Annals of Pure and Applied Mathematics Vol. 28, No. 1, 2023, 1-6 ISSN: 2279-087X (P), 2279-0888(online) Published on 20 July 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v28n1a01909

Annals of Pure and Applied <u>Mathematics</u>

Note on Wing Symmetric *n*-Sigraphs

Jephry Rodrigues¹, K.B. Mahesh² and C. N. Harshavardhana^{3*}

¹Department of Mathematics Dr.P.Dayananda Pai-P.Satisha Pai Govt. First Grade College Car Street, Mangalore - 575 001, India Email: jephrymaths@gmail.com ²Department of Mathematics Dr.P.Dayananda Pai-P.Satisha Pai Govt. First Grade College Car Street, Mangalore - 575 001, India Email: mathsmahesh@gmail.com ³Department of Mathematics Government First Grade College for Women Holenarasipur-573 211, India ^{*}Corresponding author. Email: cnhmaths@gmail.com

Received 12 May 2023; accepted 12 July 2023

Abstract. In this paper, we introduced a new notion wing symmetric *n*-sigraph of a symmetric *n*-sigraph andits properties are obtained. Further, we discuss structural characterization of wing symmetric *n*-sigraph.

Keywords: Symmetric *n*-sigraphs, Symmetric *n*-marked graphs, Balance, Switching, Wing symmetric *n*-sigraphs, Complementation.

AMS Mathematics Subject Classification (2010): 05C22

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory, the reader is referred to [2]. We consider only finite, simple graphs free from self-loops.

Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate-wise multiplication, and the order of H_n is 2^m , where $m = \left\lfloor \frac{n}{2} \right\rfloor$.

A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma : E \to H_n(\mu : V \to H_n)$ is a function.

In this paper, by an *n*-tuple/*n*-sigraph/*n*-marked graph, we always mean a symmetric *n*-tuple/symmetric *n*-sigraph/symmetric *n*-marked graph.

Jephry Rodrigues, K.B. Mahesh and C. N. Harshavardhana

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise, it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*; otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of *A*.

In [10], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also Rangarajan and Reddy [6]):

Definition 1.1. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

(i) S_n is *identity balanced* (or *i-balanced*), if the product of *n*-tuples on each cycle of S_n is the identity *n*-tuple, and

(ii) S_n is *balanced* if every cycle in S_n contains an even number of non-identity edges.

Note: An *i*-balanced *n*-sigraph need not be balanced and conversely. The following characterization of *i*-balanced *n*-sigraphs is obtained in [10].

Theorem 1.1. (E. Sampathkumar et al. [10]) An *n*-sigraph $S_n = (G, \sigma)$ is *i*-balanced if, and only if, it is possible to assign *n*-tuples to its vertices such that the *n*-tuple of each edge uv is equal to the product of the *n*-tuples of u and v.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with v. The complement of S_n is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}, \sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ is defined here as an *i*-balanced *n*-sigraph *due to Theorem 1.1*.

In [10], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows: (See also [1, 4, 5, 7–9, 12–23])

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic* if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label (a_1, a_2, \dots, a_n) then $\phi(u)\phi(v)$ is an edge in S'_n with label (a_1, a_2, \dots, a_n) .

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, *switching* S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The*n*-sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just *switched n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be a cycle *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle *C* in S_n equals to the *n*-tuple $\sigma(\Phi(C))$ in S'_n .

We use the following known result (see [10]).

Note on Wing Symmetric *n*-Sigraphs

Theorem 1.2. (E. Sampathkumar et al. [10]) *Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.*

2. Wing *n*-sigraph of an *n*-sigraph

The wing graph W(G) of G = (V,E) is a graph with V(W(G)) = E(G) and any two vertices e_1 and e_2 in W(G) are joined by an edge if they are non-incident edges of some induced 4-vertex path in *G*. This concept was introduced by Hoang [3]. Wing graphs have been introduced in connection with perfect graphs.

By the motivation of complement of an *n*-sigraph and balance in an *n*-sigraph, we now extend the notion of wing graphs to *n*-sigraphs as follows: The wing *n*-sigraph $W(S_n)$ of an *n*-sigraph $S_n = (G, \sigma)$ is an *n*-sigraph whose underlying graph are W(G) and the *n*-tuple of any edge e_1e_2 in $W(S_n)$ is $\sigma(e_1)\sigma(e_2)$. Further, an *n*-sigraph $S_n = (G, \sigma)$ is called wing *n*-sigraph, if $S_n \cong W(S_n')$ for some *n*-sigraph S_n' . The following result restricts the class of wing graphs.

Theorem 2.1. For any *n*-sigraph $S_n = (G, \sigma)$, its wing *n*-sigraph $W(S_n)$ is *i*-balanced. **Proof:** Let σ' denote the *n*-tuple of $W(S_n)$ and let the *n*-tuple σ of S_n be treated as an *n*marking of the vertices of $W(S_n)$. Then by definition of $W(S_n)$ we see that $\sigma'(e_1e_2) = \sigma(e_1)\sigma(e_2)$, for every edge e_1e_2 of $W(S_n)$ and hence, by Theorem 1.1, $W(S_n)$ is *i*-balanced. For any positive integer *k*, the k^{th} iterated wing *n*-sigraph, $W^k(S_n)$ of S_n is defined as follows: $W^0(S_n) = S, W^k(S_n) = W(W^{k-1}(S_n)).$

Corollary 2.2. For any *n*-sigraph $S_n = (G, \sigma)$ and for any positive integer k, $W^k(S_n)$ is *i*-balanced.

The following result characterize signed graphs which are wing *n*-sigraphs.

Theorem 2.3. An *n*-sigraph $S_n = (G, \sigma)$ is a wing *n*-sigraph if, and only if, S_n is *i*-balanced *n*-sigraph and its underlying graph *G* is a wing graph.

Proof: Suppose that S_n is *i*-balanced and *G* is a wing graph. Then there exists a graph G^I such that $W(G') \cong G$. Since S_n is *i*-balanced, by Theorem 1.1, there exists a marking ζ of *G* such that each edge e = uv in S_n satisfies $\sigma(uv) = \zeta(u)\zeta(v)$. Now consider the *n*-sigraph $S_n' = (G', \sigma')$, where for any edge *e* in G', $\sigma'(e)$ is the *n*-marking of the corresponding vertex in *G*. Then clearly, $W(S_n') \cong S_n$. Hence S_n is a wing *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a wing *n*-sigraph. Then there exists an *n*-sigraph $S_n' = (G', \sigma')$ such that $W(S_n') \cong S_n$. Hence G is the wing graph of G' and by Theorem 2.1, S_n is *i*-balanced.

Theorem 2.4. For any two n-sigraphs S_n and S'_n with the same underlying graph, their wang n-sigraphs are switching equivalent. **Proof:** Suppose $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two n-sigraphs with $G \cong G'$. By Theorem

Proof: Suppose $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs with $G \cong G'$. By Theorem 2.1, $W(S_n)$ and $W(S'_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2.

Jephry Rodrigues, K.B. Mahesh and C. N. Harshavardhana

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of *M* is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, \dots, a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $W(S_n)$ is *i*-balanced. We now examine, the condition under which *m*-complement of $W(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Theorem 2.5. Let $S_n = (G, \sigma)$ be an n-sigraph. Then, for any $m \in H_n$, if W(G) is bipartite then $(W(S_n))^m$ is i-balanced.

Proof: Since, by Theorem 2.1, $W(S_n)$ is *i*-balanced, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle C in $W(S_n)$ whose k^{th} co-ordinate are – is even. Also, since W(G) is bipartite, all cycles have even length; thus, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle C in $W(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m \in H_n$. Hence $(W(S_n))^t$ is *i*-balanced.

In [3], the author proved that, the graph G and its wing graph W(G) are isomorphic, if

 $G \cong C_{2k+1}$. In view of this, we have the following result:

Theorem 2.6. For any *n*-sigraph $S_n = (G, \sigma)$, $S_n \sim W(S_n)$ if, and only if, S_n is an i-balanced *n*-sigraph and $G \cong C_{2k+1}$.

Proof: Suppose $S_n \sim W(S_n)$. This implies $G \cong W(G)$, and hence G is isomorphic to C_{2k+1} . Now, if S_n is any *n*-sigraph with underlying graph G is C_{2k+1} , Theorem 2.1 implies that $W(S_n)$ is *i*-balanced, and hence if S_n is *i*-unbalanced and its $W(S_n)$ being *i*-balanced cannot be switching equivalent to S_n in accordance with Theorem 1.2. Therefore, S_n must be *i*-balanced.

Conversely, suppose that S_n is an *i*-balanced *n*-sigraph and *G* is isomorphic to C_{2k+1} . Then, since W(S_n) is *i*-balanced as per Theorem 2.1 and since $G \cong W(G)$, the result follows from Theorem 1.2 again.

Theorem 2.4 and 2.6 provides easy solutions to other *n*-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.7. For any two n-sigraphs S_n and S_n' with the same underlying graph, $W(S_n)$ and $W((S_n')^m)$ are switching equivalent.

Corollary 2.8. For any two n-sigraphs S_n and S'_n with the same underlying graph, $W((S_n)^m)$ and $W(S'_n)$ are switching equivalent.

Corollary 2.9. For any two n-sigraphs S_n and S_n' with the same underlying graph, $W((S_n)^m)$ and $W((S_n')^m)$ are switching equivalent.

Corollary 2.10. For any two n-sigraphs $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(W(S_n))^m$ and $W(S_n')$ are switching equivalent.

Note on Wing Symmetric *n*-Sigraphs

Corollary 2.11. For any two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $W(S_n)$ and $W((S'_n)^m)$ are switching equivalent.

Corollary 2.12. For any two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(W(S_1))^m$ and $(W(S_2))^m$ are switching equivalent.

Corollary 2.13. For any n-sigraph $S_n = (G, \sigma)$, $S_n \sim W((S_n)^m)$ if, and only if, S_n is an *i*-balanced n-sigraph and $G \cong C_{2k+1}$.

3. Conclusion

We have introduced a new notion for *n*-signed graphs called wing *n*-sigraph of an *n*-signed graph. We have proved some results and presented the structural characterization of the wing *n*-signed graph. There is no structural characterization of the wing graph, but we have obtained the structural characterization of the wing *n*-signed graph.

Acknowledgements. The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Author's Contributions: All authors equally contributed.

REFERENCES

- 1. B.D.Acharya and M.Acharya, Dot Line Signed Graphs, *Annals of Pure and Applied Mathematics*, 10(1) (2015) 21-27.
- 2. F.Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- 3. C.T.Hoang, On the two-edge colorings of perfect graphs, *J. Graph Theory*, 19(2) (1995) 271-279.
- 4. V.Lokesha, P.S.K.Reddy and S.Vijay, The triangular line *n*-sigraph of a symmetric *n*-sigraph, *Advn. Stud. Contemp. Math.*, 19(1) (2009) 123-129.
- J.J.Palathingal and S.Aparna Lakshmanan, Forbidden Subgraph Characterizations of Extensions of Gallai Graph Operator to Signed Graph, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 437-448.
- 6. R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric *n*sigraphs, *Proceedings of the Jangjeon Math. Soc.*, 11(2) (2008) 145-151.
- 7. R.Rangarajan, P.S.K.Reddy and M.S.Subramanya, Switching Equivalence in Symmetric *n*-Sigraphs, *Adv. Stud. Comtemp. Math.*, 18(1) (2009) 79-85. R.
- 8. R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in symmetric *n*-sigraphs-II, *J. Orissa Math. Sco.*, 28 (1 & 2) (2009) 1-12.
- 9. R.Rangarajan, P.S.K.Reddy and N.D.Soner, *mthPower Symmetric n-Sigraphs, Italian Journal of Pure & Applied Mathematics*, 29 (2012) 87-92.
- 10. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, Jump symmetric *n*-sigraph, *Proceedings of the Jangjeon Math. Soc.*, 11(1) (2008) 89-95.

Jephry Rodrigues, K.B. Mahesh and C. N. Harshavardhana

- 11. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, The Line *n*-sigraph of a symmetric *n*-sigraph, *Southeast Asian Bull. Math.*, 34(5) (2010) 953-958.
- 12. C.Shobha Rani, S.Jeelani Begum and G.Sankara Sekhar Raju, Signed Edge Total Domination on Rooted Product Graphs, *Annals of Pure and Applied Mathematics*, 17(1) (2018) 95-99.
- 13. P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric *n* sigraphs-I, *Advances and Applications in Discrete Mathematics*, 4(1) (2009) 25-32.
- 14. P.S.K.Reddy, S.Vijay and B.Prashanth, The edge C₄ *n*-sigraph of a symmetric *n*-sigraph, *Int. Journal of Math. Sci. & Engg. Appls.*, 3(2) (2009) 21-27.
- 15. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-II, *Proceedings of the Jangjeon Math. Soc.*, 13(3) (2010) 305-312.
- 16. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-III, *Int. J. Open Problems in Computer Science and Mathematics*, 3(5) (2010) 172-178.
- 17. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric *n*-sigraphs-III, *Int. Journal of Math. Sci. & Engg. Appls.*, 5(1) (2011) 95-101.
- 18. P.S.K.Reddy, B.Prashanth and Kavita.S.Permi, A Note on Switching in Symmetric *n*-Sigraphs, *Notes on Number Theory and Discrete Mathematics*, 17(3) (2011) 22-25.
- 19. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching Equivalence in Symmetric *n*-Sigraphs-IV, *Scientia Magna*, 7(3) (2011) 34-38.
- 20. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line *n*-sigraph of a symmetric *n*-sigraph-IV, *International J. Math. Combin.*, 1 (2012) 106-112.
- 21. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric *n*-sigraphs-V, *International J. Math. Combin.*, 3 (2012) 58-63.
- 22. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line *n*-sigraph of a symmetric *n*-sigraph-V, *Kyungpook Mathematical Journal*, 54(1) (2014) 95-101.
- 23. P.S.K.Reddy, R.Rajendra and M.C.Geetha, Boundary *n*-Signed Graphs, *Int. Journal of Math. Sci. & Engg. Appls.*, 10(2) (2016) 161-168.