Annals of Pure and Applied Mathematics Vol. 28, No. 1, 2023, 29-34 ISSN: 2279-087X (P), 2279-0888(online) Published on 30 September 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v28n1a06917

Annals of Pure and Applied <u>Mathematics</u>

A Ramsey Problem Related to Butterfly Graph vs. Small Paths and C₃

C.J. Jayawardene^{1*} and B.L. Samarasekara²

Department of Mathematics, University of Colombo, Sri Lanka ²email: <u>lilanthi@cmb.ac.lk</u> *Corresponding author. *email: c_jayawardene@maths.cmb.ac.lk

Received 17 August 2023; accepted 28 September 2023

Abstract. A graph on five vertices consisting of 2 copies of the cycle graph C_3 sharing a common vertex is called the Butterfly graph (*B*). The smallest natural number s such that any two-colouring (say red and blue) of the edges of $K_{j\times s}$ has a copy of a red *B* or a blue *G* is called the multipartite Ramsey number of Butterfly graph versus G. This number is denoted by $m_j(B,G)$. In this paper, we find the exact values for $m_j(B,G)$ when j > 2 and *G* represents any small path or else three cycles.

Keywords: Graph theory, Ramsey theory, Ramsey critical graphs

AMS Mathematics Subject Classification (2010): 05C55, 05C38, 05D10

1. Introduction

In this paper, we concentrate on simple graphs. Let the complete multipartite graph having *j* uniform sets of size *s* be denoted by $K_{j\times s}$. Given two graphs *G* and *H*, we say that $K_N \rightarrow (G, H)$ if K_N is coloured by two colours, red and blue, and it contains a copy of *G* (in the first color red) or a copy of *H* (in the second color blue). Regarding this notation, we define the Ramsey number r(n,m) as the smallest integer N, such as $K_N \rightarrow (K_n, K_m)$. As of today, beyond the case n = 5, almost nothing significant is known with regard to diagonal classical Ramsey number r(n,n) (see [8] for a survey). Burger and Vuuren (see [1]) were honoured for introducing and developing a branch of Ramsey numbers known as size multipartite Ramsey numbers. The size multipartite Ramsey number $m_j(B,G)$, which is a generalization of the much celebrated Ramsey number, is based on exploring the two colourings of multipartite graph $K_{j\times s}$ instead of the complete graph. Formally, we define size multipartite Ramsey number as the smallest natural number *s* such that $K_{j\times s} \rightarrow (K_n, K_m)$.

In the last 14 years, many research papers have been published on the Ramsey number for different pairs of graphs. [2,3,4,6]. Works of [5,7], focuses on the multipartite Ramsey numbers for graph *G* versus graph *H* where *H* is any isolated vertex free simple graph on four vertices and graph *G* refers to either a C_3 , a C_4 . In this paper we find exact the values for $m_i(B,G)$ when j > 2 and *G* represents any small path or else a 3 cycle.

<i>G</i> =	P_2	<i>P</i> ₃	P_4	C_3
<i>j</i> =3	2	2	3	~
<i>j</i> =4	2	2	2	~
<i>j=</i> 5	1	1	2	~
<i>j=</i> 6	1	1	2	2
<i>j</i> =7	1	1	1	2
<i>j=</i> 8	1	1	1	2
<i>j≥</i> 9	1	1	1	1

C.J. Jayawardene and B.L. Samarasekara

2. Notation

Given a graph G=G(V,E) the *order* of the graph is denoted by |V(G)| and the *size* of the graph is denoted by |E(G)|. For a vertex v of a graph G, the neighborhood of v, denoted by N(v) is defined as the set of vertices adjacent to v. Furthermore, the cardinality of this set, denoted d(v), is defined as the degree of v. In a Butterfly graph B, the vertex of degree 4 is defined as the center of the Butterfly graph B. We say that a graph G is a k regular graph if d(v) = k for all $v \in V(G)$. Let $N_R(v)$ ($N_B(v)$) be the set of vertices adjacent to v in red(blue). Then the cardinality of this set is denoted by $deg_R(v)$ ($deg_B(v)$). Denote the j partite sets of $K_{j\times s}$ by V_1 , V_2 , ..., V_j . Let $K_{j\times s} = H_R \bigoplus H_B$ denote a red and blue coloring of $K_{j\times s}$ where H_R consists of the red graph and where H_B consists of the blue graph, having vertex sets equal to $V(K_{j\times s})$. Suppose that a vertex $u \in V(K_{j\times s})$ of H_R (or H_B) belonging to the partite set V_i is such that it is incident to i_1, i_2, \dots, i_{j-1} vertices of each of the remaining j-1 partite sets respectively. Then, we say that vertex u has a (i_1, i_2, \dots, i_{j-1}) red (or blue) split in H_R (or H_B) provided that $i_1 \ge i_2 \ge i_3 \ge \dots \ge i_{j-1}$. Moreover if there exists k_1, k_2, \dots, k_{j-1} such that $i_1 \ge k_2, i_3 \ge k_3, \dots, i_{j-1} \ge k_{j-1}$ and $k_1 \ge k_2 \ge k_3 \ge \dots \ge k_{j-1}$, then we say that u contains a (k_1, k_2, \dots, k_{j-1}) red (or blue) split in H_R (or H_B).

3. Size Ramsey numbers for $m_j(B, P_2)$ and $m_j(B, P_3)$

Theorem 3.1. *If* $j \ge 3$, then

$$m_j(B, P_2) = \begin{cases} 2 & \text{if } j \in \{3, 4\} \\ 1 & otherwise \end{cases}$$

Proof of Theorem 3.1: The proof is trivial and is left for the reader.

Theorem 3.2. If $j \ge 3$, then

$$m_{j}(B, P_{2}) = \begin{cases} 2 & \text{if } j \in \{3, 4\} \\ 1 & otherwise \end{cases}$$

Proof of Theorem 3.2: Consider the red-blue coloring of $K_{3\times 2} = H_R \bigoplus H_B$ where H_B consists of three independent blue edges $(v_{1,1}, v_{2,2})$, $(v_{2,1}, v_{3,2})$ and $(v_{1,2}, v_{3,1})$. Then H_R will

A Ramsey Problem Related to Butterfly Graph vs. Small Paths and C_3

consist of the following diagram. Thus, $K_{3\times 2}$ has neither a blue P_3 nor a red B. Therefore, $m_3(B,P_3) \ge 3$.

Figure 3.1: The *H_R* graph

Next to show $m_3(B,P_3) \leq 3$, consider any red/blue coloring given by $K_{3\times3} = H_R \bigoplus H_B$ such that H_R contains no red B and H_B contains no blue P_3 . In order to avoid a blue P_3 all vertices must have blue degree at most equal to 1. That is all vertices must have red degree at least equal to 5. Since $K_{3\times3}$ has odd number of vertices without loss of generality, we may assume that $v_{1,1}$ has red degree 6. However, as $deg_R(v_{2,1}) \geq 5$ and $deg_R(v_{2,2}) \geq 5$, there will be a red $2K_2$ induced by $V_2 \cup V_3$. Thus, we will get a red B, a contradiction. Therefore, $m_3(B,P_3) = 3$.

As, $r(B,P_3) = 5$, (see [4]) we get $m_4(B,P_3) \ge 2$. Next to show, $m_4(B,P_3) \le 2$, consider any red/blue coloring given by $K_{4\times 2} = H_R \bigoplus H_B$, such that H_R contains no red B and H_B contains no blue P_3 . In order to avoid a blue P_3 all vertices must have blue degree at most equal to 1. That is all vertices must have red degree at least equal to 5. Suppose that $v_{1,1}$ is adjacent in red to all vertices of $U=\{v_{2,1}, v_{2,2}, v_{3,1}, v_{3,2}, v_{4,1}\}$. But then in order to avoid a red B induced by { $v_{1,1}, v_{2,1}, v_{2,2}, v_{3,1}, v_{3,2}, v_{4,1}$ }, U must not contain a red $2K_2$. That is, Umust contain a blue $K_{1,2}$, a contradiction. Therefore, $m_4(B,P_3) = 2$.

As, $r(B,P_3) = 5$, we get $m_j(B, P_3) = 1$ for $j \ge 5$.

Theorem 3.3. If $j \ge 3$, then

$$m_{j}(B,C_{3}) = \begin{cases} \infty & j \in \{3,4,5\} \\ 2 & j \in \{6,7,8\} \\ 1 & otherwise \end{cases}$$

Proof of Theorem 3.3: $(B,C_3) = \infty$ since $m_j(C_3,C_3) = \infty$ for $j \in \{3,4,5\}$ and C_3 is a subgraph of *B* (See [5]).

Next consider the case $j \in \{6,7,8\}$. First consider a red/blue coloring of $K_{6\times2}$, given by $K_{6\times2} = H_R \bigoplus H_B$, such that H_R contains no red B and H_B contains no blue C_3 . As $m_6(C_3, C_3) = 1$, the induced subgraph H_1 where $V(H_1) = \{v_{i,1} : i \in \{1,2,...,6\}\}$ has a red C_3 say $v_{1,1}, v_{2,1}, v_{3,1}, v_{1,1}$. Denote this red C_3 by A_1 . Similarly the induced subgraph H_2 where $V(H_2)$

C.J. Jayawardene and B.L. Samarasekara

= { $v_{3,1}$ } \cup { $v_{i,2}$: $i \in$ {1,2,4,5,6}} has a red C_3 (say A_2). If v_{31} is a vertex of A_2 then $K_{6\times 2}$ has a red B, a contradiction. Otherwise, we get the following three cases.

Case 1: None of the vertices of A_2 belong to the partite sets V_1, V_2, V_3 .

Case 2: Two of the vertices of A_2 belong to two of the partite sets V_1, V_2, V_3 .

Case 3: Only one of the vertices of A_2 belong to one of the partite sets V_1, V_2, V_3 .

Figure 3.2: The three cases

In each of these cases first consider the induced subgraph *H* such that *H* consists of six vertices $v_1, v_2, ..., v_6$ where no two vertices of $\{v_1, v_2, ..., v_6\}$ belong to the same partite set and $|V(A_i) \cap V(H)| = 1$ for each $i \in \{1, 2\}$. Due to the absence of a blue C_3 and $m_6(C_3, C_3)$ = 1, *H* has a red C_3 (say A_3). If $V(A_3) \cap V(A_1) \neq \emptyset$ or $V(A_3) \cap V(A_2) \neq \emptyset$ then $K_{6\times 2}$ has a red *B*, a contradiction.

Otherwise, consider the induced subgraph H_1 consisting of the six vertices u_1, u_2 , ..., u_6 where no two vertices of $\{u_1, u_2, ..., u_6\}$ belong to the same partite set and $|V(A_i) \cap V(H_1)| = 2$ for each $i \in \{1, 2, 3\}$. H_1 has a red C_3 due to the absence of a blue C_3 and $m_6(C_3, C_3) = 1$. This red C_3 along with one of the A_i where $i \in \{1, 2, 3\}$ forms a red B, a contradiction. Therefore, $m_6(B, C_3) \leq 2$.

As, $r(B,C_3) = 9$, (see [4]) we get, $m_8(B,C_3) \ge 2$.

Therefore, $2 \le m_8(B,C_3) \le m_7(B,C_3) \le m_6(B,C_3) \le 2$, gives us $m_j(B,C_3) = 2$ for $j \in \{6,7,8\}$. Finally, as $r(B,C_3) = 9$, (see [4]) we get, $m_j(B,C_3) = 1$ if $j \ge 9$.

Theorem 3.4. *If* $j \ge 3$, *then*

$$m_{j}(B, P_{4}) = \begin{cases} 3 & j = 3 \\ 2 & j \in \{4, 5, 6\} \\ 1 & otherwise \end{cases}$$

Proof of Theorem 3.4: $m_3(B,P_4) \ge 3$. since $m_3(B,P_3) = 3$ by theorem 2.

A Ramsey Problem Related to Butterfly Graph vs. Small Paths and C_3

Next to show, $m_3(B,P_4) \le 3$, consider any red/blue coloring of $K_{3\times 3}$ given by $K_{3\times 3} = H_R \bigoplus H_B$, such that H_R contains no red B and H_B contains no blue P_4 . By the theorem 2 as $m_3(B,P_3)=3$, we get that there exists a blue P_3 .

Case 1: There exists a blue P_3 that lies in three partite sets.

Without loss of generality, assume that this blue P_3 comprises of $(v_{1,1},v_{2,1})$ and $(v_{2,1},v_{3,1})$ blue edges. But then in order for $K_{3\times3}$ not to have a blue P_4 , $(v_{3,1},v_{1,2})$, $(v_{3,1},v_{1,3})$, $(v_{3,1},v_{2,2})$ and $(v_{3,1},v_{2,3})$ have to be red edges. Next for $W=\{v_{1,2},v_{1,3},v_{2,2},v_{2,3},v_{3,1}\}$ not to induce a red B, W will be forced to contain a blue P_3 , belonging to V_1 and V_2 . Thus, this case leads to the following case 2.

Case 2: There exists a blue P_3 that lies in two partite sets.

Without loss of generality, assume that this blue P_3 comprises of $(v_{1,1}, v_{2,1})$ and $(v_{1,1}, v_{2,2})$ blue edges. But then in order for $K_{3\times3}$ not to have a blue P_4 , $\{v_{2,1}, v_{2,2}\}$ will have to be adjacent to all vertices of $W_1 = \{v_{1,2}, v_{1,3}, v_{3,1}, v_{3,2}, v_{3,3}\}$ in red. In order for W_1 not to induce a blue P_4 , without loss of generality we may assume that, $(v_{1,2}, v_{3,1})$ is a red edge. But then in order to avoid a red *B* induced by $W_1 \cup \{v_{2,1}\}$, $(v_{1,3}, v_{3,2})$ and $(v_{1,3}, v_{3,3})$ are blue edges. In addition, in order to avoid blue P_4 , given by $v_{3,2} v_{1,3} v_{3,3}$, $v_{1,2}$ the edge $(v_{3,3}, v_{1,2})$ are a red edge. But then $\{v_{1,2}, v_{2,1}, v_{2,2}, v_{3,1}, v_{3,3}\}$ will induce a red *B* consisting of the two red triangle $v_{1,2}, v_{2,2}, v_{3,1}, v_{1,2}$ and $v_{1,2}, v_{2,1}, v_{3,3}, v_{1,2}$ with $v_{1,2}$ as the center vertex, a contradiction.

Thus, $m_3(B, P_4) \le 3$. Therefore, $m_3(B, P_4) = 3$.

As $r(B,P_4) = 7$, (see [4]) we get $m_6(B, P_4) \ge 2$. To show $m_4(B, P_4) \le 2$, consider $K_{4\times 2}$ with any red/blue coloring. Assume $K_{4\times 2}$ has neither a red *B* nor a blue P_4 . Since $m_4(B,P_3) = 2$ and $K_{4\times 2}$ has no red *B*, it has a blue P_3 .

Case 1: There exists a blue P_3 that lies in two partite sets

Let the blue P_3 be $v_{1,1}$, $v_{2,1}$, $v_{1,2}$. As there is no blue P_4 all vertices in $V_3 \cup V_4 \cup \{v_{2,2}\}$ are adjacent in red to both $v_{1,1}$ and $v_{1,2}$. As there is no red *B* the red graph induced by $H=\{v_{2,2}, v_{3,1}, v_{3,2}, v_{4,1}, v_{4,2}\}$ has no red $2K_2$. Then any connected components in the graph induced by *H* is equal to a $K_{1,1}$, K_2 , P_3 , K_3 , $K_{1,3}$ or $K_{1,4}$. Also the induced red graph of *H* can contain at most one connected component having one or more red edges. In both these situations the blue graph induced by *H* has a blue P_4 , a contradiction.

Case 2: There exists a blue P_3 that lies in three partite sets.

Let the blue P_3 be $v_{1,1}$, $v_{2,1}$, $v_{3,1}$. As there is no blue P_4 all vertices in $\{v_{i,2}: i \in \{2,3,4\}\} \cup \{v_{4,1}\}$ are adjacent in red to $v_{1,1}$ and all vertices in $\{v_{i,2}: i \in \{1,2,4\}\} \cup \{v_{4,1}\}$ are adjacent in red to $v_{3,1}$. However, by the elimination of case 1, either $(v_{3,2},v_{4,1})$ or $(v_{3,2},v_{4,2})$ must be red. Without loss of generality assume that $(v_{3,2},v_{4,1})$ is red. In order to avoid a red *B* with $v_{1,1}$ as the center, $(v_{2,2},v_{4,2})$ must be blue. But then, in order to avoid case 1, $(v_{2,2},v_{4,1})$ is red. Next in order to avoid a red *B* with $v_{1,1}$ as the center, $(v_{3,2},v_{4,2})$ must be blue and in order

C.J. Jayawardene and B.L. Samarasekara

to avoid a red *B* with $v_{3,1}$ as the center, $(v_{1,2}, v_{4,2})$ must be blue. However, as there is no blue P_4 , $(v_{1,2}, v_{2,2})$, $(v_{2,2}, v_{3,2})$ and $(v_{1,2}, v_{3,2})$ must all be red. This gives us a red *B* with $v_{2,2}$ as the center, a contradiction. Therefore, $m_4(B, P_4) \le 2$.

As $2 \le m_6(B, P_4) \le m_5(B, P_4) \le m_4(B, P_4) \le 2$ we get $m_j(B, P_4) = 2$ for $j \in \{4, 5.6\}$. Finally, as $r(B, P_4) = 7$ we get, $m_j(B, P_4) = 1$ if $j \ge 7$.

Acknowledgement. The authors would like to thank the reviewers and editors for their contribution.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Author's Contributions: All authors contributed equally.

REFERENCES

- 1. P. Burger and J. H. van Vuuren, Ramsey numbers in Complete Balanced Multipartite Graphs. Part II: Size Numbers, *Discrete Mathematics*, 283 (2004) 45-49.
- 2. P. Erdös, R. J. Faudree, C. C. Rousseau and R. H. Schelp, The size Ramsey number, *Period Mathematics Hungary*, 9 (1978) 145-161.
- 3. R. J. Faudree and R. H. Schelp, Path-path Ramsey-type numbers for the complete bipartite graph, *Journal of Combinatorial Theory* (*B*), 19 (1975) 161-173.
- 4. G. R. T. Hendry, Ramsey Numbers for Graphs with Five Vertices, *Journal of Graph Theory*, 13 (1989) 245-248.
- 5. C.J. Jayawardene and B. L. Samarasekara, Size multipartite Ramsey numbers for C₃ versus all graphs on 4 vertices, *Journal of National Science Foundation*, *Sri Lanka*, 45 (2017) 67-72.
- 6. C.J. Jayawardene and C. C. Rousseau, Ramsey numbers $r(C_6,G)$ for all graphs of order less than six, *Congressus Numerantium* (1999) 147-160.
- 7. C.J.Jayawardene and T.U.Hewage, Multipartite Ramsey numbers for C_4 versus all graphs on 4 vertices, *Annals of Pure and Applied Mathematics*, 13(2) (2017) 297-304.
- 8. V.Kavitha and R.Govindarajan, A study on Ramsey numbers and its bounds, *Annals of Pure and Applied Mathematics*, 8(2) (2014) 227-236.