Annals of Pure and Applied Mathematics

Vol. 28, No. 1, 2023, 25-28
ISSN: 2279-087X (P), 2279-0888(online)
Published on 26 September 2023
Annals of
Pure and Applied
www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/apam.v28n1a05915

On the Exponential Diophantine Equation $3^{x}-5^{y}=\mathbf{z}^{2}$

Wariam Chuayjan ${ }^{1}$, Sutthiwat Thongnak ${ }^{2^{*}}$ and Theeradach Kaewong ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics and Statistics, Thaksin University Phatthalung 93210, Thailand
${ }^{1}$ email: cwariam@ tsu.ac.th; ${ }^{3}$ email: theeradachkaewong@ gmail.com
${ }^{2}$ Corresponding author. email: tsutthiwat@tsu.ac.th

Received 1 August 2023; accepted 15 September 2023
Abstract. In this study, we prove all solutions of the exponential Diophantine equation $3^{\mathrm{x}}-5^{\mathrm{y}}=\mathrm{z}^{2}$ where x, y and z are non-negative integers. The result indicates that the solutions (x, y, z) are $(0,0,0)$ and $(2,1,2)$.

Keywords: exponential Diophantine equation; divisibility; modular arithmetic method
AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The exponential Diophantine equation is a classic topic in Number Theory. It has two or more unknown variables in an equation, and its solution must be integer. Because there is no general method to find a solution, it challenged mathematicians to determine how many solutions are. In 2004, Mihailescu [4] proved Catalan's conjecture $a^{x}-b^{y}=1$ that it has exactly one solution when $\min (a, b, x, y)>1$. Over five years ago, the exponential Diophantine equation was studied in the form $a^{x}-b^{y}=z^{2}$, where a, b, x, y and z are non-negative integers. In 2018, two exponential Diophantine equations, $4^{x}-7^{y}=z^{2}$ and $4^{x}-11^{y}=z^{2}$, were proved by Rabago [5]. He showed that the solutions to $4^{x}-7^{y}=z^{2}$ are $(x, y, z)=(0,0,0)$ and $(2,1,3)$, and $4^{x}-11^{y}=z^{2}$ has a unique solution, $(x, y, z)=(0,0,0)$. In 2019, Burshtein [2] suggested that $6^{x}-11^{y}=z^{2}$ has a positive integer solution, $(x, y, z)=(2,1,5)$, and presumed that $6^{x}-11^{y}=z^{2}$ has no solution when $x \geq 3$. After that, Thongnak et al. [9] proved that the equation $2^{x}-3^{y}=z^{2}$ has three solutions, $(x, y, z) \in\{(0,0,0),(1,0,1),(2,1,1)\}$. From 2020 to 2022, many articles studied several equation in the form $a^{x}-b^{y}=z^{2}$ appearing in [1, 6, 10, 11, 12]. Recently, Tadee [8] showed that the non-negative integer solutions to the Diophantine equations, $9^{x}-3^{y}=z^{2}$ and $13^{x}-7^{y}=z^{2}$, are $(x, y, x) \in\{(r, 2 r, 0)\}$

Wariam Chuayjan, Sutthiwat Thongnak and Theeradach Kaewong

where $r \in \mathbb{N} \cup\{0\}$ and $(x, y, x) \in\{(0,0,0)\}$, respectively. In the same year, he proved the equation $3^{x}-p^{y}=z^{2}$ where p is prime. He showed the solutions with some conditions [7]. These previous works motivated us to study the remaining equations.

In this paper, we compute all solutions of the exponential Diophantine equation $3^{x}-5^{y}=z^{2}$ where x, y and z are non-negative integers.

2. Preliminaries

In this section, we introduce the principle of Number Theory, which plays a critical role in the proof here.

Definition 2.1. [3] An integer b is said to be divisible by an integer $a \neq 0$, in symbols $a \mid b$, if there exists some integer c such that $b=a c$. We write $a \nmid b$ to indicate that b is not divisible by a.

Definition 2.2. [3] If n is a positive integer and $\operatorname{gcd}(a, n)=1$, the least positive integer k such that $a^{k} \equiv 1(\bmod n)$ is called the order of a modulo n and is denoted by $\operatorname{ord}_{n} a$.

Theorem 2.3. [3] If the integer a has order k modulo n, then $a^{i} \equiv a^{j}(\bmod n)$ if and only if $i \equiv j(\bmod k)$.

3. Main result

Theorem 3.1. Let x, y and z be non-negative integers. The exponential Diophantine equation $3^{x}-5^{y}=z^{2}$ has only two solutions: $(x, y, z)=(0,0,0)$ and $(2,1,2)$.
Proof: Let x, y and z be non-negative integer

$$
\begin{equation*}
3^{x}-5^{y}=z^{2} . \tag{1}
\end{equation*}
$$

We consider four cases as follows:
Case 1: $x=y=0$. (1) becomes $z^{2}=0$, and the solution is $(x, y, z)=(0,0,0)$.
Case 2: $x=0$ and $y>0$. By (1), we have $z^{2}=1-5^{y}<0$, which is impossible.
Case 3: $x>0$ and $y=0$. By (1), we obtain $z^{2}=3^{x}-1$, so $z^{2} \equiv 2(\bmod 3)$. This is impossible because $z^{2} \equiv 0,1(\bmod 3)$.
Case 4: $x>0$ and $y>0$, we separate into two subcases as follows:
Subcase 4.1: x is odd. It implies that $3^{x} \equiv 3(\bmod 4)$. We get from (1) that $z^{2} \equiv 3^{x}-1(\bmod 4)$ or $z^{2} \equiv 2(\bmod 4)$. It is impossible because $z^{2} \equiv 0,1(\bmod 4)$.

Subcase 4.2: x is even. We let $x=2 k, \exists k \in \mathbb{Z}^{+}$. We obtain $5^{y}=3^{2 k}-z^{2}$ or $5^{y}=\left(3^{k}-z\right)\left(3^{k}+z\right)$. Then, there exists $\alpha \in\{0,1,2,3, \ldots, y\}$ such that $3^{k}-z=5^{\alpha}$ and $3^{k}+z=5^{y-\alpha}$ with $\alpha<y-\alpha$. We obtain

On the Exponential Diophantine Equation $3^{x}-5^{y}=z^{2}$

$$
\begin{equation*}
2 \cdot 3^{k}=5^{\alpha}\left(1+5^{y-2 \alpha}\right) \tag{2}
\end{equation*}
$$

Since $5 \nmid 2 \cdot 3^{k}$ and (2), it yields that $\alpha=0$. Thus, we have

$$
\begin{equation*}
2 \cdot 3^{k}=1+5^{y} \tag{3}
\end{equation*}
$$

By (3), if $k=1$, then we obtain $5^{y}=5$. It is easy to obtain that $y=1, x=2$, and $z=3^{1}-1=2$. Hence, another solution is $(x, y, z)=(2,1,2)$. If $k \geq 2$, we obtain from (3) that $5^{y} \equiv-1(\bmod 9)$ which implies that $5^{y} \equiv 5^{3}(\bmod 9)$. By theorem 2.3 and $\operatorname{ord}_{9} 5=6$, we get $y \equiv 3(\bmod 6)$ yielding $y=3+6 l=3(1+2 l)$, where l is a non-negative integer. It is convenient to let $m=1+2 l$, so $y=3 m$. By (3), we have $2 \cdot 3^{k}=1+\left(5^{3}\right)^{m}$ or

$$
\begin{equation*}
2 \cdot 3^{k}=126\left(\left(5^{3}\right)^{m-1}-\left(5^{3}\right)^{m-2}+\cdots+\left(5^{3}\right)^{2}-5^{3}+1\right) \tag{4}
\end{equation*}
$$

Since $7 \mid 126$ and (4), we have $7 \mid 2 \cdot 3^{k}$ which is impossible. In all cases, the solutions (x, y, z) of $3^{x}-5^{y}=z^{2}$ are $(x, y, z)=(0,0,0)$ and $(2,1,2)$.

4. Conclusion

We have proved and shown all solutions of the exponential Diophantine equation $3^{x}-5^{y}=z^{2}$ where x, y and z are non-negative integers. In the proof, the modular arithmetic principle was applied to obtain all solutions. We have found that the solutions are $(x, y, z)=(0,0,0)$ and $(2,1,2)$.

Acknowledgements. We would like to thank reviewers for carefully reading our manuscript and the useful comments.
Conflicts of Interest: The authors declare that there is no conflict of interest.
Author's Contributions: All authors contributed equally.

REFERENCES

1. M.Buosi, A.Lemos, A.L.P.Porto and D.F.G.Santiago, On the exponential diophantine equation $p^{x}-2^{y}=z^{2}$ with $p=k^{2}+2$, a Prime Number, Southeast-Asian Journal of Science, 8 (2) (2020) 103-109.
2. N.Burshtein, A short note on solutions of the Diophantine equations $6^{x}+11^{y}=z^{2}$ and $6^{x}-11^{y}=z^{2}$ in positive integers x, y, z, Annals of Pure and Applied Mathematics, 19 (2) (2019) $55-56$.
3. D. M.Burton, Elementary Number Theory, 2011.
4. P.Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, Journal für die Reine und Angewandte Mathematik, 27 (2004) 167-195.
5. J.F.T.Rabago, On the diophantine equation $4^{x}-p^{y}=3 z^{2}$ where p is a prime, Thai Journal of Mathematics, 16 (3) (2018) 643-650.

Wariam Chuayjan, Sutthiwat Thongnak and Theeradach Kaewong

6. S.Tadee, On the Diophantine equation $(p+6)^{x}-p^{y}=z^{2}$ where p is a prime number, Journal of Mathematics and Informatics, 23 (2022) 51-54.
7. S.Tadee, On the Diophantine equation $3^{x}-p^{y}=z^{2}$ where p is prime, Journal of Science and Technology Thonburi University, 7(1) (2023) 1-6.
8. S.Tadee, A short note on two diophantine equations $9^{x}-3^{y}=z^{2}$ and $13^{x}-7^{y}=z^{2}$, Journal of Mathematics and informatics, 24 (2023) 23-25.
9. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential diophantine equation $2^{x}-3^{y}=z^{2}$, Southeast-Asian Journal of Sciences, 7 (1) (2019) 1-4.
10. S.Thongnak, W.Chuayjan and T.Kaewong, The solution of the exponential diophantine equation $7^{x}-5^{y}=z^{2}$, Mathematical Journal, 66 (703) (2021) 62-67.
11. S.Thongnak, W.Chuayjan and T.Kaewong, On the Diophantine equation $7^{x}-2^{y}=z^{2}$ where x, y and z are non-negative integers, Annals of Pure and Applied Mathematics, 25(2) (2022) 63-66.
12. S.Thongnak, W.Chuayjan and T.Kaewong, On the exponential diophantine equation $5^{x}-2 \cdot 3^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 25(2) (2022) 109-112.
