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Abstract. One important problem in graph theory is graph coloring or graph labeling. 
Labeling problem is a well-studied problem due to its wide applications, especially in 
frequency assignment in(mobile) communication systems, coding theory, x-ray 
crystallography, radar, circuit design, etc. For two non-negative integers, labeling of a 
graph is a function from the node set to the set of non-negative integers. For any two distinct 
vertices � and � of �, a radio labeling is an injective function ℎ: ���� → 
 ∪ �0� such 
that ���, �� � |ℎ��� � ℎ���| � 1 � � where � is the diameter of �. The radio number 
of ℎ, ���ℎ� is the maximum value of ���ℎ� taken overall radio labelings ℎ of �. This 
paper determines the radio number of double triangular snake graphs.  
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1. Introduction 
The graphs considered here are finite, undirected and simple. Let ���� and ���� denote 
the vertex and edge sets of �. A labeling of a graph � is an assignment of integers to the 
vertices, edges, or both subject to certain conditions. In 1980, Hale [5] introduced the 
notion of Radio labeling. In 1988, Roberts suggested a solution for the channel assignment 
problem. Chartrand et al. [4] investigated the radio number for paths and cycles and were 
completely solved by Liu and Zhu [3]. The span of a labeling ℎ is the maximum integer 
that ℎ maps to a vertex of �. The radio number of �, �����, is the lowest span taken 
overall radio labeling of the graph �. The distance between two vertices � and � of � is 
denoted by ���, ��. We follow J.A.Bondy [2] and Gallian[1] for standard terminology and 
notations. Some basic results and definitions are taken from [6] - [12].  
 
Definition 1.1. A snake graph � is a connected planar graph consisting of a finite 
sequence of tiles ��, ��, . . . , ��, such that �� and ���� share exactly one edge  � and 
this edge is either the north edge of �� and the south edge of ���� or the east edge of �� 
and the west edge of ����. Denote by Int��� ! � �,  �, . . . ,  �"�� the set of interior edges 
of the snake graph �.  
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Example 1.2.  

 
Figure 0: Sanke graph 

  
Definition 1.3. [3] The distance ���, �) from a vertex � to a vertex � in a connected 
graph � is the minimum length of the � − � paths in �.  

  
Definition 1.4. [4] The eccentricity  (�) of a vertex � in a connected graph � is the 
distance between � and a vertex farthest from � in �.  

  
Definition 1.5. [10] The diameter � is the greatest eccentricity among the vertices of �.  

  
Definition 1.6. [6] A triangular snake #$ is obtained from a path ��, ��, �%, . . . , �$ by 
joining �� and ���� to a new vertex �� for 1 ≤ ' ≤ � − 1.  

  
Definition 1.7. A Double Triangular Snake consists of two triangular snakes that have a 
common path. That is, a double triangular snake �#$ is a graph obtained from a path ��, ��, . . . , �$ by joining �� and ���� to two new vertices ��  and (�, 1 ≤ ' ≤ � − 1.  

  
Definition 1.8. [4] The level function ): �(�) → {0,1,2, . . . , 
} with respect to a centre 
vertex ( by )(�) = +'�{�((, �)/( ∈ �(.(�)), � ∈ �(�)} where �(.(�)) is the 
vertices of the centre of a graph �. 
  
Definition 1.9. [4] The total level of a graph �, denoted by )(�), is defined as  )(�) =  01∈2(3) )(�) 

 
2. Observations 
For the double triangular snake graph �#$  with diameter �,  we have the following 
observations. 

The total number of vertices of the double triangular snake graph �#$ is    |�(�#$)| = 4 = 3� − 2                            (2.1) 
 

The distance between any two vertices of the double triangular snake graph �#$ is   
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���, �) ≤ 6)(�) + )(�) if � is odd)(�) + )(�) + 1, if � is even                    (2.2) 

 
The total level of the double triangular snake graph �#$ is   

)(�#$) = ?%@ (�� + 1) if � is odd%@ �(� − 2), if � is even                       (2.3) 

The level function with respect to the vertices �� and �A is 

 )(��) = 0; )(�A) = $"��   when n is odd and )(��) = 0; )(�A) = 0 when n is even 

(2.4) 
 

3. Main results 
In this section, we proved one Lemma and determine two results of the radio number of 
double triangular snake graphs.  
 
Lemma 3.1. Let {��, ��, . . . , �A} be the ordering of �(�#$) such that ℎ(��) < ℎ(����). 
Define ℎ: �(�#$) → 
 by ℎ(��) = 0, ℎ(����) = ℎ(��) + � + 1 − �(��, ����) and �(��, ����) ≤ D + 1 where D = ⌊$�⌋,1 ≤ ' ≤ 4 − 1. Then ℎ is a radio labeling.  

Proof: Let ℎ be an assignment of distinct non-negative integers to �(�#$) such that ℎ(��) = 0  and ℎ(����) = ℎ(��) + � + 1 − �(�� , ����)  and �(�� , ����) ≤ D + 1,1 ≤' ≤ 4 − 1 where D = ⌊$�⌋. Let ℎ� = ℎ(����) − ℎ(��),1 ≤ ' ≤ 4 − 1.  

Now, we want to prove that ℎ  is a radio labeling. That is, for any ' ≠H, �(�� , �I) + |ℎ(�I) − ℎ(��)| ≥ 1 + �. Without loss of generality, let H ≥ ' + 2 then  ℎ(�I) − ℎ(��) = ℎ� + ℎ���+. . . +ℎI"�              = (� + 1) − �(��, ����) + (� + 1) − �(����, ����)+. . . +(� + 1) − �(�I"�, �I)              = (H − ')(� + 1) − �(��, ����) − �(����, ����) − ⋯ − �K�I"�, �IL                             = (H − ')(� + 1) − (H − ')(D + 1) 
as �(�� , ����) ≤ D + 1 
Let � = 2D + 1. In this case, diameter � = 2D ℎK�IL − ℎ(��) ≥ (H − ')(2D + 1) − (H − ')(D + 1) = (H − ')(2D + 1 − D − 1) = (H − ')(D) ≥ 2D as H ≥ ' + 2 = � + 1 − �(�� , �I) as �(��, �I) ≥ 1 
Let � = 2D. In this case � = 2D − 1. 
If H − ' = even then ℎK�IL − ℎ(��) ≥ (H − ')(� + 1) − MH − '2 N (D + 1) − MH − '2 N (D) 

= (H − ')(2D) − MH − '2 N (2D + 1) = (H − ') OD − 12P 

≥ 2 MD − 12N = 2D − 1 = � + 1 − 1 ≥ � + 1 − �(��, �I) as �(��, �I) ≥ 1 
If H − ' = odd then 
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ℎK�IL − ℎ(��) ≥ (H − ')(� + 1) − MH − ' − 12 N (D + 1) − MH − ' − 12 N (D)                  
     ≥ � + 1 − �(�� , �I)  

Hence �(��, �I) + |ℎ(�I) − ℎ(��)| ≥ 1 + �.  
Thus, ℎ is a radio labeling. 

 
Theorem 3.2. Let �#$ be a Double Triangular snake graph on � vertices. Then ��(�#$) = %$Q"R$���  if n is odd.  

Proof: Let ℎ be an optimal radio labeling for �#$ and {��, ��, . . . , �A} be the ordering of �(�#$) suchthat 0 = ℎ(��) < ℎ(��) <. . . < ℎ(�A). Then ℎ(����) − ℎ(��) ≥ (� + 1) −�(��, ����) for all 1 ≤ ' ≤ 4 − 1.  
Summing up these 4 − 1 inequalities, we get  ∑A"��T� [ℎ(����) − ℎ(��)] ≥ ∑A"��T� (� + 1) − ∑A"��T� �(�� , ����)  

ℎ(�A) − ℎ(��) ≥ (4 − 1)(� + 1) − 0A"�
�T� �(��, ����) 

ℎ(�A) ≥ (4 − 1)(� + 1) − ∑A"��T� �(�� , ����)  

Therefore, ��(�#$) = ℎ(�A) ≥ (4 − 1)(� + 1) − ∑A"��T� �(�� , ����)        (3.1)  

Let � = 2D + 1 and D = ⌊$�⌋, D ≥ 1  

In this case, diameter � = 2D and 4 = 3� − 2  
From (2.2), we have  
      �(�� , ����) ≤ )(��) + )(����),1 ≤ ' ≤ 4 − 1  

0A"�
�T� �(��, ����) ≤ 0A"�

�T� [)(��) + )(����)] = [)(��) + )(��)+. . . +)(�A"�)] + [)(��) + )(�%)+. . . +)(�A)] = 01∈2(WXY) )(�) − )K�AL + 01∈2(WXY) )(�) − )(��) 

= 2 01∈2(WXY) )(�) − )(��) − )(�A) = 2)(�#$) − )(��) − )(�A) 

 = 2 × %@ (�� − 1) − [$"�� \ [choosing   �� ∈ �K.(�#$)L, 
)(��) = 0, )(�A) = $"�� ] = %� (�� − 1) − ($"�� ) = %$Q"$"��                       (3.2)  

substituting (3.2) in (3.1), we get  ��(�#$) = ℎ(�A) ≥ (4 − 1)(� + 1) − (%$Q"$"�� )  

             = (3� − 3)(� − 1 + 1) − (%$Q"$"�� )  

             = (3� − 3)� − (%$Q"$"�� )  

             = %$Q"R$���   

Define a function ℎ: �(�#$) → {0,1,2, . . . , %$Q"R$��� } by ℎ(��) = 0 and  ℎ(����) = ℎ(��) + � + 1 − �(��, ����), for 1 ≤ ' ≤ 4 − 1  
Now, we label the vertices in the ordering as follows.  
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Let �′^  be the centre of �#$. Let �_�
I , ' = 1,2, . . . , D, H = 1,2,3 be the vertices on 

the left side while �̀ �I , ' = 1,2, . . . , D, H = 1,2,3  be the vertices on the right side with 
respect to the centre �′^  of �#$. Let {��, ��, . . . , �A} be the ordering of the vertices of �#$. Label the vertices ��, ��, . . . , �A as in the following procedure. �′^ → �̀ a� → �_�% → �̀ a� → �_�� → �̀ a% → �_��            �̀ (a"�)� → �_�% → �̀ (a"�)� → �_�� → �̀ (a"�)% → �_��            �̀ (a"�)� → �_%% → �̀ (a"�)� → �_%� → �̀ (a"�)% → �_%�  

         ..............................................................           �̀ �� → �_a% → �̀ �� → �_a� → �̀ �% → �_a�  
Thus, it is possible to assign labeling to the vertices of �#$ with span equal to the 

lower bound and satisfy the condition of lemma 3.1; hence ℎ is a radio labeling. 

Thus, we have ��(�#$) ≤ %$Q"R$���  

Hence, ��(�#$) = %$Q"R$���   

  
Example 3.3. In Table 1, Figure 1, Figure 2 and Figure 3 an ordering of the vertices, 
renamed version, ordering version and optimal radio labeling for �#b are shown.  �̂� → �̀ @� → �_�% → �̀ @� → �_�� → �̀ @% → �_��             �̀ %� → �_�% → �̀ %� → �_�� → �̀ %% → �_��             �̀ �� → �_%% → �̀ �� → �_%� → �̀ �% → �_%�             �̀ �� → �_@% → �̀ �� → �_@� → �̀ �% → �_@�   

Table 1: 
 

 
Figure 1: 
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Figure 2 

 
 

Figure 3 
 
����#b� ! 100.   

 
Theorem 3.4. Let �#$ be a Double Triangular snake graph on � vertices, Then ��(�#$) = %$Q"c$�c�  if n is even.  

Proof. Let ℎ be an optimal radio labeling for �#$ and {��, ��, . . . , �A} be the ordering of �#$  such that 0 = ℎ(��) < ℎ(��) <. . . < ℎ(�A) . Then ℎ(����) − ℎ(��) ≥ (� + 1) −�(��, ����) for all 1 ≤ ' ≤ 4 − 1  
Summing up these 4 − 1 inequalities, we get  ∑A"��T� [ℎ(����) − ℎ(��)] ≥ ∑A"��T� (� + 1) − ∑A"��T� �(�� , ����)  

ℎ(�A) − ℎ(��) ≥ (4 − 1)(� + 1) − 0A"�
�T� �(��, ����) 

ℎ(�A) ≥ (4 − 1)(� + 1) − ∑A"��T� �(�� , ����)  
Therefore,  ��(�#$) = ℎ(�A) ≥ (4 − 1)(� + 1) − ∑A"��T� �(�� , ����)             (3.3)  

Let � = 2D and D = ⌊$�⌋, D ≥ 1  

In this case, diameter � = 2D − 1 and 4 = 3� − 2  
From (2.2), we have �(��, ����) ≤ )(��) + )(����) + 1,1 ≤ ' ≤ 4 − 1 

0A"�
�T� �(�� , ����) ≤ 0A"�

�T� [)(��) + )(����) + 1] 
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≤ 0
A"�

�T�
[)���� � )������] � 4 � 1 = [)(��) + )(��)+. . . +)(�A"�)] + [)(��) + )(�%)+. . . +)(�A)] + 4 − 1 = 01∈2(WXY) )(�) − )(�A) + 01∈2(WXY) )(�) − )(��) + 4 − 1 

 = 2 01∈d(WXY) )(�) − )(��) − )(�A) + 4 − 1 

= 2)(�#$) + 4 − 1 [choosing  ��, �A ∈ �K.(�#$)L, )(��) = )(�A) = 0] = %� �(� − 2) + 3� − 3 = %$Q"c�                      (3.4) 

substituting (3.4) in (3.3) we get 

��(�#$) = ℎ(�A) ≥ (3� − 3)� − (3�� − 62 ) 

 = %$Q"c$�c�  

��(�#$) ≥ %$Q"c$�c�   

Define a function ℎ: �(�#$) → {0,1,2, . . . , %$Q"c$�c� } by ℎ(��) = 0 and 

 ℎ(����) = ℎ(��) + � + 1 − �(��, ����), for 1 ≤ ' ≤ 4 − 1  
Now, we label the vertices in the ordering as follows.  

Let �̂�, �̂�, �̂% D�� �̂@ be the central vertices of �#$. We ordering the vertices of �#$  as follows. Let g_�I , ' = 1,2, . . . , D, H = 1,2,3  be the vertices on the left side with 

respect to the centres g�̂, g �̂ and g %̂ while g`�I , ' = 1,2, . . . , D, H = 1,2,3 be the vertices on 
the right side with respect to the centres g �̂, g%̂D��g@̂ of �#$.  

Let {��, ��, . . . , �A} be the ordering of the vertices of �#$ . Label the vertices ��, ��, . . . , �A as in the following procedure.  �̂� → �̀ (a"�)� → �_�% → �̀ (a"�)� → �_�� → �̀ (a"�)% → �_��            �̀ (a"�)� → �_�% → �̀ (a"�)� → �_�� → �̀ (a"�)% → �_��            �̀ (a"%)� → �_%% → �̀ (a"%)� → �_%� → �̀ (a"%)% → �_%�  
         ..............................................................           �̂% → �̂@ → �̂� 
Thus, it is possible to assign labels to the vertices of �#$ with span equal to the 

lower bound satisfying the condition of lemma 3.1 and hence ℎ is a radio labeling.  

Thus, we have ��(�#$) ≤ %$Q"c$�c�  

Hence, ��(�#$) = %$Q"c$�c�   

  
Example 3.5. In Table 2, Figure 4, Figure 5 and Figure 6 an ordering of the vertices, 
renamed version, ordering version and optimal radio labeling for �#h are shown.  

 �̂� → �̀ %� → �_�% → �̀ %� → �_�� → �̀ %% → �_��             �̀ �� → �_�% → �̀ �� → �_�� → �̀ �% → �_��   
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          �̀ �� → �_%% → �̀ �� → �_%� → �̀ �% → �_%�             �̂% → �̂@ → �̂�  
Table 2: 

 
Figure 4: 

 

 
Figure 5: 

 
 
  

 
 

Figure 6: 
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����#h� ! 75.   
 
4. Conclusion 
In this paper, we investigate the radio number of Double Triangular snake graphs. This can 
be extended to find the radio number of higher folds of Triangular snake graphs.  
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