and y of G is
denoted by d(x,y). Wefollow J.A.Bondy [2] and Gallian[1] for standard terminol ogy and
notations. Some basic results and definitions are taken from [6] - [12].

Definition 1.1. A snake graph G isa connected planar graph consisting of a finite
sequence of tiles G4, G,,..., G4, suchthat G; and G;,; shareexactly one edge e; and
this edgeis either the north edge of G; and the south edge of G;,, or the east edge of G;
and the west edge of G;,,. Denote by Int(G) = {eq,ey,...,e4_1} the set of interior edges
of the snake graph G.
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Example 1.2.

Figure 0: Sanke graph

Definition 1.3.[3] The distance d(x,y) fromavertex x to avertex y in a connected
graph G isthe minimum length of the x — y pathsin G.

Definition 1.4.[4] The eccentricity e(x) of avertex x inaconnected graph G isthe
distance between x and a vertex farthest from x in G.

Definition 1.5.[10] The diameter D isthe greatest eccentricity among the vertices of G.

Definition 1.6.[6] A triangular snake T,, isobtained from a path x;, x5, x3,...,x, by
joining x; and x;,; toanewvertex y; for 1 <i<n-1.

Definition 1.7. A Double Triangular Snake consists of two triangular snakesthat have a
common path. That is, a double triangular snake DT, is a graph obtained from a path
Xq1,%X5,..., %X, Dyjoining x; and x;,, totwonew vertices y; and z;,1 <i<n-—1.

Definition 1.8.[4] Thelevel function L:V(G) — {0,1,2,..., N} with respect to a centre
vertex z by L(x) = min{d(z,x)/z € V(C(G)),x € V(G)} where V(C(G)) isthe
vertices of the centre of a graph G.

Definition 1.9.[4] Thetotal level of a graph G, denoted by L(G), isdefined as
L(G) = 2 L(x)

x€V(G)

2. Observations
For the double triangular snake graph DT, with diameter D, we have the following
observations.
Thetotal number of vertices of the double triangular snake graph DT, is
[V(DT,)| =p=3n—-2 (2.1

The distance between any two vertices of the double triangular snake graph DT, is
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L(x)+L(y) if nis odd

d(x,y) < {L(x) +L(y)+1, ifniseven (22)

Thetotd level of the double triangular snake graph DT, is

2(n*+1) ifnisodd
L(DT,) ={* (2.3)

Zn(n —2), ifniseven

The level function with respect to the vertices x; and x,, is

L(xy) = 0;L(x,) = nT_l when nisodd and L(x,) = 0; L(x,) = 0 when niseven

(2.4)

3. Main results
In this section, we proved one Lemma and determine two results of the radio number of
double triangular snake graphs.

Lemma 3.1.Let {xq,x5,...,x,} betheordering of V(DT,) suchthat h(x;) < h(x;41).
Define h:V(DT,) —» N by h(x;) =0, h(x;41) = h(x;) + D + 1 — d(x;, x;41) and
d(x; Xi41) S a+ 1 where a = |2],1 < i < p— 1. Then h isaradio labeling.
Proof. Let h be an assignment of distinct non-negative integers to V(DT,,) such that
h(x;) =0 and h(x;41) =h(x)+D+1—d(x;,x41) and d(x;,xi41) <a+11<
i<p—1wherea=7] Let by = h(xiy1) —h(x)1<i<p-1.
Now, we want to prove that h is a radio labeling. That is, for any i #
Jrd(x;, x;) + |h(x) — h(x;)| = 1+ D. Without |oss of generdity, let j > i + 2 then
h(x]) - h(xl-) = hi + hi+1+' e +hj_1
=D+ 1) —d(x;,x41) + (@ + 1) = d(Xj1, Xip2) o (D + 1) — d(x-1,%5)
= —0D+1)—dlx,xi41) — d(Xig1, Xip2) — - — d(x5-1, ;)
=(-D0+D-(G-D(a+1)
as d(xl-,xl-ﬂ) <a+1
Let n = 2a + 1. Inthiscase, diameter D = 2a
h(x) —h(x) = (G—-DRa+1)—(G—i)a+1)
=(—-)QRa+1—-a—-1)=G-i(a)
>2aasj=i+2
=D+1- d(xi,xj) as d(xi,x]-) >1
Let n = 2a. Inthiscase D = 2a — 1.
If j —i = eventhen
] —1

h(x;) - h(x) = (= (D + 1) - (T) (@a+1)— (’%) (@

=(j—i)(Za)—(jZ;i>(2a+1)=(j—i)[a—%]
22(a—%)=2a—1=D+1—1

=D +1-d(x;,x) asd(x;,x) =1
If j —i = oddthen
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h(x;) = h(x) = (= (D + 1) - (] 12 1) (a+1)— (] 12 1) (@)
=D+ 1—-d(x;x5)
Hence d(x;, x;) + |h(x)) — h(x;)| = 1+ D.
Thus, h isaradio labeling.

Theorem 3.2.Let DT,, be a Double Triangular snake graph on n vertices. Then

rn(DT,) = "2 ifnisodd
Proof. Let h bean optimal radio labeling for DT,, and {xq, x5, ...,x,} bethe ordering of
V(DT,) suchthat 0 = h(x;) < h(x;) <...<h(xp). Then h(x;41) —h(x)) = (D +1) —
d(xl-,xiﬂ) foral 1<i< P — 1.
Summing up these p — 1 inequalities, we get
S [hGe) —hG)] 2 XI5 (D + D =B d(xixis)
p—
h(xp) —h(x) 2@ -DO@ +1) - Z ) d(Xi Xi41)
1=

h(xp) = (= DD + 1) = 312} d(x;xi401)
Therefore, rn(DT,) = h(x,) = (p — DD +1) = T2 d(x, xi41)  (3:1)
Letn=2a+1ada=|7]a=1
In this case, diameter D = 2a and p = 3n — 2
From (2.2), we have
d(x;Xi41) S L) +L(xp) 1 <sis<p-1

p—1
Zi=1 (X Xia) < zi=1 [LCx:) + Lxi41)]
= [L(x1) + L(xz)+... +L(xp_1)] + [L(x2) + L(x3)+... +L(xp)]

N ZxEV(DTn) LG - L(xp) * zer(DTn) LG = L0a)

=2 L(x) = L(x1) — L(xp) = 2L(DT,) — L(x1) — L(xp)
X€EV(DTr)

=2x2(n?-1) - (”7‘1) [choosing  x, € V(C(DTy)),
L) = 0,L0x) =2 =3 (n2 - 1) - (1) = =2 (32)
substituting (3.2) in (3.1), we get
rn(DT,) = h(x,) = (p — (D + 1) —

3n?-n-2

=@Bn-3)n-1+1) - (=)

3n?-n-2

= Bn-3m- D

_ 3n%-5n+2

2
3n?-5n+2

Defineafunction h:V(DT,) - {0,1,2,...,———} by h(x;) = 0 and

h(xi+1) = h(xi) +D+1-— d(xl-,xl-+1), forl<i< D — 1
Now, we |abd the verticesin the ordering as follows.

3n?-n-2

)
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Let V', bethe centre of DT;,. Let Vle.,i =12,...,a,j = 1,2,3 betheverticeson

the left side while VI{i,i =12,...,a,j = 1,2,3 be the vertices on the right side with
respect to the centre V'c of DT;,. Let {x1,x5,...,x,} be the ordering of the vertices of
DT, . Label the vertices x4, x5,...,x, asinthefollowing procedure.

Ve = Vg = Vi = Vg » VA ~ Vi, » Vi

VRZ(a—l) >V - VRl(a—l) - Vi = VRB(a—l) - Vi

VRZ(a—Z) > V3 - VRl(a—Z) S/ R3(a—2) - Vi

VRZl - VLga - VRll - VLZa - VR31 - VLla
Thus, it is possibleto assign labeling to the vertices of DT,, with span equal to the

lower bound and satisfy the condition of lemma 3.1; hence h isaradio labeling.

2_
Thus, we have rn(DT,,) < SnT-sm2

2_
Hence, rn(DT,) = w

Example 3.3.In Table 1, Figure 1, Figure 2 and Figure 3 an ordering of the vertices,
renamed version, ordering version and optimal radio labeling for DT, are shown.
Ve = VR = V3 = Vea = VA = Vi > Vi
Vis = Vs = Vaz = Vb = Vis > Vi,
Via = Vi3 = Vg = Vi = Vi = Vi
Vir = Vi = Vo = Vi = Vi~ Vi
Table 1:

Figure 1:
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T23 T17 T11 T5 20 T14 I T2
T
Ty
Ta1 T15 Ty T3 Ty 18 HAD) T
Figure 2

100

84 29 34 9 96 71 46 21
Figure 3

rn(DTy) = 100.

Theorem 3.4.Let DT,, be a Double Triangular snake graph on n vertices, Then

3n?-6n+6 .. .
rn(DT,) = =—"— if niseven,

Proof. Let h be an optimal radio labeling for DT, and {x4, x,,...,x,} bethe ordering of
DT, such that 0 = h(x;) < h(x;) <...< h(x,). Then h(x;4;) —h(x) =D +1) -
d(xi,xl-+1) foral 1<i< P — 1
Summing up these p — 1 inequalities, we get
S0 [h(xisn) = h()] 2 T2 (D +1) = X707 d(xi, Xigr)
p—-1
h(xp) =h(x)) 2 (p-1)D +1) - Z ) d(Xi, Xi+1)
1=
h(xp) = (0 = DD + 1) = T d (%, Xi41)
Therefore,
m(DT,) = h(xy) = (p — DD + 1) = X} d(x;, Xi41) (33)
Let n =2a anda=[§],a21

Inthiscase, diameter D =2a—1 and p =3n—2
From (2.2), wehave d(x;, x;41) < L(x;)) + L(xj;1) + 1,1 <i<p-—-1

S ) <Y LG + L) + 1]

=1 =1
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p—1
<D L)+ L) +p -1
= [L(xq) + L(xy)+... +L(xp_1)] + [L(x3) + L(x3)+... +L(xp)] +p—-1

=z L(x) — L(x,) +Z Lx) = L) +p—1
XEV(DTy) XEV(DTy)

- zzxev(DTn)L(x) — L) = L(xy) +p — 1

= 2L(DT,) +p — 1 [choosing xy,x, € V(C(DT,)),
L(x1) = L(xp) = 0]

=3nn-2)+3n-3="""5 (3.4)
substituting (3.4) in (3.3) we get
3n%2 -6
rn(DT,) = h(xp) =2 3n —3)n — ( 5 )
_ 3n%-6n+6
= 2
Define afunction h:V(DT,) = {0,1,2,..., 2% by h(x;) = 0 and

h(xl-+1) = h(xl-) +D+1-— d(xi,xiﬂ), for1<i< D — 1
Now, we labd the verticesin the ordering as follows.
Let V2, V2,V3 and V* bethecentral verticesof DT,,. We ordering the vertices of
DT, as follows. Let v{,i =12,...,a,j = 1,2,3 be the vertices on the Ieft side with
respect to the centres v}, vZ and v3 while v}, i = 1,2,...,a,j = 1,2,3 betheverticeson
the right side with respect to the centres v2, v3andv? of DT,.
Let {xy,x2,...,xp} be the ordering of the vertices of DT,. Label the vertices
X1,Xz,..., %, asinthefollowing procedure.
VZ = Via-1y = Vi = Via-1) = Vi = Vita-1) = Vi
Via-2) = V2 = Vi-2) = Viz = Via-2 = Viz
VRta-3) = Vi = Via-3) = Viz = Vita—3) = Vi3
Al A
Thus, it is possible to assign labels to the vertices of DT,, with span equal to the
lower bound satisfying the condition of lemma 3.1 and hence h isaradio labeling.

2_
Thus, we have rn(DT,) < 2=+

3n%-6n+6

Hence, rn(DT,) = 5

Example 3.5.In Table 2, Figure 4, Figure 5 and Figure 6 an ordering of the vertices,
renamed version, ordering version and optimal radio labeling for DTy are shown.

2 1 3 2 1 3 2
Ve _>VlR3_>VgL1_’VZR3_’VlLl_>V3Rz_>VZL1
Vee =2 Vi 2 Vo 2 Vi = Vi 2 VS
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VRll - VL33 - V1%1 - VL13 - VR31 - VL23
VE >Vt o v
Table 2:
Vs Vi VR V2 Ve Vi Vi

c

Vs Vi Vi Ve ViR Vi Vi

c

Figure 4.
T19 T13 I7 s T16 I10 Ty
xr 2
2
L5 Ly I3 Lo T18 L12 Lg
Figure 5:

o7 38 19 0 43 29 10

ol 4

45 20 17 61 H4 35 16

Figure 6:
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rn(DTg) = 75.

4. Conclusion
In this paper, we investigate the radio number of Double Triangular snake graphs. Thiscan
be extended to find the radio number of higher folds of Triangular snake graphs.
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