Common Minimal Common Neighborhood Dominating Symmetric \boldsymbol{n}-Sigraphs

Jephry Rodrigues K

Department of Mathematics
Dr. P. Dayananda Pai-P. Satisha Pai Govt. First Grade College
Car Street, Mangalore - 575 001, India
Email: jephrymaths @ gmail.com
Received 10 July 2023; accepted 24 August 2023

Abstract

In this paper, we define the common minimal common neighborhood dominating symmetric n-sigraph (or common minimal $C N$-dominating symmetric n-sigraph) of a given symmetric n-sigraph and offer a structural characterization of common minimal common neighborhood dominating symmetric n-sigraphs. In the sequel, we also obtained switching equivalence characterization: $\overline{S_{n}} \sim \operatorname{CMCN}\left(S_{n}\right)$, where $\overline{S_{n}}$ and $\operatorname{CMCN}\left(S_{n}\right)$ are complementary symmetric n-sigraph and common minimal $C N$-dominating symmetric n sigraph of a symmetric n-sigraph S_{n} respectively. Keywords: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Common minimal $C N$-dominating symmetric n-sigraphs, Complementation.

AMS Mathematics Subject Classification (2010): 05C22

1. Introduction

Unless mentioned or defined otherwise, the reader is referred to for all terminology and notions in graph theory [3]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate-wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}\right.$ $=(G, \mu))$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}(\mu$ $: V \rightarrow H_{n}$) is a function.

In this paper by an n-tuple/n-sigraph/n-marked graph, we always mean a symmetric n tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise, it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise, it is a non-identity edge.

Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.

Jephry Rodrigues K

In [10], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P. S. K. Reddy [6]):

Definition 1.1. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) $\quad S_{n}$ is identity balanced (or i-balanced), if the product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) $\quad S_{n}$ is balanced if every cycle in S_{n} contains an even number of non-identity edges.

Note 1.1: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [10].
Theorem 1.1. (E. Sampathkumar et al. [10]) An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S_{n} defined as follows: each vertex $v \in V, \mu(v)$ is the n-tuple which is the product of the n-tuples on the edges incident with v. The complement of S_{n} is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge e $=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ is defined here as an i-balanced n-sigraph due to Theorem 1.1.

In [10], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [4-9, 11-25])

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n-sigraph obtained in this way is denoted by $\mathrm{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $S_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\Phi(C))$ in S_{n}^{\prime}.

We make use of the following known result (see [10]).
Theorem 1.2. (E. Sampathkumar et al. [10]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.c
2. Common minimal common neighborhood dominating n-sigraph of an n-sigraph Let $G=(V, E)$ be a graph. A set $D \subseteq V$ is a dominating set of G, if every vertex in $V-D$ is adjacent to some vertex in D. A dominating set D of G is minimal, if for any vertex $v \in D$, $D-\{v\}$ is not a dominating set of G.

Let $G=(V, E)$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For $i \neq$ j, the common neighborhood of the vertices v_{i} and v_{j} is the set of vertices different from

Common Minimal Common Neighborhood Dominating Symmetric n-Sigraphs

vi and vj which are adjacent to both v_{i} and v_{j} and is denoted by $\Upsilon\left(v_{i}, v_{j}\right)$. Further, a subset D of V is called the common neighborhood dominating set (or $C N$-dominating set) if every $v \in V-D$ there exists a vertex $u \in D$ such that $u v \in E(G)$ and $|\Upsilon(u, v)| \geq 1$, where $|\Upsilon(u, v)|$ is the number of common neighborhoods between u and v. This concept was introduced by Alwardi et al. [1].

A common neighborhood dominating set D is said to be minimal common neighborhood dominating set if no proper subset of D is common neighborhood dominating set (See [1]).

Alwardi and Soner [2] introduced a new class of intersection graphs in the field of domination theory. The commonality minimal $C N$-dominating graph is denoted by $C M C N(G)$ is the graph which has the same vertex set as G with two vertices are adjacent if and only if there exist minimal $C N$-dominating in G containing them.
In this paper, we introduce a natural extension of the notion of common minimal CN dominating graphs to the realm of n-sigraphs.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of common minimal $C N$-dominating graphs to n-sigraphs as follows: The common minimal $C N$-dominating n-sigraph $C M C N(G)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $\operatorname{CMCN}(G)$ and the n-tuple of any edge $u v$ is $\operatorname{CMCN}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called common minimal $C N$-dominating n-sigraph, if $S_{n} \cong \operatorname{CMCN}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The purpose of this paper is to initiate a study of this notion.

The following result indicates the limitations of the notion $\operatorname{CMCN}\left(S_{n}\right)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be common minimal $C N$-dominating n-sigraphs.

Theorem 2.1. For any n-sigraph $S_{n}=(G, \sigma)$, its common minimal CN-dominating n-sigraph $C M C N\left(S_{n}\right)$ is i-balanced.
Proof: Since the n-tuple of any edge $u v$ in $\operatorname{CMCN}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1.1, $\operatorname{CMCN}\left(S_{n}\right)$ is i-balanced.

For any positive integer k, the $k^{\text {th }}$ iterated common minimal $C N$-dominating n sigraph, $C M C N^{k}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
\operatorname{CMCN}^{0}\left(S_{n}\right)=S_{n}, C M C N^{k}\left(S_{n}\right)=C M C N\left(C M C N^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2. For any n-sigraph $S_{n}=(G, \sigma)$ and for any positive integer $k, C M C N^{k}\left(S_{n}\right)$ is i-balanced.

The following result characterizes n-sigraphs which are common minimal CN dominating n-sigraphs.

Theorem 2.3. An n-sigraph $S_{n}=(G, \sigma)$ is a common minimal $C N$-dominating n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a common minimal $C N$-dominating graph.
Proof: Suppose that S_{n} is i-balanced and G is a common minimal $C N$-dominating graph. Then there exists a graph H such that $C M C N(H) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1, there exists a marking ζ of G such that each edge $e=u v$ in S_{n} satisfies $\sigma(u v)=\zeta(u) \zeta(v)$. Now consider the n-sigraph $S_{n}{ }^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n -

Jephry Rodrigues K

marking of the corresponding vertex in G. Then clearly, $\operatorname{CMCN}\left(S_{n}{ }^{\prime}\right) \cong S_{n}$. Hence S_{n} is a common minimal $C N$-dominating n-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is a common minimal $C N$-dominating n sigraph. Then there exists an n-sigraph $S_{n}{ }^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $\operatorname{CMCN}\left(S_{n}{ }^{\prime}\right) \cong S_{n}$. Hence G is the common minimal $C N$-dominating graph of H and by Theorem 2.1, S_{n} is i balanced.

In [2], the authors characterized graphs for which $\operatorname{CMCN}(G) \cong \bar{G}$.

Theorem 2.4. (Anwar Alwardi et al. [2])

For any graph $G=(V, E), C M C N(G) \cong \bar{G}$ if and only if every minimal $C N$-dominating set of G is independent.

We now characterize n-sigraphs whose common minimal $C N$-dominating n-sigraphs and complementary n-sigraphs are switching equivalent.

Theorem 2.5. For any n-sigraph $S_{n}=(G, \sigma), \overline{S_{n}} \sim \operatorname{CMCN}\left(S_{n}\right)$ if, and only if, every minimal CN -dominating set of G is independent.
Proof: Suppose $\overline{S_{n}} \sim \operatorname{CMCN}\left(S_{n}\right)$. This implies, $\operatorname{CMCN}(G) \cong \bar{G}$ and hence by Theorem 2.4, every minimal $C N$-dominating set of G is independent.

Conversely, suppose that every minimal $C N$-dominating set of G is independent. Then $C M C N(G) \cong \bar{G}$ by Thorem 2.4. Now, if S_{n} is an n-sigraph with underlying graph G satisfies the conditions of Theorem 2.4, by the definition of complementary n-sigraph and Theorem 2.1, $\overline{S_{n}}$ and $\operatorname{CMCN}\left(S_{n}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.

Theorem 2.6. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, their common minimal $C N$-dominating n-sigraphs are switching equivalent.
Proof. Suppose $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$) be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 2.1, $\operatorname{CMCN}\left(S_{n}\right)$ and $\operatorname{CMCN}\left(S_{n}{ }^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.

For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, . ., a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq$ H_{n}, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.
For any $m \in H_{n}$, the m - complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}{ }^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $C M C N\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $C M C N\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.

Theorem 2.7. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $\operatorname{CMCN}(G)$ is bipartite then $\left(C M C N\left(S_{n}\right)\right)^{m}$ is i-balanced.
Proof: Since, by Theorem 2.1, $\operatorname{CMCN}\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $C M C N\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are - is even. Also, since $C M C N(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $C M C N\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m \in H_{n}$. Hence $\left(C M C N\left(S_{n}\right)\right)^{t}$ is i-balanced.

Common Minimal Common Neighborhood Dominating Symmetric n-Sigraphs

Theorem 2.6 provides easy solutions to other n-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.8. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $\operatorname{CMCN}\left(S_{n}\right)$ and $\operatorname{CMCN}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.9. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $\operatorname{CMCN}\left(\left(S_{n}\right)^{m}\right)$ and $\operatorname{CMCN}\left(S_{n}{ }^{\prime}\right)$ are switching equivalent.

Corollary 2.10. For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $\operatorname{CMCN}\left(\left(S_{n}\right)^{m}\right)$ and $\operatorname{CMCN}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.11. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(\operatorname{CMCN}\left(S_{n}\right)\right)^{m}$ and $\operatorname{CMCN}\left(S_{n}{ }^{\prime}\right)$ are switching equivalent.

Corollary 2.12. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\operatorname{CMCN}\left(S_{n}\right)$ and $\operatorname{CMCN}\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.13. For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the G $\cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(C M C N\left(S_{1}\right)\right)^{m}$ and $\left(C M C N\left(S_{2}\right)\right)^{m}$ are switching equivalent.

3. Conclusion

We have introduced a new notion for n-signed graphs called common minimal $C N$ dominating n-sigraph of an n-signed graph. We have proved some results and presented the structural characterization of a common minimal $C N$-dominating n-signed graph. There is no structural characterization of a common minimal CN -dominating graph, but we have obtained the structural characterization of a common minimal CN -dominating n signed graph.

Acknowledgements. The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Conflicts of Interest: A single author writes the paper, so there is no conflict of interest.
Author's Contributions: It is a single-author paper. So, full credit goes to the author.

REFERENCES

1. A.Alwardi, N.D.Soner and K.Ebadi, On the common neighbourhood domination number, J. Comp. \& Math. Sci., 2(3) (2011) 547-556.
2. A.Alwardi and N.D.Soner Minimal, vertex minimal and commonality minimal CNdominating graphs, Trans. Comb., 1(1) (2012) 21-29.
3. F.Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
4. V.Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n sigraph, Advn. Stud. Contemp. Math., 19(1) (2009) 123-129.
5. K.M.Manjula, C.N.Harshavardhana and R.Kemparaju, Equitable symmetric nsigraphs, Annals of Pure and Applied Mathematics, 27(2) (2023) 79-84.

Jephry Rodrigues K

6. R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008) 145-151.
7. R.Rangarajan, P.S.K.Reddy and M.S.Subramanya, Switching equivalence in symmetric n-sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.
8. R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in symmetric n -sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009) 1-12.
9. R.Rangarajan, P.S.K.Reddy and N.D.Soner, $m^{\text {th }}$ power symmetric n-sigraphs, Italian Journal of Pure \& Applied Mathematics, 29 (2012) 87-92.
10. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008) 89-95.
11. E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, The line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010) 953-958.
12. P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009) 25-32.
13. P.S.K.Reddy, S.Vijay and B.Prashanth, The edge $C_{4} n$-sigraph of a symmetric n sigraph, Int. Journal of Math. Sci. \&Engg. Appls., 3(2) (2009) 21-27.
14. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010) 305-312.
15. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010) 172-178.
16. P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \&Engg. Appls., 5(1) (2011) 95101.
17. P.S.K.Reddy, B.Prashanth and Kavita.S.Permi, A note on switching in symmetric n sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011) 22-25.
18. P.S.K.Reddy, Gurunath Rao Vaidya and A. Sashi Kanth Reddy, Neighborhood symmetric n-sigraphs, Scientia Magna, 7(2) (2011) 99-105.
19. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric n -sigraphs-IV, Scientia Magna, 7(3) (2011) 34-38.
20. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line n-sigraph of a symmetric n -sigraph-IV, International J. Math. Combin., 1 (2012) 106-112.
21. P.S.K.Reddy, M.C.Geetha and K.R.Rajanna, Switching equivalence in symmetric n -sigraphs-V, International J. Math. Combin., 3 (2012) 58-63.
22. P.S.K.Reddy, K.M.Nagaraja and M.C.Geetha, The Line n-sigraph of a symmetric n -sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014) 95-101.
23. P.S.K.Reddy, R.Rajendra and M.C.Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. \&Engg. Appls., 10(2) (2016) 161-168.
24. C.Shobha Rani, S.Jeelani Begum and G.Sankara Sekhar Raju, Signed edge total domination on rooted product graphs, Annals of Pure and Applied Mathematics, 17(1) (2018) 95--99.
25. K.S.P.Sowndarya and Y.Lakshmi Naidu, Perfect domination for bishops, kings and rooks graphs on square chessboard, Annals of Pure and Applied Mathematics, 18(1) (2018) 59-64.
