Annals of Pure and Applied Mathematics Vol. 28, No. 1, 2023, 7-12 ISSN: 2279-087X (P), 2279-0888(online) Published on 25 August 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v28n1a02913

Annals of Pure and Applied <u>Mathematics</u>

Common Minimal Common Neighborhood Dominating Symmetric *n*-Sigraphs

Jephry Rodrigues K

Department of Mathematics Dr. P. Dayananda Pai-P. Satisha Pai Govt. First Grade College Car Street, Mangalore - 575 001, India Email: jephrymaths@gmail.com

Received 10 July 2023; accepted 24 August 2023

Abstract. In this paper, we define the common minimal common neighborhood dominating symmetric *n*-sigraph (or common minimal *CN*-dominating symmetric *n*-sigraph) of a given symmetric *n*-sigraph and offer a structural characterization of common minimal common neighborhood dominating symmetric *n*-sigraphs. In the sequel, we also obtained switching equivalence characterization: $\overline{S_n} \sim CMCN(S_n)$, where $\overline{S_n}$ and $CMCN(S_n)$ are complementary symmetric *n*-sigraph and common minimal *CN*-dominating symmetric *n*-sigraph of a symmetric *n*-sigrap

Keywords: Symmetric *n*-sigraphs, Symmetric *n*-marked graphs, Balance, Switching, Common minimal *CN*-dominating symmetric *n*-sigraphs, Complementation.

AMS Mathematics Subject Classification (2010): 05C22

1. Introduction

Unless mentioned or defined otherwise, the reader is referred to for all terminology and notions in graph theory [3]. We consider only finite, simple graphs free from self-loops.

Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate-wise multiplication, and the order of H_n is 2^m , where $m = \lfloor \frac{n}{2} \rfloor$.

A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma : E \to H_n(\mu : V \to H_n)$ is a function.

In this paper by an *n*-tuple/n-sigraph/n-marked graph, we always mean a symmetric *n*-tuple/symmetric *n*-sigraph/symmetric *n*-marked graph.

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise, it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise, it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of *A*.

Jephry Rodrigues K

In [10], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P. S. K. Reddy [6]):

Definition 1.1. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

(i) S_n is *identity balanced* (or *i-balanced*), if the product of *n*-tuples on each cycle of S_n is the identity *n*-tuple, and

(ii) S_n is *balanced* if every cycle in S_n contains an even number of non-identity edges.

Note 1.1: An *i*-balanced *n*-sigraph need not be balanced and conversely. The following characterization of *i*-balanced *n*-sigraphs is obtained in [10].

Theorem 1.1. (E. Sampathkumar et al. [10]) An *n*-sigraph $S_n = (G, \sigma)$ is *i*-balanced if, and only if, it is possible to assign *n*-tuples to its vertices such that the *n*-tuple of each edge uv is equal to the product of the *n*-tuples of u and v.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with *v*. The complement of S_n is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}, \sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ is defined here as an *i*-balanced *n*-sigraph due to Theorem 1.1.

In [10], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows: (See also [4-9, 11–25])

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic* if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label (a_1, a_2, \dots, a_n) then $\phi(u)\phi(v)$ is an edge in S'_n with label (a_1, a_2, \dots, a_n) .

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, *switching* S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*-sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle *C* in S_n equals to the *n*-tuple $\sigma(\Phi(C))$ in S'_n .

We make use of the following known result (see [10]).

Theorem 1.2. (E. Sampathkumar et al. [10]) *Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.c*

2. Common minimal common neighborhood dominating *n*-sigraph of an *n*-sigraph Let G=(V, E) be a graph. A set $D \subseteq V$ is a dominating set of G, if every vertex in *V*-*D* is adjacent to some vertex in *D*. A dominating set *D* of *G* is minimal, if for any vertex $v \in D$, D-{v} is not a dominating set of *G*.

Let G=(V, E) be a simple graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$. For $i \neq j$, the common neighborhood of the vertices v_i and v_j is the set of vertices different from

Common Minimal Common Neighborhood Dominating Symmetric n-Sigraphs

vi and vj which are adjacent to both v_i and v_j and is denoted by $\Upsilon(v_i, v_j)$. Further, a subset D of V is called the common neighborhood dominating set (or CN-dominating set) if every $v \in V - D$ there exists a vertex $u \in D$ such that $uv \in E(G)$ and $|\Upsilon(u, v)| \ge 1$, where $|\Upsilon(u, v)|$ is the number of common neighborhoods between u and v. This concept was introduced by Alwardi et al. [1].

A common neighborhood dominating set D is said to be minimal common neighborhood dominating set if no proper subset of D is common neighborhood dominating set (See [1]).

Alwardi and Soner [2] introduced a new class of intersection graphs in the field of domination theory. The commonality minimal CN-dominating graph is denoted by CMCN(G) is the graph which has the same vertex set as G with two vertices are adjacent if and only if there exist minimal CN-dominating in G containing them.

In this paper, we introduce a natural extension of the notion of common minimal *CN*-dominating graphs to the realm of *n*-sigraphs.

Motivated by the existing definition of complement of an *n*-sigraph, we extend the notion of common minimal *CN*-dominating graphs to *n*-sigraphs as follows: The common minimal *CN*-dominating *n*-sigraph *CMCN*(*G*) of an *n*-sigraph $S_n = (G, \sigma)$ is an *n*-sigraph whose underlying graph is *CMCN*(*G*) and the *n*-tuple of any edge *uv* is *CMCN*(S_n) is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n . Further, an *n*-sigraph $S_n = (G, \sigma)$ is called common minimal *CN*-dominating *n*-sigraph, if $S_n \cong CMCN(S'_n)$ for some *n*-sigraph S'_n . The purpose of this paper is to initiate a study of this notion.

The following result indicates the limitations of the notion $CMCN(S_n)$ as introduced above, since the entire class of *i*-unbalanced *n*-sigraphs is forbidden to be common minimal *CN*-dominating *n*-sigraphs.

Theorem 2.1. For any n-sigraph $S_n = (G, \sigma)$, its common minimal CN-dominating n-sigraph CMCN(S_n) is i-balanced.

Proof: Since the *n*-tuple of any edge uv in $CMCN(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Theorem 1.1, $CMCN(S_n)$ is *i*-balanced.

For any positive integer k, the k^{th} iterated common minimal *CN*-dominating *n*-sigraph, *CMCN*^k(*S_n*) of *S_n* is defined as follows:

 $CMCN^{0}(S_{n}) = S_{n}, CMCN^{k}(S_{n}) = CMCN(CMCN^{k-1}(S_{n})).$

Corollary 2.2. For any n-sigraph $S_n = (G, \sigma)$ and for any positive integer k, CMCN^k(S_n) is *i*-balanced.

The following result characterizes *n*-sigraphs which are common minimal *CN*-dominating *n*-sigraphs.

Theorem 2.3. An n-sigraph $S_n = (G, \sigma)$ is a common minimal CN-dominating n-sigraph if, and only if, S_n is i-balanced n-sigraph and its underlying graph G is a common minimal CN-dominating graph.

Proof: Suppose that S_n is *i*-balanced and *G* is a common minimal *CN*-dominating graph. Then there exists a graph *H* such that $CMCN(H) \cong G$. Since S_n is *i*-balanced, by Theorem 1.1, there exists a marking ζ of *G* such that each edge e = uv in S_n satisfies $\sigma(uv) = \zeta(u)\zeta(v)$. Now consider the *n*-sigraph $S_n' = (H, \sigma')$, where for any edge *e* in *H*, $\sigma'(e)$ is the *n*-

Jephry Rodrigues K

marking of the corresponding vertex in G. Then clearly, $CMCN(S_n') \cong S_n$. Hence S_n is a common minimal CN-dominating *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a common minimal *CN*-dominating *n*-sigraph. Then there exists an *n*-sigraph $S_n' = (H, \sigma')$ such that $CMCN(S_n') \cong S_n$. Hence G is the common minimal *CN*-dominating graph of H and by Theorem 2.1, S_n is *i*-balanced.

In [2], the authors characterized graphs for which $CMCN(G) \cong \overline{G}$.

Theorem 2.4. (Anwar Alwardi et al. [2])

For any graph G=(V, E), $CMCN(G) \cong \overline{G}$ if and only if every minimal CN-dominating set of G is independent.

We now characterize *n*-sigraphs whose common minimal *CN*-dominating *n*-sigraphs and complementary *n*-sigraphs are switching equivalent.

Theorem 2.5. For any n-sigraph $S_n = (G, \sigma)$, $\overline{S_n} \sim CMCN(S_n)$ if, and only if, every minimal CN-dominating set of G is independent.

Proof: Suppose $\overline{S_n} \sim CMCN(S_n)$. This implies, $CMCN(G) \cong \overline{G}$ and hence by Theorem 2.4, every minimal *CN*-dominating set of *G* is independent.

Conversely, suppose that every minimal *CN*-dominating set of *G* is independent. Then $CMCN(G) \cong \overline{G}$ by Thorem 2.4. Now, if S_n is an *n*-sigraph with underlying graph *G* satisfies the conditions of Theorem 2.4, by the definition of complementary *n*-sigraph and Theorem 2.1, $\overline{S_n}$ and $CMCN(S_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2.

Theorem 2.6. For any two n-sigraphs S_n and S_n' with the same underlying graph, their common minimal CN-dominating n-sigraphs are switching equivalent. Proof. Suppose $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ be two n-sigraphs with $G \cong G'$. By Theorem

Proof. Suppose $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs with $G \cong G'$. By Theorem 2.1, $CMCN(S_n)$ and $CMCN(S'_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*- complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, ..., a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the *CMCN*(S_n) is *i*-balanced. We now examine, the condition under which *m*-complement of *CMCN*(S_n) is *i*-balanced, where for any $m \in H_n$.

Theorem 2.7. Let $S_n = (G, \sigma)$ be an n-sigraph. Then, for any $m \in H_n$, if CMCN(G) is bipartite then $(CMCN(S_n))^m$ is i-balanced.

Proof: Since, by Theorem 2.1, $CMCN(S_n)$ is *i*-balanced, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle *C* in $CMCN(S_n)$ whose k^{th} co-ordinate are – is even. Also, since CMCN(G) is bipartite, all cycles have even length; thus, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle *C* in $CMCN(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m \in H_n$. Hence $(CMCN(S_n))^t$ is *i*-balanced.

Common Minimal Common Neighborhood Dominating Symmetric n-Sigraphs

Theorem 2.6 provides easy solutions to other n-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.8. For any two n-sigraphs S_n and S'_n with the same underlying graph, $CMCN(S_n)$ and $CMCN((S'_n)^m)$ are switching equivalent.

Corollary 2.9. For any two n-sigraphs S_n and S'_n with the same underlying graph, $CMCN((S_n)^m)$ and $CMCN(S'_n)$ are switching equivalent.

Corollary 2.10. For any two n-sigraphs S_n and S'_n with the same underlying graph, $CMCN((S_n)^m)$ and $CMCN((S'_n)^m)$ are switching equivalent.

Corollary 2.11. For any two n-sigraphs $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(CMCN(S_n))^m$ and $CMCN(S_n')$ are switching equivalent.

Corollary 2.12. For any two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, CMCN (S_n) and CMCN $((S'_n)^m)$ are switching equivalent.

Corollary 2.13. For any two n-sigraphs $S_n = (G, \sigma)$ and $S_n' = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(CMCN(S_1))^m$ and $(CMCN(S_2))^m$ are switching equivalent.

3. Conclusion

We have introduced a new notion for *n*-signed graphs called common minimal CN-dominating *n*-sigraph of an *n*-signed graph. We have proved some results and presented the structural characterization of a common minimal CN-dominating *n*-signed graph. There is no structural characterization of a common minimal CN-dominating graph, but we have obtained the structural characterization of a common minimal CN-dominating *n*-signed graph. There is no structural characterization of a common minimal CN-dominating graph, but we have obtained the structural characterization of a common minimal CN-dominating *n*-signed graph.

Acknowledgements. The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Conflicts of Interest: A single author writes the paper, so there is no conflict of interest.

Author's Contributions: It is a single-author paper. So, full credit goes to the author.

REFERENCES

- 1. A.Alwardi, N.D.Soner and K.Ebadi, On the common neighbourhood domination number, *J. Comp. & Math. Sci.*, 2(3) (2011) 547-556.
- A.Alwardi and N.D.Soner Minimal, vertex minimal and commonality minimal CNdominating graphs, *Trans. Comb.*, 1(1) (2012) 21-29.
- 3. F.Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- 4. V.Lokesha, P.S.K.Reddy and S. Vijay, The triangular line *n*-sigraph of a symmetric *n*-sigraph, *Advn. Stud. Contemp. Math.*, 19(1) (2009) 123-129.
- 5. K.M.Manjula, C.N.Harshavardhana and R.Kemparaju, Equitable symmetric *n*-sigraphs, *Annals of Pure and Applied Mathematics*, 27(2) (2023) 79-84.

Jephry Rodrigues K

- 6. R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric *n*-sigraphs, *Proceedings of the Jangjeon Math. Soc.*, 11(2) (2008) 145-151.
- 7. R.Rangarajan, P.S.K.Reddy and M.S.Subramanya, Switching equivalence in symmetric *n*-sigraphs, *Adv. Stud. Comtemp. Math.*, 18(1) (2009), 79-85.
- 8. R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in symmetric *n*-sigraphs-II, *J. Orissa Math. Sco.*, 28 (1 & 2) (2009) 1-12.
- 9. R.Rangarajan, P.S.K.Reddy and N.D.Soner, *mth* power symmetric *n*-sigraphs, *Italian Journal of Pure & Applied Mathematics*, 29 (2012) 87-92.
- 10. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, Jump symmetric *n*-sigraph, *Proceedings of the Jangjeon Math. Soc.*, 11(1) (2008) 89-95.
- 11. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, The line *n*-sigraph of a symmetric *n*-sigraph, *Southeast Asian Bull. Math.*, 34(5) (2010) 953-958.
- 12. P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric *n*-sigraphs-I, *Advances and Applications in Discrete Mathematics*, 4(1) (2009) 25-32.
- 13. P.S.K.Reddy, S.Vijay and B.Prashanth, The edge C₄ *n*-sigraph of a symmetric *n*-sigraph, *Int. Journal of Math. Sci. &Engg. Appls.*, 3(2) (2009) 21-27.
- 14. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The line *n*-sigraph of a symmetric *n*-sigraph-II, *Proceedings of the Jangjeon Math. Soc.*, 13(3) (2010) 305-312.
- 15. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The line *n*-sigraph of a symmetric *n*-sigraph-III, *Int. J. Open Problems in Computer Science and Mathematics*, 3(5) (2010) 172-178.
- 16. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric *n*-sigraphs-III, *Int. Journal of Math. Sci. &Engg. Appls.*, 5(1) (2011) 95-101.
- 17. P.S.K.Reddy, B.Prashanth and Kavita.S.Permi, A note on switching in symmetric *n*-sigraphs, *Notes on Number Theory and Discrete Mathematics*, 17(3) (2011) 22-25.
- 18. P.S.K.Reddy, Gurunath Rao Vaidya and A. Sashi Kanth Reddy, Neighborhood symmetric *n*-sigraphs, *Scientia Magna*, 7(2) (2011) 99-105.
- 19. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric *n*-sigraphs-IV, *Scientia Magna*, 7(3) (2011) 34-38.
- 20. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line *n*-sigraph of a symmetric *n*-sigraph-IV, *International J. Math. Combin.*, 1 (2012) 106-112.
- 21. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric *n*-sigraphs-V, *International J. Math. Combin.*, 3 (2012) 58-63.
- 22. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line *n*-sigraph of a symmetric *n*-sigraph-V, *Kyungpook Mathematical Journal*, 54(1) (2014) 95-101.
- 23. P.S.K.Reddy, R.Rajendra and M.C.Geetha, Boundary *n*-Signed Graphs, *Int. Journal of Math. Sci. &Engg. Appls.*, 10(2) (2016) 161-168.
- 24. C.Shobha Rani, S.Jeelani Begum and G.Sankara Sekhar Raju, Signed edge total domination on rooted product graphs, *Annals of Pure and Applied Mathematics*, 17(1) (2018) 95--99.
- 25. K.S.P.Sowndarya and Y.Lakshmi Naidu, Perfect domination for bishops, kings and rooks graphs on square chessboard, *Annals of Pure and Applied Mathematics*, 18(1) (2018) 59-64.