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Abstract. An n-tuple (as, &, ..., &) issymmetricif ax = an-k+1, 1 <k <n.
LetH, = {(a, &, ..., &) : a € {+, -}, & = an-k+1, 1 <k <n} be the
set of all symmetrin-tuples. A symmetric n-sigraph (symmetric n-
marked graphj)s an ordered pai&, = (G, 0) (S = (G, 1)), whereG =
(V,E) is a graph called thenderlying graplof S, and

c.:E—-Hn(U:V —H))
is afunction. In this paper, we introduced a new notguitable symmetrio-
sigraph of a symmetria-sigraph and its properties are obtained. Also, we
obtained the structural characterization of equitable syriomesigned
graphs.

Keywords. Symmetric n-sigraphs, Symmetric n-marked graphajaie,
Switching, Equitable n-sigraphs, Complementation

AMS Mathematics Subject Classification (2010): 05C22

1. Introduction

Unless mentioned or defined otherwise, for all iaplogy and notion in graph
theory the reader is refer to [3]. We consider dimlige, simple graphs free from self-
loops.

Letn = 1 be an integer. An-tuple(a, ap, ..., &) is symmetricif ax =

a1, L<k=<n. LetHy,={(as, &, ..., &) ak €{+, —}, & = an-x+1, L <k < n}
be the set of all symmetrig-tuples. Note thaH, is a group under coordinatgise

multiplication, and the order ¢1,is 2", wherem =[§]
A symmetric n-sigraph (symmetric n-marked graighgn ordered pai&, = (G, o)

(5 = (G, W), whereG = (V, E) is a graph called the underlying graptSoénds : E — H,
(1 :V— Hy) is a function.
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In this paper by am-tuple/n-sigraph/n-marked graptve always mean a
symmetricn-tuple/symmetriq-sigraph/symmetria-marked graph.

An n-tuple @i, &, ..., @) is theidentity n-tuple if ax = +, for 1 <k <n,
otherwise it is anon-identity n-tupleln ann-sigraphS, = (G, ¢) an edge labelled
with the identityn-tuple is called andentity edge otherwise it is anon-identity
edge

J Further, in am-sigraphS, = (G, o), for anyA < E(G) then-tuple o(A)
is the product of tha-tuples on the edges Af

In [10], the authors defined two notions of balance-gigraphS, = (G, o)
as follows (See also R. Rangarajan and P.S.K.Reddy [6]):

Definition 1.1. Let S, = (G, 0) be ann-sigraph. Then,

(i) S isidentity balancedor i-balanced, if product ofn-tuples on each cycle of

S is the identityn-tuple and

(i) S is balanced if every cycle inS, contains an even number of non-identity edges.

Note: An i-balancedh-sigraph need not be balanced and conversely.
The following characterization éfbalanced-sigraphs is obtained in [10].

Theorem 1.1. (E. Sampathkumar et al. [10}) An n-sigraph S=(G, o) isi-
balanced if, and only if, it is possible to assign ndspb its vertices such that the
n-tuple of each edgev is equal to the product of timetuples ofu andv.

In [10], the authors also have defined switching agcle isomorphism of an
n-sigraphS, = (G,0) as follows: (See also [1, 4,5, 7-9, 12-23])

Let S, = (G,0) andS =(G,¢) be twon-sigraphs. Thes, andSyare
said to beisomorphig if there exists an isomorphisth: G — G such that ifuv
is an edge s, with label @y, a, ..., &) theng(u)¢é(v) is an edge IS, with label
a, &, ..., &).

( Give)n ann-marking p of an n-sigraphS, = (G, ), switching & with
respect tou is the operation of changing thetuple of every edgeiv of S, by
H(u)o(uv(Vv). The n-sigraph obtained in this way is denoted h{&9 and is called
theu-switched n-sigraplor justswitched n-sigraph

Further, ann-sigraphS, switchesto n-sigraph S, (or that they areswitching
equivalento each other), written & ~ S, whenever there exists armarkingof S,
such that §S) = S, .

Two n-sigraphsS, = (G, o) and S\ = (G, o) are said to beycle
isomorphig if there exists an isomorphisgn: G — G’ such that the-tuple o(C) of
every cycleC in S, equals to then-tuple o(¢(C)) in S,.

We make use of the following known result (see )10]

Theorem 1.2.(E. Sampathkumar et al. [10) Given a graphG, any two
n-sigraphswith G as underlying graph asavitching equivalent and only if,
they arecycle isomorphic.
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2. Equitable n-sigraph of ann-sigraph
A subsetD of V is called arequitable dominating seif for everyv € V —D there
exists a vertexi € D such thauv € E(G) and flequ) —dedV)| < 1. Further, a vertex
u €V is said to bedegree equitablevith a vertexv € V if [dequ) —dedVv)| < 1.

Let u € V(G). Then the number of vertices which are degrestage withu,
is called degree equitable numberuof

In [2], Dharmalingam introduced equitable graplaaraph as follows: LeG
= (V,E) be a graph. The equitable grap{@ of G is defined as the graph with vertex
set asV (G) and two verticesl andv are adjacent if and only if andv are degree
equitable.

Motivated by the existing definition of complemerfitann-sigraph, we extentthe
notion of equitable graphs to n-sigraphs as foltoWse equitable n-sigraph £S,) of
an n-sigraph $=(G, o) is an n-sigraph whose underlying graphBgG) and the
n-tuple of any edgev is B(S) is p(u)u(v), wherep is the canoital n-marking of

S.. Further, am-sigraphS=(G,0) is called equitable-sigraph, ifS, = E(S,
) for somen-sigraphS,. The following result indicatee limitations of the notion
E(S) as introduced above, since the entire clasd-wfbalancedn-sigraphs is
forbidden to be equitable sigraphs.

Theorem 2.1.For any n-sigrapls, = (G, o), its equitable n-sigraph £, is
i-balanced.

Proof: Since then-tuple of any edgev in E/(Sn)is u(u)u(v) where p is the canonical
markingof S, by Theorem 1.1E(S)) is i-balanced

For any positive integds, thek™ iterated equitabla-sigraph KS,) of S,is defined as
follows:

(BE)(S) = S, (B)(S) = E((B)(S)).

Corollary 2.2. For anyn-sigraph $ = (G,0) and any positive integéy
(EDX(S) is i-alanced.

Theorem 2.3.An n-sigraph $= (G, o) is an equitable n-sigraph if and only if,
Sh is i-balanced n-sigraph and its underlying graphs@n equitable graph.
Proof: Suppose thd, isi-balanced an is aE(G). Then there exists a gragh

such that E{H? = G. Since§, is i-balanced, by Theorem 1.1, there exets
n-ma_rklngﬁ of G such that each edger in S, satisfieso(uv) = u(g?u(y). Now
consider then-sigraphS, = (H, ¢), where for any edgein H, o(€) is then-

marking of the chreSﬁonding vertex @ Then clearly, ES') = S.. HenceS,
is an equitablen-sigraph.
Conversely, suppose th&t= (G, o) is an equitabla-sigraph. Then there

exists am-sigraphS,” = (H, ¢) such that £S,) = S.. HenceG is the EG) of
H and by Theorem 2.5, is i-balanced.

In [2], Dharmalingam characterized graphs for whigtG) = G.

Theorem 2.4.(K. M. Dharmalingam [2])
For any graph G= (V,E), E(G) = G if and only if G isK..
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We now characterizae-sigraphs which are switching equivalent to thejuigablen-
sigraphs.

Theorem 2.5.For any n-sigraph $= (G,0), S\ ~ E(S) if and only if G is
Kn and S, is i-balanced.

Proof: Supposes, ~ E(S,). This implies,G = E(G) and hence by Theorepu,
we see that must be isomorphic td,.. Now, if S, is anyn-sigraph withunderlying
graph asK, Theorem 2.1 implies that (g, is i-balanced and hendt S, is i-
unbalanced its £5,) beingi-balanced cannot be switching equivalentStoin
accordance with Theorem 1.2. Theref&enust ba-balanced.

Conversely, suppose th@tis K, andS, isi-balanced. Since,) isi- balanced as
per Theorem 2.1, the result follows from Theorera again.

Theorem 2.6.For any two n-sigraph$, andS, with the same underlying graph their
equitable n-sigraphs are switching equivalent.

Proof: Supposes, = (G,s) andS, = (G,s) be twon-sigraphs withG = G.
By Theorem 2.1, £S,) and KS, ) arei-balanced and hence, the result follows
from Theorem 1.2. _

3. Complementation
In this section, we investigate the notion of coenpéntation of a graph whose edges have
signs (a sigraph) in the more general context aplgs with multiple signs on their edges.
We look at two kinds of complementation: complernmensome or all of the signs, and
reversing the order of the signs on each edge.

For anym € Hy, them-complemenof a = (ay, a, ..., &) is: a" = am For
anyM < H,, andm € H,,, them-complemenbf M isM™ ={a™: ae M}.

For anym € H,, the m-complemenbf an n-sigraph S, = (G, o), written
(S, is the same graph but with each edge label(a, &, ..., &) replaced bya™

For ann-sigraph S, = (G,0), the B(S) is i-balanced. We now examine,
the condition under whichm-complement of KS,) is i-balanced, where for amm €
Hn.

Theorem 3.1. Let S=(G, s) be ann-sigraph. Then, for anyneH,, if E(G) is
bipartite then E(S))™ is i-balanced.
Proof: Since, by Theorem 2.145,) is i-balanced, for eack 1<k < n, the number
of n-tuples on any cycleC in E(S)) whosek™ co-ordinate are - is even. Also,
since EG) is bipartite, all cycles have even length; thfes,eachk, 1<k <n, the
number ofn-tuples on any cycl€ in E(S,) whosek™ co-ordinate are- is also even.
This implies that the same thing is true in amgomplement, where for any, € Hn.
Hence (E(S))! is i-balanced.

Theorem 2.5 and 2.6 provides easy solutions torothsigraph switching
equivalence relations, which are given in the feilmg results.
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Corollary 3.2. For an two n-sigraphs .Sand S with the same underlying
graph, E(S) and E(S')™ are switching equivalent.

Corollary 3.3. For any twon-sigraphsS, andS, with the same underlying graph,
graph, E((S)™ and E(S\) are switching quivalent.

Corollary 3.4. For any twon-sigraphs S$andS, with the same underlying graph,
graph, E((S)™ and E((S))™ are switching equivalent.

Corollary 3.5. For any twon-sigraphs $= (G,s) and S, = (G, ¢) with the
G £ G andG, G arebipartite, (E(S))™ andE«(S,') areswitching equivalent.

Corollary 3.6. For any twon-sigraphs $= (G,s) and S, = (G, ¢) with the
G = G and G, Garebipartite, E(S)) and (&(S.) )™ areswitching equivalent.

Corollary 3.7. For any twon-sigraphs $= (G,0) and S\ = (G, ¢) with the
G = G and G, Gare bipartite, ({S))™ and (E(S))™ are switching equivalent.

Corollary 3.8. For anyn-sigraph $=(G,0), S ~ E({(S)™ if and only if G is
Kn and S, is i-balanced.

4. Conclusion

We have introduced a new notion faisigned graphs called equitabiesigraph of an
n-signed graph. We have proved some results andmiezsthe structural characterisation
of the equitablen-signed graph. There is no structural charactéozaif the equitable
graph, but we have obtained the structural chaiiaate®on of an equitablae-signed
graph.
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