On the Exponential Diophantine Equation $10^{\mathrm{x}}-\mathbf{1 7}^{\mathrm{y}}=\mathrm{z}^{2}$

Wariam Chuayjan ${ }^{1}$, Sutthiwat Thongnak ${ }^{2 *}$ and Theeradach Kaewong ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics and Statistics, Thaksin University
Phatthalung 93210, Thailand
${ }^{1}$ email: cwariam@ tsu.ac.th; ${ }^{3}$ email: theeradachkaewong @ gmail.com
${ }^{2}$ Corresponding author. email: tsutthiwat@ tsu.ac.th

Received 3 August 2023; accepted 17 September 2023

Abstract

In this study, our aim is to prove all the solutions of the exponential Diophantine equation $10^{x}-17^{y}=z^{2}$, where x, y and z are non-negative integers. We applied the modular arithmetic and Catalan's conjecture to obtain all solutions. The result indicates that there are only two solutions to the equation.

Keywords: exponential Diophantine equation; factoring method; modular arithmetic method

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The exponential Diophantine equations are classic problems in Number Theory. The most famous equation is $x^{n}+y^{n}=z^{n}$, where x, y and z are non-negative integers and $n \geq 3$. This equation was presented by Pierre de Fermat in 1637, and Andrew Wiles proved that the equation had no solution in 1993. Over a decade, many researchers computed and proved solutions to many equations. A major reason for the study is its wealth of application to cryptography, geometry, trigonometry and applied algebra. In 2004, Mihailescu [4] proved that the exponential Diophantine equation $a^{x}-b^{y}=1$ where a, b, x and y are integers with $\min (a, b, x, y)>1$ has a unique solution, $(a, b, x, y)=(3,2,2,3)$. In 2018, Rabago [5] studied and computed all solutions of $4^{x}-7^{y}=z^{2}$ and $4^{x}-11^{y}=z^{2}$. In 2019, Thongnak et al. [7] proved that the exponential Diophantine equation $2^{x}-3^{y}=z^{2}$ has only two solutions. Later, Burshtein [2] examined the exponential Diophantine equation $6^{x}-11^{y}=z^{2}$ where $3 \leq x \leq 16$. He found one solution, $(x, y, z)=(2,1,5)$. In 2020, Buosi et al. [1] suggested the exponential Diophantine equation $p^{x}-2^{y}=z^{2}$, where $p=k^{2}+2$ is a prime number and $k \geq 0$. They used Catalan's conjecture to compute the integer solutions, $(x, y, z)=(0,0,0)$ and $(1,1, k)$ with $k \geq 3$. Recently, many exponential Diophantine equations have been
studied, for example, $[6,8,9,10]$. These research articles motivated us to prove all solutions to other equations.

In this article, we aim to prove all solutions of the exponential Diophantine equation $10^{x}-17^{y}=z^{2}$ where x, y and z are non-negative integers.

2. Preliminaries

In this section, we introduce basic knowledge applied in this proof.

Theorem 2.1. (Euler's criterion [3]) Let p be an odd prime and $\operatorname{gcd}(a, p)=1$. Then a is a quadratic residue of p if and only if $a^{(p-1) / 2} \equiv 1(\bmod p)$.

Lemma 2.2. (Catalan's conjecture [4]) Let a, b, x and y be integers. The Diophantine equation $\quad a^{x}-b^{y}=z^{2} \quad$ with $\min \{a, b, x, y\}>1$ has the unique solution $(a, b, x, y)=(3,2,2,3)$.

3. Main result

Theorem 3.1. The exponential Diophantine equation $10^{x}-17^{y}=z^{2}$ has exactly two non-negative integer solutions, $(x, y, z)=(0,0,0)$ and $(1,0,3)$.
Proof: Let x, y and z be non-negative integers such that

$$
\begin{equation*}
10^{x}-17^{y}=z^{2} \tag{1}
\end{equation*}
$$

We separate into four cases, including case 1: $x=0$ and $y=0$, case 2: $x=0$ and $y>0$, case 3: $x>0$ and $y=0$, and case 4: $x>0$ and $y>0$.

Case 1: $x=0$ and $y=0$. From (1), we get $z^{2}=0$, implying that $z=0$. Hence one solution to the equation is $(0,0,0)$.
Case 2: $x=0$ and $y>0$. In this case, (1) becomes $1-17^{y}=z^{2}<0$, which is impossible.
Case 3: $x>0$ and $y=0$. (1) becomes

$$
\begin{equation*}
10^{x}-z^{2}=1 \tag{2}
\end{equation*}
$$

There are two cases to be considered: $x=1$ and $x>1$.
If $x=1$, then (2) becomes $z^{2}=9$, which implies $z=3$. Hence one solution is $(x, y, z)=(1,0,3)$.
If $x>1$, then (2) implies $z>1$. Lemma 2.2 (Catalan's conjecture) yields that (2) has no solution.
Case 4: $x>0$ and $y>0$, (1) implies that $z^{2} \equiv 10^{x}(\bmod 17)$, and it follows that 10^{x} is a quadratic residue of 17 . By theorem 2.1, it follows that

On the Exponential Diophantine Equation $10^{x}-17^{y}=z^{2}$
$\left(10^{x}\right)^{(17-1) / 2}=10^{8 x} \equiv 1(\bmod 17)$, and this yields $(-1)^{x} \equiv 1(\bmod 17)$. Thus x is even.
We let $x=2 k, \exists k \in \square^{+}$. Clearly, (1) is equivalent to

$$
17^{y}=10^{2 k}-z^{2}=\left(10^{k}-z\right)\left(10^{k}+z\right)
$$

There exists $\alpha \in\{0,1,2,3, \ldots, y\}$ such that $10^{k}-z=17^{\alpha}$ and $10^{k}+z=17^{y-\alpha}$, where $\alpha<y-\alpha$. It follows that $2 \cdot 10^{k}=17^{\alpha}+17^{y-\alpha}$ or $2^{k+1} \cdot 5^{k}=17^{\alpha}\left(1+17^{y-2 \alpha}\right)$. Since $17 \backslash 2^{k+1} \cdot 5^{k}$, we have $\alpha=0$ and $2^{k+1} \cdot 5^{k}=1+17^{y}$. It yields $0 \equiv 2(\bmod 4)$, which is impossible. From all cases, $(0,0,0)$ and $(1,0,3)$ are the solutions to the equation $10^{x}-17^{y}=z^{2}$.

4. Conclusion

In this work, we determined all solutions of the exponential Diophantine equation $10^{x}-17^{y}=z^{2}$ where x, y and z are non-negative integers. The solutions, (x, y, z), to the equation are $(0,0,0)$ and $(1,0,3)$.

Acknowledgements. We would like to thank the reviewers for their careful reading of our manuscript and their useful comments.
Conflicts of Interest: The authors declare that there is no conflict of interest.
Author's Contributions: All authors contributed equally.

REFERENCES

1. M.Buosi, A.Lemos, A.L.P.Porto and D.F.G.Santiago, On the Exponential Diophantine equation $p^{x}-2^{y}=z^{2}$ with $p=k^{2}+2$, a prime number, Southeast-Asian Journal of Science, 8 (2) (2020) 103-109.
2. N.Burshtein, A short note on solutions of the Diophantine equations $6^{x}+11^{y}=z^{2}$ and $6^{x}-11^{y}=z^{2}$ in positive integers x, y, z, Annals of Pure and Applied Mathematics, 19 (2) (2019) $55-56$.
3. D.M.Burton, Elementary Number Theory, 2011.
4. P.Mihailescu, Primary Cycolotomic Units and a proof of Catalan's conjecture, Journal für die Reine und Angewandte Mathematik, 27 (2004) 167-195.
5. J.F.T.Rabago, On the Diophantine Equation $4^{x}-p^{y}=3 z^{2}$ where p is a prime, Thai Journal of Mathematics, 16 (3) (2018) 643-650.
6. S.Tadee, On the Diophantine equation $(p+6)^{x}-p^{y}=z^{2}$ where p is a prime number, Journal of Mathematics and Informatics, 23 (2022) 51-54.
7. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential Diophantine equation $2^{x}-3^{y}=z^{2}$, Southeast-Asian Journal of Sciences, 7 (1) (2019) 1-4.
8. S.Thongnak, W.Chuayjan and T.Kaewong, The solution of the exponential Diophantine equation $7^{x}-5^{y}=z^{2}$, Mathematical Journal, 66 (703) (2021) 62-67.

Wariam Chuayjan, Sutthiwat Thongnak, and Theeradach Kaewong
9. S.Thongnak, W.Chuayjan and T.Kaewong, On the Diophantine equation $7^{x}-2^{y}=z^{2}$ where x, y and z are non-negative integers, Annals of Pure and Applied Mathematics, 25(2) (2022) 63-66.
10. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential Diophantine equation $5^{x}-2 \cdot 3^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 25(2) (2022) 109-112.

