Annals of Pure and Applied Mathematics Vol. 28, No. 1, 2023, 21-24 ISSN: 2279-087X (P), 2279-0888(online) Published on 26 September 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v28n1a04910

Annals of Pure and Applied <u>Mathematics</u>

On the Exponential Diophantine Equation $10^{x} - 17^{y} = z^{2}$

Wariam Chuayjan¹, Sutthiwat Thongnak^{2*} and Theeradach Kaewong³

 ^{1,2,3}Department of Mathematics and Statistics, Thaksin University Phatthalung 93210, Thailand
¹email: <u>cwariam@tsu.ac.th</u>; ³email: <u>theeradachkaewong@gmail.com</u>
²Corresponding author, email: tsutthiwat@tsu.ac.th

Received 3 August 2023; accepted 17 September 2023

Abstract. In this study, our aim is to prove all the solutions of the exponential Diophantine equation $10^{x} - 17^{y} = z^{2}$, where *x*, *y* and *z* are non-negative integers. We applied the modular arithmetic and Catalan's conjecture to obtain all solutions. The result indicates that there are only two solutions to the equation.

Keywords: exponential Diophantine equation; factoring method; modular arithmetic method

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The exponential Diophantine equations are classic problems in Number Theory. The most famous equation is $x^n + y^n = z^n$, where x, y and z are non-negative integers and $n \ge 3$. This equation was presented by Pierre de Fermat in 1637, and Andrew Wiles proved that the equation had no solution in 1993. Over a decade, many researchers computed and proved solutions to many equations. A major reason for the study is its wealth of application to cryptography, geometry, trigonometry and applied algebra. In 2004, Mihailescu [4] proved that the exponential Diophantine equation $a^x - b^y = 1$ where a,b,x and y are integers with min(a,b,x,y) > 1 has a unique solution, (a,b,x,y) = (3,2,2,3). In 2018, Rabago [5] studied and computed all solutions of $4^{x} - 7^{y} = z^{2}$ and $4^{x} - 11^{y} = z^{2}$. In 2019, Thongnak et al. [7] proved that the exponential Diophantine equation $2^x - 3^y = z^2$ has only two solutions. Later, Burshtein [2] examined the exponential Diophantine equation $6^x - 11^y = z^2$ where $3 \le x \le 16$. He found one solution, (x, y, z) = (2, 1, 5). In 2020, Buosi et al. [1] suggested the exponential Diophantine equation $p^x - 2^y = z^2$, where $p = k^2 + 2$ is a prime number and $k \ge 0$. They used Catalan's conjecture to compute the integer solutions, (x, y, z) = (0, 0, 0) and (1,1,k) with $k \ge 3$. Recently, many exponential Diophantine equations have been

Wariam Chuayjan, Sutthiwat Thongnak, and Theeradach Kaewong

studied, for example, [6, 8, 9, 10]. These research articles motivated us to prove all solutions to other equations.

In this article, we aim to prove all solutions of the exponential Diophantine equation $10^x - 17^y = z^2$ where x, y and z are non-negative integers.

2. Preliminaries

In this section, we introduce basic knowledge applied in this proof.

Theorem 2.1. (Euler's criterion [3]) Let p be an odd prime and gcd(a, p) = 1. Then a is a quadratic residue of p if and only if $a^{(p-1)/2} \equiv 1 \pmod{p}$.

Lemma 2.2. (Catalan's conjecture [4]) Let a, b, x and y be integers. The Diophantine equation $a^x - b^y = z^2$ with $\min\{a, b, x, y\} > 1$ has the unique solution (a, b, x, y) = (3, 2, 2, 3).

3. Main result

Theorem 3.1. The exponential Diophantine equation $10^x - 17^y = z^2$ has exactly two non-negative integer solutions, (x, y, z) = (0, 0, 0) and (1, 0, 3).

Proof: Let x, y and z be non-negative integers such that

$$10^x - 17^y = z^2. (1)$$

We separate into four cases, including case 1: x = 0 and y = 0, case 2: x = 0 and y > 0, case 3: x > 0 and y = 0, and case 4: x > 0 and y > 0.

Case 1: x = 0 and y = 0. From (1), we get $z^2 = 0$, implying that z = 0. Hence one solution to the equation is (0,0,0).

Case 2: x = 0 and y > 0. In this case, (1) becomes $1-17^{y} = z^{2} < 0$, which is impossible.

Case 3: x > 0 and y = 0. (1) becomes

$$10^x - z^2 = 1. (2)$$

There are two cases to be considered: x = 1 and x > 1.

If x = 1, then (2) becomes $z^2 = 9$, which implies z = 3. Hence one solution is (x, y, z) = (1, 0, 3).

If x > 1, then (2) implies z > 1. Lemma 2.2 (Catalan's conjecture) yields that (2) has no solution.

Case 4: x > 0 and y > 0, (1) implies that $z^2 \equiv 10^x \pmod{17}$, and it follows that 10^x is a quadratic residue of 17. By theorem 2.1, it follows that

On the Exponential Diophantine Equation $10^{x} - 17^{y} = z^{2}$

 $(10^x)^{(17-1)/2} = 10^{8x} \equiv 1 \pmod{17}$, and this yields $(-1)^x \equiv 1 \pmod{17}$. Thus x is even. We let x = 2k, $\exists k \in +$. Clearly, (1) is equivalent to $17^y = 10^{2k} - z^2 = (10^k - z)(10^k + z)$.

There exists $\alpha \in \{0, 1, 2, 3, ..., y\}$ such that $10^k - z = 17^{\alpha}$ and $10^k + z = 17^{y-\alpha}$, where $\alpha < y - \alpha$. It follows that $2 \cdot 10^k = 17^{\alpha} + 17^{y-\alpha}$ or $2^{k+1} \cdot 5^k = 17^{\alpha} (1 + 17^{y-2\alpha})$. Since $17 \nmid 2^{k+1} \cdot 5^k$, we have $\alpha = 0$ and $2^{k+1} \cdot 5^k = 1 + 17^y$. It yields $0 \equiv 2 \pmod{4}$, which is

impossible. From all cases, (0,0,0) and (1,0,3) are the solutions to the equation $10^x - 17^y = z^2$.

4. Conclusion

In this work, we determined all solutions of the exponential Diophantine equation $10^x - 17^y = z^2$ where x, y and z are non-negative integers. The solutions, (x, y, z), to the equation are (0,0,0) and (1,0,3).

Acknowledgements. We would like to thank the reviewers for their careful reading of our manuscript and their useful comments.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Author's Contributions: All authors contributed equally.

REFERENCES

- 1. M.Buosi, A.Lemos, A.L.P.Porto and D.F.G.Santiago, On the Exponential Diophantine equation $p^x 2^y = z^2$ with $p = k^2 + 2$, a prime number, *Southeast-Asian Journal of Science*, 8 (2) (2020) 103-109.
- 2. N.Burshtein, A short note on solutions of the Diophantine equations $6^x + 11^y = z^2$ and $6^x 11^y = z^2$ in positive integers *x*, *y*, *z*, *Annals of Pure and Applied Mathematics*, 19 (2) (2019) 55 56.
- 3. D.M.Burton, Elementary Number Theory, 2011.
- 4. P.Mihailescu, Primary Cycolotomic Units and a proof of Catalan's conjecture, *Journal für die Reine und Angewandte Mathematik*, 27 (2004) 167-195.
- 5. J.F.T.Rabago, On the Diophantine Equation $4^x p^y = 3z^2$ where *p* is a prime, *Thai Journal of Mathematics*, 16 (3) (2018) 643-650.
- 6. S.Tadee, On the Diophantine equation $(p+6)^x p^y = z^2$ where p is a prime number, *Journal of Mathematics and Informatics*, 23 (2022) 51-54.
- 7. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential Diophantine equation $2^x 3^y = z^2$, *Southeast-Asian Journal of Sciences*, 7 (1) (2019) 1-4.
- 8. S.Thongnak, W.Chuayjan and T.Kaewong, The solution of the exponential Diophantine equation $7^x 5^y = z^2$, *Mathematical Journal*, 66 (703) (2021) 62-67.

Wariam Chuayjan, Sutthiwat Thongnak, and Theeradach Kaewong

- 9. S.Thongnak, W.Chuayjan and T.Kaewong, On the Diophantine equation $7^x 2^y = z^2$ where x, y and z are non-negative integers, *Annals of Pure and Applied Mathematics*, 25(2) (2022) 63-66.
- 10. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential Diophantine equation $5^x 2 \cdot 3^y = z^2$, Annals of Pure and Applied Mathematics, 25(2) (2022) 109-112.