Annals of Pure and Applied Mathematics Vol. 27, No. 2, 2023, 79-84 ISSN: 2279-087X (P), 2279-0888(online) Published on 30 June 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v27n2a06907

Annals of Pure and Applied <u>Mathematics</u>

Equitable Symmetric *n*-Sigraphs

K. M. Manjula¹, C. N. Harshavardhana^{2*} and R. Kemparaju³

 ¹Department of Mathematics, Government First Grade College for Women Hassan-573 202, India. E-mail: <u>manjula.km.gowda@gmail.com</u>
²Department of Mathematics, Government First Grade College for Women Holenarasipura-573 211, India. E-mail: <u>cnhmaths@gmail.com</u>
³Department of Mathematics, Government First Grade College T.Narasipura-571 124, India. E-mail: kemps007@gmail.com

Received 20 May 2023; accepted 28 June 2023

Abstract. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}$, $1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the *underlying graph* of S_n and

$$\sigma: E \to H_n \ (\mu: V \to H_n)$$

is a function. In this paper, we introduced a new notion equitable symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterization of equitable symmetric n-signed graphs.

Keywords: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Equitable n-sigraphs, Complementation

AMS Mathematics Subject Classification (2010): 05C22

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [3]. We consider only finite, simple graphs free from self-loops.

Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}$, $1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \left[\frac{n}{2}\right]$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function.

K.M.Manjula, C.N.Harshavardhana and R.Kemparaju

In this paper by an *n*-tuple/n-sigraph/n-marked graph we always mean a symmetric *n*-tuple/symmetric *n*-sigraph/symmetric *n*-marked graph.

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of *A*.

In [10], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]):

Definition 1.1. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

(i) S_n is *identity balanced* (or *i-balanced*), if product of *n*-tuples on each cycle of S_n is the identity *n*-tuple and

(ii) S_n is *balanced*, if every cycle in S_n contains an even number of non-identity edges.

Note: An *i*-balanced *n*-sigraph need not be balanced and conversely.

The following characterization of *i*-balanced *n*-sigraphs is obtained in [10].

Theorem 1.1. (E. Sampathkumar et al. [10]) An *n*-sigraph $S_n=(G, \sigma)$ is *i*-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the *n*-tuple of each edge uv is equal to the product of the *n*-tuples of u and v.

In [10], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows: (See also [1,4,5,7–9,12–23]) Let $S_n = (G, \sigma)$ and $S' = (G', \sigma')$ be two *n*-sigraphs. Then S_n and S'_n are

Let $S_n = (G, \sigma)$ and $S = (G, \sigma)$ be two *n*-sigraphs. Then S_n and S_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label $(a_1, a_2, ..., a_n)$ then $\phi(u)\phi(v)$ is an edge in S'_n with label $(a_1, a_2, ..., a_n)$.

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*-sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$ whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle *C* in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S_n' .

We make use of the following known result (see [10]).

Theorem 1.2. (E. Sampathkumar et al. [10]) Given a graph *G*, any two *n*-sigraphs with *G* as underlying graph are switching equivalent if and only if, they are cycle isomorphic.

Equitable Symmetric n-Sigraphs

2. Equitable n-sigraph of an *n*-sigraph

forbidden to be equitable *n*-sigraphs.

A subset *D* of *V* is called an *equitable dominating set* if for every $v \in V - D$ there exists a vertex $u \in D$ such that $uv \in E(G)$ and $|deg(u) - deg(v)| \le 1$. Further, a vertex $u \in V$ is said to be *degree equitable* with a vertex $v \in V$ if $|deg(u) - deg(v)| \le 1$.

Let $u \in V(G)$. Then the number of vertices which are degree equitable with u, is called degree equitable number of u.

In [2], Dharmalingam introduced equitable graph of a graph as follows: Let G = (V, E) be a graph. The equitable graph $E_t(G)$ of G is defined as the graph with vertex set as V(G) and two vertices u and v are adjacent if and only if u and v are degree equitable.

Motivated by the existing definition of complement of an *n*-sigraph, we extend the notion of equitable graphs to n-sigraphs as follows: The *equitable n-sigraph* $E_t(S_n)$ of an *n*-sigraph $S_n=(G, \sigma)$ is an *n*-sigraph whose underlying graph is $E_t(G)$ and the *n*-tuple of any edge uv is $E_t(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n . Further, an *n*-sigraph $S_n=(G, \sigma)$ is called equitable *n*-sigraph, if $S_n \cong E_t(S_n')$ for some *n*-sigraph S_n' . The following result indicates the limitations of the notion $E_t(S_n)$ as introduced above, since the entire class of *i*-unbalanced *n*-sigraphs is

Theorem 2.1. For any n-sigraph $S_n = (G, \sigma)$, its equitable n-sigraph $E_t(S_n)$ is *i*-balanced.

Proof: Since the *n*-tuple of any edge uv in $E_t(Sn)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Theorem 1.1, $E_t(S_n)$ is *i*-balanced.

For any positive integer k, the k^{th} iterated equitable *n*-sigraph $E_t(S_n)$ of S_n is defined as follows:

$$(E_t)^0(S_n) = S_n, \ (E_t)^k(S_n) = E_t((E_t)^{k-1}(S_n)).$$

Corollary 2.2. For any *n*-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(E_t)^k(S_n)$ is *i*-alanced.

Theorem 2.3. An *n*-sigraph $S_n = (G, \sigma)$ is an equitable *n*-sigraph if and only if, S_n is *i*-balanced *n*-sigraph and its underlying graph G is an equitable graph. **Proof:** Suppose that S_n is *i*-balanced and G is a $E_i(G)$. Then there exists a graph H such that $E_i(H) \cong G$. Since S_n is *i*-balanced, by Theorem 1.1, there exists an *n*-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the *n*-sigraph $S_n = (H, \sigma)$, where for any edge e in $H, \sigma(e)$ is the *n*marking of the corresponding vertex in G. Then clearly, $E_i(S_n') \cong S_n$. Hence S_n is an equitable *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is an equitable *n*-sigraph. Then there exists an *n*-sigraph $S_n' = (H, \sigma')$ such that $E_t(S_n') \cong S_n$. Hence *G* is the $E_t(G)$ of *H* and by Theorem 2.1, S_n is *i*-balanced.

In [2], Dharmalingam characterized graphs for which $E_t(G) \cong G$.

Theorem 2.4. (K. M. Dharmalingam [2])

For any graph G = (V, E), $E_t(G) \cong G$ if and only if G is K_n .

K.M.Manjula, C.N.Harshavardhana and R.Kemparaju

We now characterize *n*-sigraphs which are switching equivalent to their equitable *n*-sigraphs.

Theorem 2.5. For any n-sigraph $S_n = (G, \sigma)$, $S_n \sim E_t(S_n)$ if and only if G is K_n and S_n is *i*-balanced.

Proof: Suppose $S_n \sim E_t(S_n)$. This implies, $G \cong E_t(G)$ and hence by Theorem 2.4, we see that *G* must be isomorphic to K_n . Now, if S_n is any *n*-sigraph with underlying graph as K_n , Theorem 2.1 implies that $E_t(S_n)$ is *i*-balanced and hence if S_n is *i*-unbalanced its $E_t(S_n)$ being *i*-balanced cannot be switching equivalent to S_n in accordance with Theorem 1.2. Therefore, S_n must be *i*-balanced.

Conversely, suppose that G is K_n and S_n is *i*-balanced. Since $E_t(S_n)$ is *i*-balanced as per Theorem 2.1, the result follows from Theorem 1.2 again.

Theorem 2.6. For any two n-sigraphs S_n and S_n' with the same underlying graph their equitable n-sigraphs are switching equivalent.

Proof: Suppose $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs with $G \cong G'$. By Theorem 2.1, $E_t(S_n)$ and $E_t(S_n')$ are *i*-balanced and hence, the result follows from Theorem 1.2.

3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a sigraph) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, ..., a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $E_t(S_n)$ is *i*-balanced. We now examine, the condition under which *m*-complement of $E_t(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Theorem 3.1. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then, for any $m \in H_n$, if $E_t(G)$ is bipartite then $(E_t(S_n))^m$ is *i*-balanced.

Proof: Since, by Theorem 2.1, $E_t(S_n)$ is *i*-balanced, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle C in $E_t(S_n)$ whose k^{th} co-ordinate are – is even. Also, since $E_t(G)$ is bipartite, all cycles have even length; thus, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle C in $E_t(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m, \in H_n$. Hence $(E_t(S_n))^t$ is *i*-balanced.

Theorem 2.5 and 2.6 provides easy solutions to other n-sigraph switching equivalence relations, which are given in the following results.

Equitable Symmetric n-Sigraphs

Corollary 3.2. For an two n-sigraphs S_n and S_n' with the same underlying graph, $E_t(S_n)$ and $E_t((S_n')^m)$ are switching equivalent.

Corollary 3.3. For any two *n*-sigraphs S_n and S_n' with the same underlying graph, graph, $E_t((S_n)^m)$ and $E_t(S_n')$ are switching quivalent.

Corollary 3.4. For any two *n*-sigraphs S_n and S_n' with the same underlying graph, graph, $E_t((S_n)^m)$ and $E_t((S_n')^m)$ are switching equivalent.

Corollary 3.5. For any two *n*-sigraphs $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(E_t(S_n))^m$ and $E_t(S_n')$ are switching equivalent.

Corollary 3.6. For any two *n*-sigraphs $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $E_t(S_n)$ and $(E_t(S_n'))^m$ are switching equivalent.

Corollary 3.7. For any two *n*-sigraphs $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(E_t(S_1))^m$ and $(E_t(S_2))^m$ are switching equivalent.

Corollary 3.8. For any *n*-sigraph $S_n = (G, \sigma)$, $S_n \sim E_t((S_n)^m)$ if and only if G is K_n and S_n is *i*-balanced.

4. Conclusion

We have introduced a new notion for n-signed graphs called equitable n-sigraph of an n-signed graph. We have proved some results and presented the structural characterisation of the equitable n-signed graph. There is no structural characterization of the equitable graph, but we have obtained the structural characterisation of an equitable n-signed graph.

Acknowledgements. The authors thank the referee for his/her many valuable suggestions which enhanced the quality of presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Author's Contributions: All authors equally contributed.

REFERENCES

- 1. B.D.Acharya and M.Acharya, Dot line signed graphs, *Annals of Pure and Applied Mathematics*, 10(1) (2015) 21-27.
- 2. K.M.Dharmalingam, Equitable graph of a graph, *Proyecciones Journal of Mathematics*, 31(4) (2012) 363-372.
- 3. F.Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- 4. V.Lokesha, P.S.K.Reddy and S.Vijay, The triangular line *n*-sigraph of a symmetric *n*-sigraph, *Advn. Stud. Contemp. Math.*, 19(1) (2009) 123-129.
- 5. J.J.Palathingal and S.Aparna Lakshmanan, Forbidden subgraph characterizations of extensions of Gallai graph operator to signed graph, *Annals of*

K.M.Manjula, C.N.Harshavardhana and R.Kemparaju

Pure and Applied Mathematics, 14(3) (2017), 437-448.

- 6. R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric *n* sigraphs, *Proceedings of the Jangjeon Math. Soc.*, 11(2) (2008) 145-151.
- 7. R.Rangarajan, P.S.K.Reddy and M. S.Subramanya, Switching Equivalence in Symmetric *n*-Sigraphs, *Adv. Stud. Comtemp. Math.*, 18(1) (2009) 79-85. R.
- 8. R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in sym- metric *n*-sigraphs-II, *J. Orissa Math. Sco.*, 28 (1 & 2) (2009) 1-12.
- 9. R.Rangarajan, P.S.K.Reddy and N.D.Soner, *mth* Power Symmetric *n*-Sigraphs, *Italian Journal of Pure & Applied Mathematics*, 29 (2012) 87-92.
- 10. E.Sampathkumar, P.S.K.Reddy and M.S.Subramanya, Jump symmetric *n*-sigraph, *Proceedings of the Jangjeon Math. Soc.*, 11(1) (2008) 89-95.
- 11. E.Sampathkumar, P.S.K.Reddy and M.S.Subramanya, The Line *n*-sigraph of a symmetric *n*-sigraph, *Southeast Asian Bull. Math.*, 34(5) (2010) 953- 958.
- 12. C.Shobha Rani, S.Jeelani Begum and G.Sankara Sekhar Raju, Signed Edge Total Domination on Rooted Product Graphs, *Annals of Pure and Applied Mathematics*, 17(1) (2018) 95-99.
- 13. P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric *n*-sigraphs-I, *Advances and Applications in Discrete Mathematics*, 4(1) (2009) 25-32.
- 14. P.S.K.Reddy, S.Vijay and B.Prashanth, The edge C₄ *n*-sigraph of a symmetric *n*-sigraph, *Int. Journal of Math. Sci. & Engg. Appls.*, 3(2) (2009) 21-27.
- 15. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-II, *Proceedings of the Jangjeon Math. Soc.*, 13(3) (2010) 305-312.
- 16. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-III, *Int.J. Open Problems in Computer Science and Mathematics*, 3(5) (2010) 172-178.
- 17. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric *n*-sigraphs-III, *Int. Journal of Math. Sci. & Engg. Appls.*, 5(1) (2011) 95-101.
- P.S.K.Reddy, B.Prashanth and Kavita.S.Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011) 22-25.
- 19. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric *n*-sigraphs-IV, *Scientia Magna*, 7(3) (2011) 34-38.
- 20. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The line *n*-sigraph of a symmetric *n*-sigraph-IV, *International J. Math. Combin.*, 1 (2012) 106-112.
- 21. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric *n*-sigraphs-V, *International J. Math. Combin.*, 3 (2012) 58-63.
- 22. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The line *n*-sigraph of a symmetric *n*-sigraph-V, *Kyungpook Mathematical Journal*, 54(1) (2014) 95-101.
- 23. P.S.K.Reddy, R.Rajendra and M.C.Geetha, Boundary *n*-signed graphs, *Int. Journal of Math. Sci. & Engg. Appls.*, 10(2) (2016) 161-168.