Note on Wing Symmetric n-Sigraphs

Jephry Rodrigues ${ }^{1}$, K.B. Mahesh ${ }^{2}$ and C. N. Harshavardhana ${ }^{3 *}$
${ }^{1}$ Department of Mathematics
Dr.P.Dayananda Pai-P.Satisha Pai Govt. First Grade College
Car Street, Mangalore - 575 001, India
Email: jephrymaths@gmail.com
${ }^{2}$ Department of Mathematics
Dr.P.Dayananda Pai-P.Satisha Pai Govt. First Grade College
Car Street, Mangalore - 575 001, India
Email: mathsmahesh@gmail.com
${ }^{3}$ Department of Mathematics
Government First Grade College for Women
Holenarasipur-573 211, India
*Corresponding author. Email: cnhmaths@ gmail.com

Received 12 May 2023; accepted 12 July 2023
Abstract. In this paper, we introduced a new notion wing symmetric n-sigraph of a symmetric n-sigraph andits properties are obtained. Further, we discuss structural characterization of wing symmetric n-sigraph.

Keywords: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Wing symmetric n-sigraphs, Complementation.

AMS Mathematics Subject Classification (2010): 05C22

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory, the reader is referred to [2]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate-wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=\right.$ (G, μ)), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}(\mu: V$ $\rightarrow H_{n}$) is a function.

In this paper, by an n-tuple/n-sigraph/n-marked graph, we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise, it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge; otherwise it is a non-identity edge.

Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.

In [10], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also Rangarajan and Reddy [6]):

Definition 1.1. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) $\quad S_{n}$ is identity balanced (or i-balanced), if the product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) $\quad S_{n}$ is balanced if every cycle in S_{n} contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [10].
Theorem 1.1. (E. Sampathkumar et al. [10]) An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.
Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S_{n} defined as follows: each vertex $v \in V, \mu(v)$ is the n-tuple which is the product of the n-tuples on the edges incident with v. The complement of S_{n} is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge e $=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ is defined here as an i-balanced n-sigraph due to Theorem 1.1.

In [10], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [1, 4, 5, 7-9, 12-23])

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. Then-sigraph obtained in this way is denoted by $\mathrm{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $S_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be a cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\Phi(C))$ in S_{n}^{\prime}.
We use the following known result (see [10]).

Note on Wing Symmetric n-Sigraphs

Theorem 1.2. (E. Sampathkumar et al. [10]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

2. Wing n-sigraph of an n-sigraph

The wing graph $\mathrm{W}(G)$ of $G=(V, E)$ is a graph with $V(\mathrm{~W}(G))=E(G)$ and any two vertices e_{1} and e_{2} in $\mathrm{W}(G)$ are joined by an edge if they are non-incident edges of some induced 4vertex path in G. This concept was introduced by Hoang [3]. Wing graphs have been introduced in connection with perfect graphs.

By the motivation of complement of an n-sigraph and balance in an n-sigraph, we now extend the notion of wing graphs to n-sigraphs as follows: The wing n-sigraph $\mathrm{W}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph are $\mathrm{W}(G)$ and the n-tuple of any edge $e_{1} e_{2}$ in $\mathrm{W}\left(S_{n}\right)$ is $\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)$. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called wing n sigraph, if $S_{n} \cong \mathrm{~W}\left(S_{n}{ }^{\prime}\right)$ for some n-sigraph $S_{n}{ }^{\prime}$. The following result restricts the class of wing graphs.

Theorem 2.1. For any n-sigraph $S_{n}=(G, \sigma)$, its wing n-sigraph $\mathrm{W}\left(S_{n}\right)$ is i-balanced.
Proof: Let σ^{\prime} denote the n-tuple of $\mathrm{W}\left(S_{n}\right)$ and let the n-tuple σ of S_{n} be treated as an n marking of the vertices of $\mathrm{W}\left(S_{n}\right)$. Then by definition of $\mathrm{W}\left(S_{n}\right)$ we see that $\sigma^{\prime}\left(e_{1} e_{2}\right)=$ $\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)$, for every edge $e_{1} e_{2}$ of $\mathrm{W}\left(S_{n}\right)$ and hence, by Theorem 1.1, $\mathrm{W}\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{t h}$ iterated wing n-sigraph, $\mathrm{W}^{k}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
\mathrm{W}^{0}\left(S_{n}\right)=S, \mathrm{~W}^{k}\left(S_{n}\right)=\mathrm{W}\left(\mathrm{~W}^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2. For any n-sigraph $S_{n}=(G, \sigma)$ and for any positive integer $k, W^{k}\left(S_{n}\right)$ is i balanced.

The following result characterize signed graphs which are wing n-sigraphs.

Theorem 2.3. An n-sigraph $S_{n}=(G, \sigma)$ is a wing n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a wing graph.
Proof: Suppose that S_{n} is i-balanced and G is a wing graph. Then there exists a graph G^{I} such that $\mathrm{W}\left(G^{\prime}\right) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1, there exists a marking ζ of G such that each edge $e=u v$ in S_{n} satisfies $\sigma(u v)=\zeta(u) \zeta(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, where for any edge e in $G^{\prime}, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathrm{W}\left(S_{n}{ }^{\prime}\right) \cong S_{n}$. Hence S_{n} is a wing n-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is a wing n-sigraph. Then there exists an n sigraph $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ such that $\mathrm{W}\left(S_{n}{ }^{\prime}\right) \cong S_{n}$. Hence G is the wing graph of G^{\prime} and by Theorem 2.1, S_{n} is i-balanced.

Theorem 2.4. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, their wang n-sigraphs are switching equivalent.
Proof: Suppose $S_{n}=(G, \sigma)$ and $\left.S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)\right)$ be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 2.1, $\mathrm{W}\left(S_{n}\right)$ and $\mathrm{W}\left(S_{n}{ }^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.

Jephry Rodrigues, K.B. Mahesh and C. N. Harshavardhana
For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.
For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}{ }^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $W\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $\mathrm{W}\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.

Theorem 2.5. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $\mathrm{W}(G)$ is bipartite then $\left(\mathrm{W}\left(S_{n}\right)\right)^{m}$ is i-balanced.
Proof: Since, by Theorem 2.1, $\mathrm{W}\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n tuples on any cycle C in $\mathrm{W}\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are - is even. Also, since $W(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $W\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m \in H_{n}$. Hence $\left(\mathrm{W}\left(S_{n}\right)\right)^{t}$ is i-balanced.

In [3], the author proved that, the graph G and its wing graph $W(G)$ are isomorphic, if $G \cong C_{2 k+1}$. In view of this, we have the following result:

Theorem 2.6. For any n-sigraph $S_{n}=(G, \sigma), S_{n} \sim \mathrm{~W}\left(S_{n}\right)$ if, and only if, S_{n} is an i-balanced n-sigraph and $G \cong C_{2 k+1}$.
Proof: Suppose $S_{n} \sim \mathrm{~W}\left(S_{n}\right)$. This implies $G \cong W(G)$, and hence G is isomorphic to $C_{2 k+1}$. Now, if S_{n} is any n-sigraph with underlying graph G is $C_{2 k+1}$, Theorem 2.1 implies that $W\left(S_{n}\right)$ is i-balanced, and hence if S_{n} is i-unbalanced and its $W\left(S_{n}\right)$ being i-balanced cannot be switching equivalent to S_{n} in accordance with Theorem 1.2. Therefore, S_{n} must be i balanced.

Conversely, suppose that S_{n} is an i-balanced n-sigraph and G is isomorphic to $C_{2 k+1}$. Then, since $\mathrm{W}\left(S_{n}\right)$ is i-balanced as per Theorem 2.1 and since $G \cong \mathrm{~W}(G)$, the result follows from Theorem 1.2 again.

Theorem 2.4 and 2.6 provides easy solutions to other n-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.7. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $\mathrm{W}\left(S_{n}\right)$ and $\mathrm{W}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.8. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $\mathrm{W}\left(\left(S_{n}\right)^{m}\right)$ and $\mathrm{W}\left(S_{n}{ }^{\prime}\right)$ are switching equivalent.

Corollary 2.9. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $W\left(\left(S_{n}\right)^{m}\right)$ and $\mathrm{W}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.10. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(W\left(S_{n}\right)\right)^{m}$ and $W\left(S_{n}{ }^{\prime}\right)$ are switching equivalent.

Note on Wing Symmetric n-Sigraphs

Corollary 2.11. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $W\left(S_{n}\right)$ and $\mathrm{W}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.12. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(W\left(S_{1}\right)\right)^{m}$ and $\left(W\left(S_{2}\right)\right)^{m}$ are switching equivalent.

Corollary 2.13. For any n-sigraph $S_{n}=(G, \sigma), S_{n} \sim W\left(\left(S_{n}\right)^{m}\right)$ if, and only if, S_{n} is an i balanced n-sigraph and $G \cong C_{2 k+1}$.

3. Conclusion

We have introduced a new notion for n-signed graphs called wing n-sigraph of an n-signed graph. We have proved some results and presented the structural characterization of the wing n-signed graph. There is no structural characterization of the wing graph, but we have obtained the structural characterization of the wing n-signed graph.

Acknowledgements. The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.
Author's Contributions: All authors equally contributed.

REFERENCES

1. B.D.Acharya and M.Acharya, Dot Line Signed Graphs, Annals of Pure and Applied Mathematics, 10(1) (2015) 21-27.
2. F.Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
3. C.T.Hoang, On the two-edge colorings of perfect graphs, J. Graph Theory, 19(2) (1995) 271-279.
4. V.Lokesha, P.S.K.Reddy and S.Vijay, The triangular line n-sigraph of a symmetric n sigraph, Advn. Stud. Contemp. Math., 19(1) (2009) 123-129.
5. J.J.Palathingal and S.Aparna Lakshmanan, Forbidden Subgraph Characterizations of Extensions of Gallai Graph Operator to Signed Graph, Annals of Pure and Applied Mathematics, 14(3) (2017) 437-448.
6. R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008) 145-151.
7. R.Rangarajan, P.S.K.Reddy and M.S.Subramanya, Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009) 79-85. R.
8. R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in symmetric n -sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009) 1-12.
9. R.Rangarajan, P.S.K.Reddy and N.D.Soner, $m^{\text {th }}$ Power Symmetric n-Sigraphs, Italian Journal of Pure \& Applied Mathematics, 29 (2012) 87-92.
10. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008) 89-95.

Jephry Rodrigues, K.B. Mahesh and C. N. Harshavardhana
11. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010) 953-958.
12. C.Shobha Rani, S.Jeelani Begum and G.Sankara Sekhar Raju, Signed Edge Total Domination on Rooted Product Graphs, Annals of Pure and Applied Mathematics, 17(1) (2018) 95-99.
13. P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric n sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009) 25-32.
14. P.S.K.Reddy, S.Vijay and B.Prashanth, The edge $C_{4} n$-sigraph of a symmetric n sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2) (2009) 21-27.
15. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010) 305312.
16. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010) 172-178.
17. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1) (2011) 95101.
18. P.S.K.Reddy, B.Prashanth and Kavita.S.Permi, A Note on Switching in Symmetric nSigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011) 22-25.
19. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching Equivalence in Symmetric n -Sigraphs-IV, Scientia Magna, 7(3) (2011) 34-38.
20. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line n-sigraph of a symmetric n -sigraph-IV, International J. Math. Combin., 1 (2012) 106-112.
21. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric n -sigraphs-V, International J. Math. Combin., 3 (2012) 58-63.
22. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line n-sigraph of a symmetric n -sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014) 95-101.
23. P.S.K.Reddy, R.Rajendra and M.C.Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016) 161-168.

