Annals of Pure and Applied Mathematics Vol. 28, No. 1, 2023, 13-19 ISSN: 2279-087X (P), 2279-0888(online) Published on 18 September 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v28n1a03914

Annals of Pure and Applied <u>Mathematics</u>

On the Exponential Diophantine Equation $p.3^x + p^y = z^2$ with *p* a Prime Number

Anderson Porto^{1*}, Marcelo Buosi² and Gilmar Ferreira³

¹Institute of Science and Technology

Universidade Federal dos Vales Jequitinhonha e Mucuri-Diamantina 39100-000-Brasil ^{2,3}Department of Mathematics and Statistics

Universidade Federal dos Vales Jequitinhonha e Mucuri-Diamantina 39100-000-Brasil. ²email: <u>marcelo.buosi@ufvjm.edu.br</u>; ³email: <u>gilmar.ferreira@ufvjm.edu.br</u>

*Corresponding author. email: ander.porto@ict.ufvjm.edu.br

Received 6 August 2023; accepted 17 September 2023

Abstract. In this paper, we find non-negative integer solutions for exponential Diophantine equations of the type $p3^x + p^y = z^2$ where *p* is a prime number. We prove that such equation has a unique solution $(x, y, z) = (\log_3(p-2), 0, p-1)$ if $2 \neq p \equiv 2(mod3)$ and (x, y, z) = (0, 1, 2) if p = 2. We also display the infinite solution set of that equation in the case p = 3. Finally, a brief discussion of the case $p \equiv 1(mod3)$ is made, where we display an equation that does not have a non-negative integer solution and leave some open questions. The proofs are based on the use of the properties of the modular arithmetic.

Keywords: Congruences; exponential diophantine equations

AMS Mathematics Subject Classification (2010): 11A07, 11A41, 11D61

1. Introduction

Diophantine equations of the form $a^x + b^y = c^z$ have been studied by numerous mathematicians for many decades and by a variety of methods. One of the first references to these equations was given by Fermat-Euler [4], showing that (a, c) = (5,3) is the unique positive integer solution of the equation $a^2 + 2 = c^3$. Several works on exponential Diophantine equations have been developed in recent years. In 2011, Suvarnamani [4] studied the Diophantine equation $2^{x} + p^{y} = z^{2}$. Rabago [5] studied the equations $3^{x} + p^{y} = z^{2}$. $19^{y} = z^{2}$ and $3^{x} + 91^{y} = z^{2}$. The solution sets are (1,0,2), (4,1,10) and (1,0,2), (2,1,10), respectively. A. Suvarnamani et al. [7] found solutions of two Diophantine equations 4^{x} + $7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$. Sroysang (see [6]) studied the Diophantine equation $3^{x} + 12^{y} = z^{2}$ $17^{y} = z^{2}$. Chotchaisthit (see [3]) showed that the Diophantine equation $p^{x} + (p+1)^{y} = z^{2}$ has unique solutions (p, x, y, z) = (7, 0, 1, 3) and (p, x, y, z) = (3, 2, 2, 5) if $(x, y, z) \in \mathbb{N}^3$ and p is a Mersenne prime. In 2019, Thongnak et al. (see [9]) found exactly two non-trivial solutions for the equation $2^x - 3^y = z^2$, namely (1,0,1) and (2,1,1). Buosi *et al.* (see [1] and [2]) studied some exponential Diophantine equations that generalized the work of Thongnak et al. (see [9]). Several other similar and recent works can be found in Thongnak et al. [10], [11] and [12].

Anderson Porto, Marcelo Buosi and Gilmar Ferreira

In this work we show that when p > 3 is a prime integer such that $p \equiv 2 \pmod{3}$, there is an ordered triple (x, y, z) of non-negative integers that solves the equation $p \cdot 3^x + p^y = z^2$ if and only if p - 2 is a non-trivial power of 3. In the affirmative case, there exists only one solution which is given by $(x, y, z) = (\log_3(p - 2), 0, p - 1)$.

This result generalizes the theorem obtained in Thongnak *et al.* [10] when p = 11. In other words, Thongnak et al. [10] found the only solution (2,0,10) for the Diophantine equation $11.3^{x} + 11^{y} = z^{2}$ using modular arithmetic. We also determine the unique solution of the case p = 2 and the infinite set of solutions when p = 3. The case where p is congruent to 1 modulo 3 has not been solved completely because it is not understood why there are situations whose equation has a solution and others that do not. At the end of the article, a brief discussion of the case $p \equiv 1 \pmod{3}$ is made, showing an example of an equation with no solution and suggesting some open questions.

2. Some notations

Denote by \mathbb{Z} be the set of integer numbers and let \mathbb{N} be the set of all positive integers together with the number 0, that is, $\mathbb{N} = \{0, 1, 2, 3, ...\}$, such a set will be called the set of *natural numbers*. Define $\mathbb{N}^* = \mathbb{N} - \{0\}$ and $\mathbb{N}^q = \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$ as the *cartesian product* of *q* copies of \mathbb{N} . When *a* divides *b* we will use the symbol $a \mid b$. When *a* is congruent to *b* module *m* we will write $a \equiv b(modm)$. Let *a*, *m* be integers with a > 0 and m > 2. The smallest positive integer *k* such that $a^k \equiv 1(modm)$ will be said the *order* of *a* modulo *m* and will be denoted as $|a|_m$. The set of all non-negative integer solutions of the equation $p3^x + p^y = z^2$ will be said simply the *solution set of the equation*, i.e., the set $\{(x, y, z) \in \mathbb{N}^3: p3^x + p^y = z^2\}$.

3. Results

In this section, we will find the solution set for the equation

 $p3^{x} + p^{y} = z^{2}, (x, y, z) \in \mathbb{N}^{3},$ (1)

for several prime integers. We will divide the results into four sections: case p = 3, general results for p > 3, case $p \equiv 2(mod3)$ and finally, we will make a brief explanation of the case $p \equiv 1(mod3)$ since in this case the general problem still remains open. The motivation for this work is the paper Thongnak *et al.* [10] where the authors solved the above equation in the particular case p = 11. The result of Thongnak *et al.* is an immediate consequence of Theorem 1.13 proved in this article.

Case p = 3

In this subsection, we present all the non-negative integer solutions of the equation $p3^x + p^y = z^2$ in the particular case when p = 3.

Theorem 1.1. The solution set of the Diophantine exponential equation $3 \cdot 3^x + 3^y = z^2$ (2) in \mathbb{N}^3 is { $(2n, 2n, 2, 3^n)$; $n \in \mathbb{N}$ } \cup { $(1 + 2n, 3 + 2n, 2, 3^{n+1})$; $n \in \mathbb{N}$ }.

The proof is based on the combination of the results of the following six lemmas.

Lemma 1.2. If $(y, z) \in \mathbb{N}^2$ is a solution of the equation $3^{y+1} + 1 = z^2$ then y = 0. **Proof:** $3^{y+1} + 1 = z^2 \Rightarrow 3^{y+1} = (z+1)(z-1) \Rightarrow z-1 = 1, z+1 = 3 \Rightarrow y = 0$. *Q.E.D.* On the Exponential Diophantine Equation $p \cdot 3^x + p^y = z^2$ with p a Prime Number

Lemma 1.3. If $(x, y, z) \in \mathbb{N}^3$ is a solution of the equation $3^x(3^{y+1} + 1) = z^2$ then y = 0. **Proof:** Suppose there exists $(x, y, z) \in \mathbb{N}^3$ such that $3^x(3^{y+1} + 1) = z^2$ and y > 0. By Lemma 1.2, $3^{y+1} + 1$ it is not a perfect square. Thus there is a prime integer *q* that appears an odd number of times in the prime factorization of $3^{y+1} + 1$. Since $q \mid z^2$ we have two possibilities:

 $x = 0 \Rightarrow 3^{y+1} + 1$ is a perfect square; $x > 0 \Rightarrow q \mid 3^x \Rightarrow q = 3 \Rightarrow 3 \mid 1.$

In both cases we have an absurd. Therefore y = 0. *Q.E.D.*

Lemma 1.4. If $(x, y, z) \in \mathbb{N}^3$ is a solution of the equation (2) then $y - x \in \{0, 1, 2\}$. **Proof:** If y < x then there exists an integer k > 0 such that x=y+k. Replacing x in (2) with y + k we obtain $3 \cdot 3^{y+k} + 3^y = z^2$ if and only if $3^y(3^{k+1} + 1) = z^2$. which contradicts Lemma 1.3. Therefore $x \leq y$.

If $y - x \ge 3$ then y = x + k for some integer $k \ge 3$. Replacing y in (2) with x + k we obtain $3 \cdot 3^x + 3^{x+k} = z^2$ if and only if $3^{x+1}(3^{k-1} + 1) = z^2$. which is a contradiction with Lemma 1.3. Therefore $y - x \in \{0, 1, 2\}$. *Q.E.D.*

Lemma 1.5. If $(x, y, z) \in \mathbb{N}^3$ is a solution of the equation (2) then y = x or y = x + 2. **Proof:** By Lema 1.3, $y - x \in \{0,1,2\}$. Suppose y = x + 1. Replacing y in (2) with x + 1 we obtain $3^{x+1} + 3^{x+1} = z^2 \Rightarrow 2 \cdot 3^{x+1} = z^2 \Rightarrow 2 \mid z^2$ and 4 does not divide z^2 , which is an absurd. Therefore $y - x \in \{0,1,2\}$. *Q.E.D.*

Lemma 1.6. If $(x, y, z) \in \mathbb{N}^3$ is a solution of the equation (2) and y = x, then there exists $n \in \mathbb{N}$ such that x = y = 2n and $z = 2 \cdot 3^n$. **Proof:** Making y = x in equation (2) we get $3^{x+1} + 3^x = z^2 \Rightarrow 4 \cdot 3^x = z^2 \Rightarrow x$ is even.

Henceforth there exists $n \in \mathbb{N}$ such that y = x = 2n and $z = \sqrt{4 \cdot 3^{2n}} = 2 \cdot 3^n$. Q.E.D.

Lemma 1.7. If $(x, y, z) \in \mathbb{N}^3$ is a solution of the equation (2) and y - x = 2 then there exists $n \in \mathbb{N}$ such that x=1+2n, y=3+2n and $z = 3^{n+1}$. **Proof:** Making y = x + 2 in equation (2) we get $3^{x+1} + 3^{x+2} = z^2 \Rightarrow 4 \cdot 3^{x+1} = z^2 \Rightarrow x$ is odd. Henceforth there exists $n \in \mathbb{N}$ such that x=1+2n, y=3+2n and $z = \sqrt{4 \cdot 3^{2n+2}} = 2 \cdot 3^{n+1}$.

General results for a prime $p \neq 3$

Lemma 1.8. Let $p \neq 3$ be a prime integer. If $(x, y, z) \in \mathbb{N}^3$ is a solution of $p3^x + p^y = z^2$, (3) then y = 0 or y = 1.

Anderson Porto, Marcelo Buosi and Gilmar Ferreira

Proof: Let (x, y, z) be a solution of (3). Assume $y \ge 2$. It is clear that $z \ne 0$. In this case, p divides z because $p3^x + p^y = z^2 \Rightarrow p(3^x + p^{y-1}) = z^2$.

Let $m \in \mathbb{N}^*$ such that z = m.p. Substitute m.p for z in the above equation to obtain $3^x = p(m^2 - p^{y-2})$.

If x = 0 the above equation is an absurd for all prime integer $p \ge 2$. If x > 0 we have 3 | p, which is absurd for all prime integer $p \ne 3$. Therefore y = 0 or y = 1.Q.E.D.

If one substitute 0 for y in the equation (3) one obtain $p3^{x} + 1 = z^{2}$ which is equivalent to the following equation

$$p3^{x} = z^{2} - 1 = (z - 1)(z + 1).$$
(4)

Lemma 1.9. Let $p \neq 3$ be a prime integer. If $(x, z) \in \mathbb{N}^2$ is a solution of (4), then x > 0 and *z* it is not equivalet to 0 module 3.

Proof: Let (x, z) be a solution of (4). If x = 0 then

$$p = (z - 1)(z + 1) \Rightarrow z = 2$$
 and $p = 3$,

which is a contradiction. Hence x > 0. If 3 divides z then 3 divides $z^2 - p3^x = 1$, which is an absurd. Therefore it is not equivalet to 0 module 3. *Q.E.D.*

We say that *h* is a non-trivial power of 3 if $h = 3^x$ with $x \in \mathbb{N}^*$.

Lemma 1.10. Let p > 3 be a prime integer. The equation (4) has a solution in \mathbb{N}^2 if and only if p - 2 is a non-trivial power of 3 or p + 2 is a non-trivial power of 3. In the affirmative case, the equation (4) has a unique solution in \mathbb{N}^2 given by

 $(\log_3(p-2), p-1)$ if p-2 is a non-trivial power of 3;

 $(\log_3(p+2), p+1)$ if p+2 is a non-trivial power of 3.

Proof: Let $(x, z) \in \mathbb{N}^2$ be a solution of (4). By Lemma 1.9, x > 0 and z it is not equivalent to 0 module 3.

If $z \equiv 1 \pmod{3}$ then $z - 1 \equiv 0 \pmod{3}$. Since $p3^x = (z - 1)(z + 1)$ it follows that z + 1 = p $z - 1 = 3^x \Rightarrow 3^x = z - 1 = p - 2 \Rightarrow x = \log_3(p - 2)$.

If $z \equiv 2 \pmod{3}$ then $z + 1 \equiv 0 \pmod{3}$. Since $p3^x = (z - 1)(z + 1)$ it follows that z - 1 = p z = p + 1 z = p + 1 $z + 1 = 3^x \Rightarrow 3^x = z + 1 = p + 2 \Rightarrow x = \log_3(p + 2)$. The converse is straightforward and will be omitted. *Q.E.D.*

Making y = 1 in the equation (3) one obtain

$$p3^{x} + p = z^{2}. (5)$$

Lemma 1.11. Let p > 3 be a prime integer. If $(x, y) \in \mathbb{N}^2$ is a solution of (5) then x > 0 and z it is not equivalent to 0 module 3.

Proof: Suppose $(x, y) \in \mathbb{N}^2$ is a solution of (5). If x = 0 then $2p = z^2$, which is an absurd. It follows that x > 0.

On the Exponential Diophantine Equation $p \cdot 3^x + p^y = z^2$ with p a Prime Number

If $z \equiv 0 \pmod{3}$ then 3 divides $z^2 = p3^x + p$ and therefore 3 divides p which is a contradiction. Q.E.D.

Case $p \equiv 2 \pmod{3}$

The Theorem 1.13 below presents all the non-negative integer solutions of the equation $p3^x + p^y = z^2$ in the particular case where $p \equiv 2(mod3)$ and $p \neq 2$. This result generalizes Theorem 2.1 of [10] where p = 11.

Lemma 1.12. There is no $z \in \mathbb{Z}$ such that $z^2 \equiv 2 \pmod{3}$. **Proof:** If $z \equiv 0 \pmod{3}$, then $z^2 \equiv 0 \pmod{3}$. If $z \equiv 1 \pmod{3}$ or $z \equiv 2 \pmod{3}$, then $z^2 \equiv 1 \pmod{3}$. Q.E.D.

Theorem 1.13. Let p > 3 be a prime integer such that $p \equiv 2 \pmod{3}$. The equation

 $p3^{x} + p^{y} = z^{2}$, (6) admits a solution in \mathbb{N}^{3} if and only if p - 2 is a non-trivial power of 3. In the affirmative case, the unique solution is $(x, y, z) = (\log_{3}(p - 2), 0, p - 1)$. **Proof:** Let (x, y, z) be a solution of (6). By Lemma 1.8 we must have y = 0 or y = 1. If y =

0, it follows from Lemma 1.10 that $(\log_3(p-2), 0, p-1)$ is the unique solution in N³ of the equation $p3^x + 1 = z^2$, since $\log_3(p-2)$ is an integer. Now consider y = 1. By Lemma 1.11, $x \ge 1$. So we get $2 \equiv p \equiv z^2 - p3^x \equiv z^2 \pmod{3}$,

 $z = p = z^2 - p 3^2 = z^2 (moas),$

which is a contradiction by Lemma 1.12. Q.E.D.

Remark 1.14. For example, for p = 17,23,41,53,59,71 the equation of the previous theorem has no non-negative integer solutions. For p = 5,11,29,83 the solutions are respectively (1,0,4), (2,0,10), (3,0,28) and (4,0,82).

Theorem 1.15. The unique solution of the Diophantine exponential equation

$$2 \cdot 3^{x} + 2^{y} = z^{2}, (x, y, z) \in \mathbb{N}^{3},$$
 (7)
is the ordered triple $(x, y, z) = (0, 1, 2).$

Proof: Let (x, y, z) be a solution of (7). By Lemma 1.8 we must have y = 0 or y = 1. If y = 0, it follows from Lemma 1.9 that x > 0 and z it is not equivalent to 0 module 3. In this case we have the following equivalence for equation (7) $2 \cdot 3^x + 1 = z^2$ if and only if $2 \cdot 3^x = (z - 1)(z + 1) = z^2 - 1$.

If $z \equiv 1 \pmod{3}$ then $z - 1 \equiv 0 \pmod{3}$ and $z + 1 \equiv 2 \pmod{3}$, then we have z + 1 = p $z - 1 = 3^x \Rightarrow \begin{array}{l} z = 1 \\ 3^x = 0 \end{array}$

an absurd.

If $z \equiv 2 \pmod{3}$ then $z - 1 \equiv 1 \pmod{3}$ and $z + 1 \equiv 0 \pmod{3}$, then we have $z + 1 = 3^x \Rightarrow z = 3$ $z - 1 = 2 \Rightarrow 3^x = 4^{\prime}$ an absurd.

Now consider y = 1. In this case equation (7) reduces to equation

Anderson Porto, Marcelo Buosi and Gilmar Ferreira

 $2 \cdot 3^x + 2 = 2(3^x + 1) = z^2$. If x = 0 we have $z^2 = 4$, so z = 2. Therefore (x, y, z) = (0, 1, 2) is a solution to equation (7) in \mathbb{N}^3 . If x > 0 then $z^2 \equiv 2(3^x + 1) \equiv 2(mod3)$, a contradiction by Lemma 1.12. Therefore (x, y, z) = (0, 1, 2) is the only solution of equation (7). *Q.E.D.*

4. When $p \equiv 1 \pmod{3}$, the equation

$$3^{x} + p^{y} = z^{2}, (x, y, z) \in \mathbb{N}^{3}$$
(8)

has not yet been completely solved, that is, the behavior of the solutions of these equations is not known, whether they have a solution and whether the solutions, if any, are finite or infinite.

Let (x, y, z) be a solution of (8). By Lemma 1.8, $y \in \{0,1\}$. By Lemma 1.10 we can say whether equation (8) will have a solution as long as p + 2 is a non-trivial power of 3. Furthermore, that lemma determines the unique solution in this case. However, for the case y = 1 we do not have a conclusive result for the time being. For example, equations with p = 7,61 and 547 respectively have the following solutions (3,1,14), (5,1,122) and (7,1,1094). We do not know if those three equations have other solutions.

Remark 1.16. Note that $(q, 2) \in \mathbb{N}^2$ is a solution of $3^x + 1 = p \cdot w^2$ if and only if(q, 1, 2p) is a solution of $p3^x + p^y = z^2$, $(x, y, z) \in \mathbb{N}^3$.

In the next theorem we will show an example whose given equation does not have nonnegative integer solutions.

Theorem 1.17. The exponential Diophantine equation

$$13 \cdot 3^{x} + 13^{y} = z^{2}, (x, y, z) \in \mathbb{N}^{3}, \tag{9}$$

has no solutions.

Proof:Let (x, y, z) be a solution of (9). By Lemma 1.8, $y \in \{0,1\}$. First consider y = 0. By Lemma 1.10 there are no solutions to the equation in this case, since p + 2 = 15 is not a non-trivial power of 3.

Suppose there is a solution $(x, 1, z) \in \mathbb{N}^3$ of (9). In this case equation (9) reduces to $13 \cdot 3^x + 13 = z^2$. Note that 13 divides *z* and therefore $z = 13w, w \in \mathbb{N}^*$. So we have the following equivalence of equations

 $13 \cdot 3^{x} + 13 = z^{2} = 13^{2} \cdot w^{2}$ if and only if $3^{x} + 1 = 13 \cdot w^{2} \equiv 0 \pmod{13}$.

On the other hand, notice that $3^2 \equiv 9 \pmod{13}$ and $3^3 \equiv 1 \pmod{13}$. Therefore the order of 3 modulo 13 is equal to 3, that is $|3|_{13} = 3$. So write x = 3m + r, where $m \in \mathbb{N}$ and $r \in \{0,1,2\}$. So we have the following equation

$$3^{x} + 1 = 3^{3m+r} + 1 = 27^{m} \cdot 3^{r} + 1 \equiv 3^{r} + 1(mod 13) \equiv 4(mod 13), \text{ if } r = 1, \\10(mod 13), r = 2$$

an absurd. *Q.E.D.*

5. Open questions

The following questions refer to the equation

$$p3^{x} + p^{y} = z^{2}, (x, y, z) \in \mathbb{N}^{3} \text{ with } p \equiv 1 \pmod{3}.$$
 (10)

On the Exponential Diophantine Equation $p \cdot 3^x + p^y = z^2$ with *p* a Prime Number

- When $p \equiv 1 \pmod{3}$, what additional conditions must exist on *p* for the equation (11) to have a solution?
- If there is a solution for equation (10), how do you know if the number of solutions is finite or infinite?
- What additional conditions must be imposed on *p* for there to be a unique solution?

Acknowledgements. We thank the reviewers for their careful reading of our manuscript and the useful comments.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Author's Contributions: All authors contributed equally.

REFERENCES

- 1. M.Buosi, A.Lemos, A.L.P. Porto and D.F.G. Santiago, On the exponential Diophantine equation $p^x 2^y = z^2$ with $p = k^2 + 2$ a prime number, *Southeast-Asian J. of Sciences*, 8 (2) (2020) 103-109.
- 2. M.Buosi, A.Lemos, A.L.P. Porto and D.F.G. Santiago, On the exponential Diophantine equation $p^x 2^y = z^2$ with $p = k^2 + 4$ a prime number, *Palestine Journal of Mathematics*, 11 (4) (2022) 130-135.
- 3. S. Chotchaisthit, On the Diophantine equation $p^x + (p + 1)^y = z^2$ where p is a Mersenne prime. *International Journal of Pure and Applied Mathematics*, 88(2) (2013) 169-172.
- 4. L Euler, Elements of Algebra, 2 (1822).
- 5. J.F.T.Rabago, On two Diophantine equation $3^{x} + 19^{y} = z^{2}$ and $3^{x} + 91^{y} = z^{2}$, *International Journal of Mathematics and Scientific Computing*, 3(1) (2013) 28-29.
- 6. B.Sroysang, On the Diophantine equation $3^x + 17^y = z^2$, International Journal of *Pure and Applied Mathematics*, 89(1) (2013) 111-114.
- 7. A.Suvarnamani, A.Singta and S.Chotchaisthit, On two Diophantine equations $4^{x} + 7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$, *Science and Technology RMUTT Journal*, (1) (2011) 25-28.
- 8. A. Suvarnamani, Solutions of the Diophantine equations $2^{x} + p^{y} = z^{2}$, International Journal of Mathematical Sciences and Applications, 1 (3) (2011) 1415-1419.
- 9. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential diophantine equation $2^x 3^y = z^2$, *Southeast-Asian J. of Sciences*, 7(1) (2019) 1-4.
- 10. Thongnak, W. Chuayjan and T. Kaewong, On the Diophantine equation $11 \cdot 3^x + 11^y = z^2$, where *x*, yand zare non-negative integers, *Annals of Pure and Applied Mathematics*, 25(1) (2022) 51-54.
- 11. S.Thongnak, W. Chuayjan and T. Kaewong, On the exponential Diophantine equation $5^x 2 \cdot 3^y = z^2$, Annals of Pure and Applied Mathematics, 25(2) (2022) 109-112.
- 12. S.Thongnak, W. Chuayjan and T. Kaewong, On the Diophantine equation $7^x 2^y = z^2$, where *x*, yand zare non-negative integers, *Annals of Pure and Applied Mathematics*, 25(2) (2022) 63-66.