Annals of Pure and Applied Mathematics Vol. 27, No. 2, 2023, 73-78 ISSN: 2279-087X (P), 2279-0888(online) Published on 29 June 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v27n2a05908

Annals of Pure and Applied <u>Mathematics</u>

Domination Product Connectivity Indices of Graphs

V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585 106, India E-mail:vrkulli@gmail.com

Received 20 May 2023; accepted 28 June 2023

Abstract. In this study, we introduce the domination product connectivity index and the reciprocal domination product connectivity index of a graph. Furthermore, we compute these indices for some standard, French windmill, friendship graphs.

AMS Mathematics Subject Classification (2010): 05C10, 05C69

Keywords: domination product connectivity index, reciprocal domination product connectivity index, graph.

1. Introduction

In this paper, *G* denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set and edge set of G. The degree $d_G(u)$ of a vertex *u* is the number of vertices adjacent to *u*. we refer [1, 2], for other undefined notations and terminologies.

Graph indices have their applications in various disciplines of Science and Technology. For more information about graph indices, see [3].

The domination degree $d_d(u)$ [4] of a vertex u in a graph G is defined as the number of minimal dominating sets of G which contains u.

Recently, some domination indices were studied, for example, in [5, 6, 7, 8].

We introduce the domination product connectivity index of a graph G, defined as

$$DP(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_d(u)d_d(v)}}.$$

Recently, some connectivity indices were studied, for example, in [9, 10, 11, 12].

Considering the domination product connectivity index, we introduce the domination product connectivity polynomial of a graph G and defined it as

$$DP(G, x) = \sum_{uv \in E(G)} x^{\sqrt{d_d(u)d_d(v)}}$$

We also introduce the reciprocal domination product connectivity index of a graph G, defined as

$$RDP(G) = \sum_{uv \in E(G)} \sqrt{d_d(u)d_d(v)}.$$

We define the reciprocal domination product connectivity polynomial of a graph G as

V.R.Kulli

$$RDP(G, x) = \sum_{uv \in E(G)} x^{\sqrt{d_d(u)d_d(v)}}.$$

In this paper, we determine the domination product connectivity index, reciprocal domination product connectivity index and their corresponding polynomials of some standard graphs, French windmill graphs and friendship graphs.

1. Domination product connectivity index 1.1. Results for some standard graphs

Proposition 1. If K_n is a complete graph with *n* vertices, then

$$DP(K_n) = \frac{n(n-2)}{2}.$$

Proof: If K_n is a complete graph, then $d_d(u) = 1$. From definition, we have

$$DP(K_n) = \sum_{uv \in E(K_n)} \frac{1}{\sqrt{d_d(u)d_d(v)}} = \frac{n(n-1)}{2} \frac{1}{\sqrt{1 \times 1}} = \frac{n(n-1)}{2}$$

Proposition 2. If S_{n+1} is a star graph with $d_d(u) = 1$, then $DP(S_{n+1}) = n$.

Proposition 3. If $S_{p+1,q+1}$ is a double star graph with $d_d(u) = 2$, then

$$DP(S_{p+1,q+1}) = \frac{p+q+1}{2}.$$

Proposition 4. Let $K_{m,n}$ be a complete bipartite graph with $2 \le m \le n$. Then

$$DP(K_{m,n}) = \frac{mn}{\sqrt{mn+m+n+1}}.$$

Proof: Let $G = K_{m,n}, m, n \ge 2$ with $d_d(u) = m+1$

$$= n+1$$
, for all $u \in V(G)$.

From definition, we have

$$DP(K_{m,n}) = \frac{1}{\sqrt{d_d(u)d_d(v)}} = \frac{mn}{\sqrt{(m+1)(n+1)}} = \frac{mn}{\sqrt{mn+m+n+1}}$$

In the following proposition, by using definition, we obtain the domination product connectivity exponential of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$.

Proposition 5. The domination product connectivity exponential of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$ are given by

Domination Product Connectivity Indices of Graphs

(i)
$$DP(K_n, x) = \sum_{uv \in E(G)} x^{\sqrt{d_d(u)d_d(v)}} = \frac{n(n-1)}{2} x^{\sqrt{|x|}} = \frac{n(n-1)}{2} x^1.$$

(ii) $DP(S_{n+1}, x) = nx^1$.

(iii)
$$DP(S_{p+1,q+1}, x) = (p+q+1)x^2$$

(iv) $DP(K_{m,n}, x) = mnx^{\sqrt{mn+m+n+1}}$.

1.2. Results for French Windmill graphs

The French windmill graph F_n^m is the graph obtained by taking $m \square 3$ copies of K_n , $n \square 3$ with a vertex in common. The graph F_n^m is presented in Figure 1. The French windmill graph F_3^m is called a friendship graph.

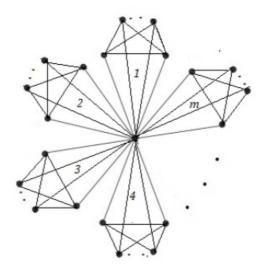


Figure 1: French windmill graph F_n^m

Let *F* be a French windmill graph F_n^m . Then

$$d_d(u) = \begin{cases} 1, & \text{if } u \text{ is the center vertex} \\ (n-1)^{n-1}, & \text{otherwise} \end{cases}$$

Theorem 1. Let *F* be a French windmill graph F_n^m . Then

$$DP(F) = \frac{m(n-1)}{\sqrt{(n-1)^{(m-1)}}} + \frac{[(mn(n-1)/2) - m(n-1)]}{(n-1)^{(m-1)}}.$$

Proof: In *F*, there are two sets of edges. Let E_1 be the set of all edges which are incident with the center vertex and E_2 be the set of all edges of the complete graph. Then

V.R.Kulli

$$DP(F) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_d(u)d_d(v)}}$$

= $\sum_{uv \in E_1(G)} \frac{1}{\sqrt{d_d(u)d_d(v)}} + \sum_{uv \in E_2(G)} \frac{1}{\sqrt{d_d(u)d_d(v)}}$
= $\frac{m(n-1)}{\sqrt{1 \times (n-1)^{(m-1)}}} + \frac{[(mn(n-1)/2) - m(n-1)]}{\sqrt{(n-1)^{(m-1)}} \times (n-1)^{(m-1)}}$
= $\frac{m(n-1)}{\sqrt{(n-1)^{(m-1)}}} + \frac{[(mn(n-1)/2) - m(n-1)]}{(n-1)^{(m-1)}}.$

Corollary 1.1. Let F_3^m be a friendship graph. Then $DP(F_3^m) = \frac{2m}{\sqrt{2^{(m-1)}}} + \frac{m}{2^{m-1}}$.

2. Reciprocal domination product connectivity index2.1 Results for some standard graphs

Proposition 6. If K_n is a complete graph with *n* vertices, then

$$RDP(K_n) = \frac{n(n-1)}{2}$$

Proof: If K_n is a complete graph, then $d_d(u) = 1$. From definition, we have

$$RDP(K_n) = \sum_{uv \in E(K_n)} \sqrt{d_d(u)d_d(v)} = \frac{n(n-1)}{2}\sqrt{1 \times 1} = \frac{n(n-1)}{2}$$

Proposition 7. If S_{n+1} is a star graph with $d_d(u) = 1$, then $RDP(S_{n+1}) = n$.

Proposition 8. If $S_{p+1,q+1}$ is a double star graph with $d_d(u) = 2$, then

$$RDP(S_{p+1,q+1}) = 2(p+q+1).$$

Proposition 9. Let $K_{m,n}$ be a complete bipartite graph with $2 \le m \le n$. Then $RDP(K_{m,n}) = mn\sqrt{mn+m+n+1}$.

Proof: Let $G = K_{m,n}$, m, $n \ge 2$ with

$$d_d(u) = \begin{cases} m+1\\ n+1, \text{ for all } u \in V(G) \end{cases}$$

From definition, we have

$$RDP(K_{m,n}) = \sum_{uv \in E(K_{m,n})} \sqrt{d_d(u)d_d(v)}$$
$$= mn\sqrt{(m+1)(n+1)} = mn\sqrt{mn+m+n+1}.$$

Domination Product Connectivity Indices of Graphs

In the following proposition, by using definition, we obtain the domination product connectivity exponential of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$.

Proposition 10. The domination product connectivity exponential of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$ are given by

(i)
$$RDP(K_n, x) = \sum_{uv \in E(G)} x^{\sqrt{d_d(u)d_d(v)}} = \frac{n(n-1)}{2} x^{\sqrt{|x|}} = \frac{n(n-1)}{2} x^1.$$

(ii)
$$RDP(S_{n+1}, x) = nx^1$$

(iii)
$$RDP(S_{p+1,q+1}, x) = (p+q+1)x^2.$$

(iv)
$$RDP(K_{m,n}, x) = mnx^{\sqrt{mn+m+n+1}}.$$

2.2. Results for French Windmill graphs

Theorem 2. Let *F* be a French windmill graph F_n^m . Then

$$RDP(F) = m(n-1)\sqrt{(n-1)^{(m-1)}} + [(mn(n-1)/2) - m(n-1)](n-1)^{(m-1)}$$

Proof: In *F*, there are two sets of edges. Let E_1 be the set of all edges which are incident with the center vertex and E_2 be the set of all edges of the complete graph. Then

$$RDP(F) = \sum_{uv \in E(G)} \sqrt{d_d(u)d_d(v)} = \sum_{uv \in E_1(G)} \sqrt{d_d(u)d_d(v)} + \sum_{uv \in E_2(G)} \sqrt{d_d(u)d_d(v)}$$
$$= m(n-1)\sqrt{1 \times (n-1)^{(m-1)}} + [(mn(n-1)/2) - m(n-1)]\sqrt{(n-1)^{(m-1)} \times (n-1)^{(m-1)}}$$
$$= m(n-1)\sqrt{(n-1)^{(m-1)}} + [(mn(n-1)/2) - m(n-1)](n-1)^{(m-1)}.$$

Corollary 2.1. Let F_3^m be a friendship graph. Then

$$RDP(F_3^m) = 2m\sqrt{2^{(m-1)}} + m2^{m-1}.$$

3. Conclusion

In this paper, the domination product connectivity index, reciprocal domination product connectivity index and their corresponding polynomials of certain graphs are computed.

Acknowledgements. The author is thankful to the reviewers for their suggestions for updating the paper.

Conflict of interest. As a sole author, there is no question of conflict of interest.

Authors' Contributions. The author did all the work for this paper.

V.R.Kulli

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. V.R.Kulli, *Theory of Domination in Graphs*, Vishwa International Publications, Gulbarga, India (2010).
- V.R.Kulli, Graph indices, in *Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society*, M. Pal. S. Samanta and A. Pal, (eds.) IGI Global, USA (2019) 66-91.
- 4. A.M.H.Ahmed, A.Alwardi and M.Ruby Salestina, On domination topological indices of graphs, *International Journal of Analysis and Applications*, 19(1) (2021) 47-64.
- 5. V.R.Kulli, Domination Nirmala indices of graphs, submitted.
- 6. V.R.Kulli, Domination Dharwad indices of graphs, submitted.
- S.Raju, Puttuswamy and S.R.Nayaka, On the second domination hyper index of graph and some graph operations, *Advances and Applications in Discrete Mathematics*, 39(1) (2023) 125-143.
- 8. A.A.Shashidhar, H.Ahmed, N.D.Soner and M.Cancan, Domination version: Sombor index of graphs and its significance in predicting physicochemical properties of butane derivatives, *Eurasian Chemical Communications*, 5 (2023) 91-102.
- 9. V.R.Kulli, Connectivity neighborhood Dakshayani indices of POPAM dendrimers, *Annals of Pure and Applied Mathematics*, 21(1) (2019) 49-54.
- 10. V.R.Kulli, New connectivity topological indices, *Annals of Pure and Applied Mathematics*, 20(1) (2019) 1-8.
- 11. V.R.Kulli, Product connectivity E-Banhatti indices of certain nanotubes, *Annals of Pure and Applied Mathematics*, 27(1) (2023) 7-12.
- 12. V.R.Kulli, Atom bond connectivity E-Banhatti indices, *International Journal of Mathematics and Computer Research*, 11(1) (2023) 3201-3208.