On the Exponential Diophantine Equation $p \cdot 3^{x}+p^{y}=z^{2}$ with \boldsymbol{p} a Prime Number

Anderson Porto ${ }^{I^{*}}$, Marcelo Buosi ${ }^{2}$ and Gilmar Ferreira ${ }^{3}$

${ }^{1}$ Institute of Science and Technology
Universidade Federal dos Vales Jequitinhonha e Mucuri-Diamantina 39100-000-Brasil
${ }^{2,3}$ Department of Mathematics and Statistics
Universidade Federal dos Vales Jequitinhonha e Mucuri-Diamantina 39100-000-Brasil.
${ }^{2}$ email: marcelo.buosi@ufvjm.edu.br; ${ }^{3}$ email: gilmar.ferreira@ufvjm.edu.br
"Corresponding author. email: ander.porto@ ict.ufvjm.edu.br
Received 6 August 2023; accepted 17 September 2023

Abstract

In this paper, we find non-negative integer solutions for exponential Diophantine equations of the type $p 3^{x}+p^{y}=z^{2}$ where p is a prime number. We prove that such equation has a unique solution $(x, y, z)=\left(\log _{3}(p-2), 0, p-1\right)$ if $2 \neq p \equiv 2(\bmod 3)$ and $(x, y, z)=(0,1,2)$ if $p=2$. We also display the infinite solution set of that equation in the case $p=3$. Finally, a brief discussion of the case $p \equiv 1(\bmod 3)$ is made, where we display an equation that does not have a non-negative integer solution and leave some open questions. The proofs are based on the use of the properties of the modular arithmetic.

Keywords: Congruences; exponential diophantine equations
AMS Mathematics Subject Classification (2010): 11A07, 11A41, 11D61

1. Introduction

Diophantine equations of the form $a^{x}+b^{y}=c^{z}$ have been studied by numerous mathematicians for many decades and by a variety of methods. One of the first references to these equations was given by Fermat-Euler [4], showing that $(a, c)=(5,3)$ is the unique positive integer solution of the equation $a^{2}+2=c^{3}$. Several works on exponential Diophantine equations have been developed in recent years. In 2011, Suvarnamani [4] studied the Diophantine equation $2^{x}+p^{y}=z^{2}$. Rabago [5] studied the equations $3^{x}+$ $19^{y}=z^{2}$ and $3^{x}+91^{y}=z^{2}$. The solution sets are $(1,0,2),(4,1,10)$ and $(1,0,2),(2,1,10)$, respectively. A. Suvarnamani et al. [7] found solutions of two Diophantine equations $4^{x}+$ $7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$. Sroysang (see [6]) studied the Diophantine equation $3^{x}+$ $17^{y}=z^{2}$. Chotchaisthit (see [3]) showed that the Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$ has unique solutions $(p, x, y, z)=(7,0,1,3)$ and $(p, x, y, z)=(3,2,2,5)$ if $(x, y, z) \in \mathbb{N}^{3}$ and p is a Mersenne prime. In 2019, Thongnak et al. (see [9]) found exactly two non-trivial solutions for the equation $2^{x}-3^{y}=z^{2}$, namely ($1,0,1$) and ($2,1,1$). Buosi et al. (see [1] and [2]) studied some exponential Diophantine equations that generalized the work of Thongnak et al. (see [9]). Several other similar and recent works can be found in Thongnak et al. [10], [11] and [12].

Anderson Porto, Marcelo Buosi and Gilmar Ferreira

In this work we show that when $p>3$ is a prime integer such that $p \equiv 2(\bmod 3)$, there is an ordered triple (x, y, z) of non-negative integers that solves the equation $p .3^{x}+p^{y}=z^{2}$ if and only if $p-2$ is a non-trivial power of 3 . In the affirmative case, there exists only one solution which is given by $(x, y, z)=\left(\log _{3}(p-2), 0, p-1\right)$.

This result generalizes the theorem obtained in Thongnak et al. [10] when $p=11$. In other words, Thongnak et al. [10] found the only solution $(2,0,10)$ for the Diophantine equation $11.3^{x}+11^{y}=z^{2}$ using modular arithmetic. We also determine the unique solution of the case $p=2$ and the infinite set of solutions when $p=3$. The case where p is congruent to 1 modulo 3 has not been solved completely because it is not understood why there are situations whose equation has a solution and others that do not. At the end of the article, a brief discussion of the case $p \equiv 1(\bmod 3)$ is made, showing an example of an equation with no solution and suggesting some open questions.

2. Some notations

Denote by \mathbb{Z} be the set of integer numbers and let \mathbb{N} be the set of all positive integers together with the number 0 , that is, $\mathbb{N}=\{0,1,2,3, \ldots\}$, such a set will be called the set of natural numbers. Define $\mathbb{N} *=\mathbb{N}-\{0\}$ and $\mathbb{N}^{q}=\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$ as the cartesian product of q copies of \mathbb{N}. When a divides b we will use the symbol $a \mid b$. When a is congruent to b module m we will write $a \equiv b(\bmod m)$. Let a, m be integers with $a>0$ and $m>2$. The smallest positive integer k such that $a^{k} \equiv 1$ (modm) will be said the order of a modulo m and will be denoted as $|a|_{m}$. The set of all non-negative integer solutions of the equation $p 3^{x}+p^{y}=z^{2}$ will be said simply the solution set of the equation, i.e., the set $\{(x, y, z) \in$ $\left.\mathbb{N}^{3}: p 3^{x}+p^{y}=z^{2}\right\}$.

3. Results

In this section, we will find the solution set for the equation

$$
\begin{equation*}
p 3^{x}+p^{y}=z^{2},(x, y, z) \in \mathbb{N}^{3}, \tag{1}
\end{equation*}
$$

for several prime integers. We will divide the results into four sections: case $p=3$, general results for $p>3$, case $p \equiv 2(\bmod 3)$ and finally, we will make a brief explanation of the case $p \equiv 1(\bmod 3)$ since in this case the general problem still remains open. The motivation for this work is the paper Thongnak et al. [10] where the authors solved the above equation in the particular case $p=11$. The result of Thongnak et al. is an immediate consequence of Theorem 1.13 proved in this article.

Case $p=3$
In this subsection, we present all the non-negative integer solutions of the equation $p 3^{x}+$ $p^{y}=z^{2}$ in the particular case when $p=3$.

Theorem 1.1. The solution set of the Diophantine exponential equation

$$
\begin{equation*}
3 \cdot 3^{x}+3^{y}=z^{2} \tag{2}
\end{equation*}
$$

in \mathbb{N}^{3} is $\left\{\left(2 n, 2 n, 2.3^{n}\right) ; n \in \mathbb{N}\right\} \cup\left\{\left(1+2 n, 3+2 n, 2.3^{n+1}\right) ; n \in \mathbb{N}\right\}$.
The proof is based on the combination of the results of the following six lemmas.
Lemma 1.2. If $(y, z) \in \mathbb{N}^{2}$ is a solution of the equation $3^{y+1}+1=z^{2}$ then $y=0$.
Proof: $3^{y+1}+1=z^{2} \Rightarrow 3^{y+1}=(z+1)(z-1) \Rightarrow z-1=1, z+1=3 \Rightarrow y=0$. Q.E.D.

On the Exponential Diophantine Equation $p \cdot 3^{x}+p^{y}=z^{2}$ with p a Prime Number

Lemma 1.3. If $(x, y, z) \in \mathbb{N}^{3}$ is a solution of the equation $3^{x}\left(3^{y+1}+1\right)=z^{2}$ then $y=0$.
Proof: Suppose there exists $(x, y, z) \in \mathbb{N}^{3}$ such that $3^{x}\left(3^{y+1}+1\right)=z^{2}$ and $y>0$. By Lemma 1.2, $3^{y+1}+1$ it is not a perfect square. Thus there is a prime integer q that appears an odd number of times in the prime factorization of $3^{y+1}+1$. Since $q \mid z^{2}$ we have two possibilities:

$$
\begin{aligned}
& x=0 \Rightarrow 3^{y+1}+1 \text { is a perfect square; } \\
& x>0 \Rightarrow q\left|3^{x} \Rightarrow q=3 \Rightarrow 3\right| 1
\end{aligned}
$$

In both cases we have an absurd. Therefore $y=0$. Q.E.D.
Lemma 1.4. If $(x, y, z) \in \mathbb{N}^{3}$ is a solution of the equation (2) then $y-x \in\{0,1,2\}$.
Proof: If $y<x$ then there exists an integer $k>0$ such that $\mathrm{x}=\mathrm{y}+\mathrm{k}$. Replacing x in (2) with $y+k$ we obtain
$3 \cdot 3^{y+k}+3^{y}=z^{2}$ if and only if $3^{y}\left(3^{k+1}+1\right)=z^{2}$.
which contradicts Lemma 1.3. Therefore $x \leqslant y$.
If $y-x \geq 3$ then $y=x+k$ for some integer $k \geq 3$. Replacing y in (2) with $x+k$ we obtain $3 \cdot 3^{x}+3^{x+k}=z^{2}$ if and only if $3^{x+1}\left(3^{k-1}+1\right)=z^{2}$.
which is a contradiction with Lemma 1.3. Therefore $y-x \in\{0,1,2\}$. Q.E.D.
Lemma 1.5. If $(x, y, z) \in \mathbb{N}^{3}$ is a solution of the equation (2) then $y=x$ or $y=x+2$.
Proof: By Lema 1.3, $y-x \in\{0,1,2\}$. Suppose $y=x+1$. Replacing y in (2) with $x+1$ we obtain $3^{x+1}+3^{x+1}=z^{2} \Rightarrow 2.3^{x+1}=z^{2} \Rightarrow 2 \mid z^{2}$ and 4 does not divide z^{2}, which is an absurd. Therefore $y-x \in\{0,1,2\}$. Q.E.D.

Lemma 1.6. If $(x, y, z) \in \mathbb{N}^{3}$ is a solution of the equation (2) and $y=x$, then there exists $n \in$ \mathbb{N} such that $x=y=2 n$ and $z=2 \cdot 3^{n}$.
Proof: Making $y=x$ in equation (2) we get $3^{x+1}+3^{x}=z^{2} \Rightarrow 4 \cdot 3^{x}=z^{2} \Rightarrow x$ is even.

Henceforth there exists $n \in \mathbb{N}$ such that $y=x=2 n$ and $z=\sqrt{4 \cdot 3^{2 n}}=2 \cdot 3^{n}$. Q.E.D.
Lemma 1.7. If $(x, y, z) \in \mathbb{N}^{3}$ is a solution of the equation (2) and $y-x=2$ then there exists $n \in \mathbb{N}$ such that
$\mathrm{x}=1+2 \mathrm{n}, \quad \mathrm{y}=3+2 n$ and $z=3^{n+1}$.
Proof: Making $y=x+2$ in equation (2) we get
$3^{x+1}+3^{x+2}=z^{2} \Rightarrow 4 \cdot 3^{x+1}=z^{2} \Rightarrow x$ is odd.
Henceforth there exists $n \in \mathbb{N}$ such that $x=1+2 n, y=3+2 n$ and $z=\sqrt{4 \cdot 3^{2 n+2}}=2$. 3^{n+1} Q.E.D.

General results for a prime $p \neq 3$
Lemma 1.8. Let $p \neq 3$ be a prime integer. If $(x, y, z) \in \mathbb{N}^{3}$ is a solution of

$$
\begin{equation*}
p 3^{x}+p^{y}=z^{2} \tag{3}
\end{equation*}
$$

then $y=0$ or $y=1$.

Anderson Porto, Marcelo Buosi and Gilmar Ferreira

Proof: Let (x, y, z) be a solution of (3). Assume $y \geq 2$. It is clear that $z \neq 0$. In this case, p divides z because $p 3^{x}+p^{y}=z^{2} \Rightarrow p\left(3^{x}+p^{y-1}\right)=z^{2}$.
Let $m \in \mathbb{N}^{*}$ such that $z=m . p$. Substitute $m . p$ for z in the above equation to obtain $3^{x}=p\left(m^{2}-p^{y-2}\right)$.
If $x=0$ the above equation is an absurd for all prime integer $p \geq 2$. If $x>0$ we have $3 \mid p$, which is absurd for all prime integer $p \neq 3$. Therefore $y=0$ or $y=1$. Q.E.D.

If one substitute 0 for y in the equation (3) one obtain $p 3^{x}+1=z^{2}$ which is equivalent to the following equation

$$
\begin{equation*}
p 3^{x}=z^{2}-1=(z-1)(z+1) \tag{4}
\end{equation*}
$$

Lemma 1.9. Let $p \neq 3$ be a prime integer. If $(x, z) \in \mathbb{N}^{2}$ is a solution of (4), then $x>0$ and z it is not equivalet to 0 module 3 .
Proof: Let (x, z) be a solution of (4). If $x=0$ then $p=(z-1)(z+1) \Rightarrow z=2$ and $p=3$,
which is a contradiction. Hence $x>0$. If 3 divides z then 3 divides $z^{2}-p 3^{x}=1$, which is an absurd. Therefore it is not equivalet to 0 module 3. Q.E.D.

We say that h is a non-trivial power of 3 if $h=3^{x}$ with $x \in \mathbb{N} *$.

Lemma 1.10. Let $p>3$ be a prime integer. The equation (4) has a solution in \mathbb{N}^{2} if and only if $p-2$ is a non-trivial power of 3 or $p+2$ is a non-trivial power of 3 . In the affirmative case, the equation (4) has a unique solution in \mathbb{N}^{2} given by
$\left(\log _{3}(p-2), p-1\right)$ if $p-2$ is a non-trivial power of 3 ;
$\left(\log _{3}(p+2), p+1\right)$ if $p+2$ is a non-trivial power of 3.
Proof: Let $(x, z) \in \mathbb{N}^{2}$ be a solution of (4). By Lemma 1.9, $x>0$ and z it is not equivalent to 0 module 3 .

If $z \equiv 1(\bmod 3)$ then $z-1 \equiv 0(\bmod 3)$. Since $p 3^{x}=(z-1)(z+1)$ it follows that
$z+1=p \Rightarrow \quad z=p-1 \quad \Rightarrow \quad z=p-1$
$z-1=3^{x} \Rightarrow 3^{x}=z-1=p-2 \Rightarrow x=\log _{3}(p-2)$.
If $z \equiv 2(\bmod 3)$ then $z+1 \equiv 0(\bmod 3)$. Since $p 3^{x}=(z-1)(z+1)$ it follows that
$z-1=p \Rightarrow z=p+1 \Rightarrow z=p+1$
$z+1=3^{x} \Rightarrow 3^{x}=z+1=p+2 \Rightarrow x=\log _{3}(p+2)$.
The converse is straightforward and will be omitted. Q.E.D.
Making $y=1$ in the equation (3) one obtain

$$
\begin{equation*}
p 3^{x}+p=z^{2} \tag{5}
\end{equation*}
$$

Lemma 1.11. Let $p>3$ be a prime integer. If $(x, y) \in \mathbb{N}^{2}$ is a solution of (5) then $x>0$ and z it is not equivalent to 0 module 3 .
Proof: Suppose $(x, y) \in \mathbb{N}^{2}$ is a solution of (5). If $x=0$ then $2 p=z^{2}$, which is an absurd. It follows that $x>0$.

On the Exponential Diophantine Equation $p \cdot 3^{x}+p^{y}=z^{2}$ with p a Prime Number
If $z \equiv 0(\bmod 3)$ then 3 divides $z^{2}=p 3^{x}+p$ and therefore 3 divides p which is a contradiction. Q.E.D.

Case $p \equiv 2(\bmod 3)$
The Theorem 1.13 below presents all the non-negative integer solutions of the equation $p 3^{x}+p^{y}=z^{2}$ in the particular case where $p \equiv 2(\bmod 3)$ and $p \neq 2$. This result generalizes Theorem 2.1 of [10] where $p=11$.

Lemma 1.12. There is no $z \in \mathbb{Z}$ such that $z^{2} \equiv 2(\bmod 3)$.
Proof: If $z \equiv 0(\bmod 3)$, then $z^{2} \equiv 0(\bmod 3)$. If $z \equiv 1(\bmod 3)$ or $z \equiv 2(\bmod 3)$, then $z^{2} \equiv$ $1(\bmod 3)$. Q.E.D.

Theorem 1.13. Let $p>3$ be a prime integer such that $p \equiv 2(\bmod 3)$. The equation

$$
\begin{equation*}
p 3^{x}+p^{y}=z^{2} \tag{6}
\end{equation*}
$$

admits a solution in \mathbb{N}^{3} if and only if $p-2$ is a non-trivial power of 3 . In the affirmative case, the unique solution is $(x, y, z)=\left(\log _{3}(p-2), 0, p-1\right)$.
Proof: Let (x, y, z) be a solution of (6). By Lemma 1.8 we must have $y=0$ or $y=1$. If $y=$ 0 , it follows from Lemma 1.10 that $\left(\log _{3}(p-2), 0, p-1\right)$ is the unique solution in \mathbb{N}^{3} of the equation $p 3^{x}+1=z^{2}$, since $\log _{3}(p-2)$ is an integer. Now consider $y=1$. By Lemma $1.11, x \geq 1$. So we get
$2 \equiv p \equiv z^{2}-p 3^{x} \equiv z^{2}(\bmod 3)$,
which is a contradiction by Lemma 1.12. Q.E.D.
Remark 1.14. For example, for $p=17,23,41,53,59,71$ the equation of the previous theorem has no non-negative integer solutions. For $p=5,11,29,83$ the solutions are respectively $(1,0,4),(2,0,10),(3,0,28)$ and $(4,0,82)$.

Theorem 1.15. The unique solution of the Diophantine exponential equation

$$
\begin{equation*}
2 \cdot 3^{x}+2^{y}=z^{2},(x, y, z) \in \mathbb{N}^{3} \tag{7}
\end{equation*}
$$

is the ordered triple $(x, y, z)=(0,1,2)$.
Proof: Let (x, y, z) be a solution of (7). By Lemma 1.8 we must have $y=0$ or $y=1$. If $y=$ 0 , it follows from Lemma 1.9 that $x>0$ and z it is not equivalent to 0 module 3 . In this case we have the following equivalence for equation (7)
$2 \cdot 3^{x}+1=z^{2}$ if and only if $2 \cdot 3^{x}=(z-1)(z+1)=z^{2}-1$.
If $z \equiv 1(\bmod 3)$ then $z-1 \equiv 0(\bmod 3)$ and $z+1 \equiv 2(\bmod 3)$, then we have
$z+1=p \Rightarrow z=1$
$z-1=3^{x} \Rightarrow 3^{x}=0^{\prime}$
an absurd.

If $z \equiv 2(\bmod 3)$ then $z-1 \equiv 1(\bmod 3)$ and $z+1 \equiv 0(\bmod 3)$, then we have $z+1=3^{x} \Rightarrow z=3$
$z-1=2 \Rightarrow 3^{x}=4^{\prime}$
an absurd.

Now consider $y=1$. In this case equation (7) reduces to equation

Anderson Porto, Marcelo Buosi and Gilmar Ferreira

$2 \cdot 3^{x}+2=2\left(3^{x}+1\right)=z^{2}$.
If $x=0$ we have $z^{2}=4$, so $z=2$. Therefore $(x, y, z)=(0,1,2)$ is a solution to equation (7) in \mathbb{N}^{3}. If $x>0$ then $z^{2} \equiv 2\left(3^{x}+1\right) \equiv 2(\bmod 3)$, a contradiction by Lemma 1.12. Therefore $(x, y, z)=(0,1,2)$ is the only solution of equation (7). Q.E.D.
4. When $p \equiv 1(\bmod 3)$, the equation

$$
\begin{equation*}
p 3^{x}+p^{y}=z^{2},(x, y, z) \in \mathbb{N}^{3} \tag{8}
\end{equation*}
$$

has not yet been completely solved, that is, the behavior of the solutions of these equations is not known, whether they have a solution and whether the solutions, if any, are finite or infinite.

Let (x, y, z) be a solution of (8). By Lemma $1.8, y \in\{0,1\}$. By Lemma 1.10 we can say whether equation (8) will have a solution as long as $p+2$ is a non-trivial power of 3 . Furthermore, that lemma determines the unique solution in this case. However, for the case $y=1$ we do not have a conclusive result for the time being. For example, equations with $p=7,61$ and 547 respectively have the following solutions $(3,1,14),(5,1,122)$ and (7,1,1094). We do not know if those three equations have other solutions.

Remark 1.16. Note that $(q, 2) \in \mathbb{N}^{2}$ is a solution of $3^{x}+1=p \cdot w^{2}$ if and only if $(q, 1,2 p)$ is a solution of $p 3^{x}+p^{y}=z^{2},(x, y, z) \in \mathbb{N}^{3}$.

In the next theorem we will show an example whose given equation does not have nonnegative integer solutions.

Theorem 1.17. The exponential Diophantine equation

$$
\begin{equation*}
13 \cdot 3^{x}+13^{y}=z^{2},(x, y, z) \in \mathbb{N}^{3} \tag{9}
\end{equation*}
$$

has no solutions.
Proof:Let (x, y, z) be a solution of (9). By Lemma 1.8, $y \in\{0,1\}$. First consider $y=0$. By Lemma 1.10 there are no solutions to the equation in this case, since $p+2=15$ is not a non-trivial power of 3 .

Suppose there is a solution $(x, 1, z) \in \mathbb{N}^{3}$ of (9). In this case equation (9) reduces to 13 . $3^{x}+13=z^{2}$. Note that 13 divides z and therefore $z=13 w, w \in \mathbb{N} *$. So we have the following equivalence of equations
$13 \cdot 3^{x}+13=z^{2}=13^{2} \cdot w^{2}$ if and only if $3^{x}+1=13 \cdot w^{2} \equiv 0(\bmod 13)$.
On the other hand, notice that $3^{2} \equiv 9(\bmod 13)$ and $3^{3} \equiv 1(\bmod 13)$. Therefore the order of 3 modulo 13 is equal to 3 , that is $|3|_{13}=3$. So write $x=3 m+r$, where $m \in \mathbb{N}$ and $r \in$ $\{0,1,2\}$. So we have the following equation

$$
3^{x}+1=3^{3 m+r}+1=27^{m} \cdot 3^{r}+1 \equiv 3^{r}+1(\bmod 13) \equiv \begin{gathered}
2(\bmod 13) \\
4(\bmod 13),
\end{gathered}, \begin{aligned}
& r=0 \\
& 10(\bmod 13)
\end{aligned} \begin{aligned}
& r=1 \\
& r=3
\end{aligned}
$$

an absurd. Q.E.D.

5. Open questions

The following questions refer to the equation

$$
\begin{equation*}
p 3^{x}+p^{y}=z^{2},(x, y, z) \in \mathbb{N}^{3} \text { with } p \equiv 1(\bmod 3) \tag{10}
\end{equation*}
$$

On the Exponential Diophantine Equation $p \cdot 3^{x}+p^{y}=z^{2}$ with p a Prime Number

- When $p \equiv 1(\bmod 3)$, what additional conditions must exist on p for the equation (11) to have a solution?
- If there is a solution for equation (10), how do you know if the number of solutions is finite or infinite?
- What additional conditions must be imposed on p for there to be a unique solution?

Acknowledgements. We thank the reviewers for their careful reading of our manuscript and the useful comments.
Conflicts of Interest: The authors declare that there is no conflict of interest.
Author's Contributions: All authors contributed equally.

REFERENCES

1. M.Buosi, A.Lemos, A.L.P. Porto and D.F.G. Santiago, On the exponential Diophantine equation $p^{x}-2^{y}=z^{2}$ with $p=k^{2}+2$ a prime number, Southeast-Asian J. of Sciences, 8 (2) (2020) 103-109.
2. M.Buosi, A.Lemos, A.L.P. Porto and D.F.G. Santiago, On the exponential Diophantine equation $p^{x}-2^{y}=z^{2}$ with $p=k^{2}+4$ a prime number, Palestine Journal of Mathematics, 11 (4) (2022) 130-135.
3. S. Chotchaisthit, On the Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$ where p is a Mersenne prime. International Journal of Pure and Applied Mathematics, 88(2) (2013) 169-172.
4. L Euler, Elements of Algebra, 2 (1822).
5. J.F.T.Rabago, On two Diophantine equation $3^{x}+19^{y}=z^{2}$ and $3^{x}+91^{y}=$ z^{2},International Journal of Mathematics and Scientific Computing, 3(1) (2013) 28-29.
6. B.Sroysang, On the Diophantine equation $3^{x}+17^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 89(1) (2013) 111-114.
7. A.Suvarnamani, A.Singta and S.Chotchaisthit, On two Diophantine equations $4^{x}+$ $7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Science and Technology RMUTT Journal, (1) (2011) 25-28.
8. A. Suvarnamani, Solutions of the Diophantine equations $2^{x}+p^{y}=z^{2}$, International Journal of Mathematical Sciences and Applications, 1 (3) (2011) 1415-1419.
9. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential diophantine equation $2^{x}-3^{y}=z^{2}$, Southeast-Asian J. of Sciences, 7(1) (2019) 1-4.
10. Thongnak, W. Chuayjan and T. Kaewong, On the Diophantine equation $11 \cdot 3^{x}+11^{y}=$ z^{2}, where x, yand zare non-negative integers, Annals of Pure and Applied Mathematics, 25(1) (2022) 51-54.
11. S.Thongnak, W. Chuayjan and T. Kaewong, On the exponential Diophantine equation $5^{x}-2 \cdot 3^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 25(2) (2022) 109-112.
12. S.Thongnak, W. Chuayjan and T. Kaewong, On the Diophantine equation $7^{x}-2^{y}=$ z^{2}, where x, y and zare non-negative integers, Annals of Pure and Applied Mathematics, 25(2) (2022) 63-66.
