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Abstract. A graph on five vertices consisting of  2 copies of the cycle graph C3 sharing a 
common vertex is called the Butterfly graph (B). The smallest natural number s such that 
any two-colouring (say red and blue) of the edges of Kj×s has a copy of a red B or a blue G 
is called the multipartite Ramsey number of Butterfly graph versus G. This number is 
denoted by mj(B,G). In this paper, we find the exact values for mj(B,G) when j >2 and G 
represents any small path or else three cycles.   
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1. Introduction 
In this paper, we concentrate on simple graphs. Let the complete multipartite graph having 
j uniform sets of size s be denoted by Kj×s. Given two graphs G and H, we say that                 
KN→( G, H) if KN is coloured by two colours, red and blue, and it contains a copy of G (in 
the first color red) or a copy of H (in the second color blue). Regarding this notation, we 
define the Ramsey number r(n,m) as the smallest integer N, such as KN→(Kn, Km). As of 
today, beyond the case n = 5, almost nothing significant is known with regard to diagonal 
classical Ramsey number r(n,n) (see [8] for a survey). Burger and Vuuren (see [1]) were 
honoured for introducing and developing a branch of Ramsey numbers known as size 
multipartite Ramsey numbers. The size multipartite Ramsey number mj(B,G), which is a 
generalization of the much celebrated Ramsey number, is based on exploring the two 
colourings of multipartite graph Kj×s instead of the complete graph. Formally, we               
define size multipartite Ramsey number as the smallest natural number s such that                 
Kj×s →(Kn, Km).  

In the last 14 years, many research papers have been published on the Ramsey 
number for different pairs of graphs. [2,3,4,6]. Works of [5,7], focuses on the multipartite 
Ramsey numbers for graph G versus graph H where H is any isolated vertex free simple 
graph on four vertices and graph G refers to either a C3, a C4. In this paper we find exact 
the values for mj(B,G) when j >2 and G represents any small path or else a 3 cycle.  
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G =   P2  P3  P4  C3  

3j =   2  2  3  ∞  

4j =   2  2  2  ∞ 

5j =  1  1  2  ∞ 

6j =  1  1  2  2  

7j =  1  1  1  2  

8j =  1  1  1  2  

9j ≥  1  1  1  1  

 

2. Notation 
Given a graph G=G(V,E) the order of the graph is denoted by |V(G)| and the size of the 
graph is denoted by |E(G)|. For a vertex v of a graph G, the neighborhood of v, denoted by 
N(v) is defined as the set of vertices adjacent to v. Furthermore, the cardinality of this set, 
denoted d(v), is defined as the degree of v. In a Butterfly graph B, the vertex of degree 4 
is defined as the center of the Butterfly graph B. We say that a graph G is a k regular graph 
if d(v) = k for all v∈V(G). Let NR(v) (NB(v)) be the set of vertices adjacent to v in red(blue). 
Then the cardinality of this set is denoted by degR(v) (degB(v)). Denote the j partite sets of 
Kj×s by V1, V2, ... ,Vj. Let Kj×s = HR ⊕HB denote a red and blue coloring of Kj×s where HR 

consists of the red graph and where HB consists of the blue graph, having vertex sets equal 
to V(Kj×s). Suppose that a vertex u ∈ V(Kj×s) of HR (or HB) belonging to the partite set Vi is 
such that it is incident to i1,i2,...,i j−1 vertices of each of the remaining j-1 partite sets 
respectively. Then, we say that vertex u has a (i1,i2,...,i j−1) red (or blue) split in HR (or HB) 
provided that i1 ≥ i2 ≥ i3≥…≥ i j−1. Moreover if there exists k1,k2,...,kj−1 such that i1 ≥ k1,  i2 ≥ 
k2, i3≥ k3, … ij−1 ≥ kj−1 and k1 ≥ k2 ≥ k3≥…≥ kj−1, then we say that u contains a (k1,k2,...,kj−1) 
red (or blue) split in HR (or HB). 
 
3. Size Ramsey numbers for mj (B,P2) and mj (B,P3) 

Theorem 3.1. If j ≥ 3, then 

2
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Proof of Theorem 3.1: The proof is trivial and is left for the reader. 

Theorem 3.2. If j ≥ 3, then 
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2 if {3,4}
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1j

j
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Proof of Theorem 3.2: Consider the red-blue coloring of K3×2 = HR ⊕HB where HB 

consists of three independent blue edges (v1,1,v2,2), (v2,1,v3,2) and (v1,2,v3,1). Then HR  will 
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consist of the following diagram. Thus, K3×2 has neither a blue P3 nor a red B. Therefore, 
m3(B,P3) ≥ 3. 

 
Figure 3.1: The HR graph  

Next to show m3(B,P3) ≤ 3, consider any red/blue coloring given by K3×3 = HR ⊕ HB such 
that HR contains no red B and HB contains no blue P3. In order to avoid a blue P3 all vertices 
must have blue degree at most equal to 1. That is all vertices must have red degree at least 
equal to 5. Since K3×3 has odd number of vertices without loss of generality, we may 
assume that v1,1 has red degree 6. However, as degR(v2,1) ≥5 and degR(v2,2) ≥5, there will 
be a red 2K2 induced by V2 U V3. Thus, we will get a red B, a contradiction. Therefore, 
m3(B,P3) = 3. 

As, r(B,P3) =5, (see [4]) we get m4(B,P3) ≥ 2. Next to show, m4(B,P3) ≤ 2, consider 
any red/blue coloring given by K4×2 = HR ⊕ HB, such that HR contains no red B and HB 

contains no blue P3. In order to avoid a blue P3 all vertices must have blue degree at most 
equal to 1. That is all vertices must have red degree at least equal to 5. Suppose that v1,1 is 
adjacent in red to all vertices of U={v2,1, v2,2, v3,1, v3,2, v4,1}. But then in order to avoid a 
red B induced by{ v1,1, v2,1, v2,2, v3,1, v3,2, v4,1}, U must not contain a red 2K2. That is, U 
must contain a blue K1,2, a contradiction. Therefore, m4(B,P3) = 2. 
 
As, r(B,P3) =5, we get mj(B, P3) = 1 for j ≥ 5. 

Theorem 3.3. If  j ≥ 3, then 

3

{3,4,5}

( , ) 2 {6,7 ,8}
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m B C j

otherwise
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  

Proof of Theorem 3.3: (B,C3) = ∞ since mj(C3,C3) = ∞ for j ∈ {3,4,5} and C3 is a subgraph 
of B (See [5]).  
 
Next consider the case j ∈ {6,7,8}. First consider a red/blue coloring of K6×2, given by K6×2 

= HR ⊕ HB, such that HR contains no red B and HB contains no blue C3. As m6(C3,C3) = 1, 
the induced subgraph H1 where V (H1) = {vi,1 : i ∈ {1,2,...,6} } has a red C3 say 
v1,1,v2,1,v3,1,v1,1. Denote this red C3 by A1. Similarly the induced subgraph H2 where V (H2) 
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= {v3,1} ∪ {vi,2 : i ∈ {1,2,4,5,6}} has a red C3 (say A2). If v31 is a vertex of A2 then K6×2 has 
a red B, a contradiction. Otherwise, we get the following three cases.  
 
Case 1: None of the vertices of A2 belong to the partite sets V1,V2,V3.  
 
Case 2: Two of the vertices of A2 belong to two of the partite sets V1,V2,V3. 
 
Case 3: Only one of the vertices of A2 belong to one of the partite sets V1,V2,V3. 
 

 

Figure 3.2: The three cases 
In each of these cases first consider the induced subgraph H such that H consists 

of six vertices v1,v2,...,v6 where no two vertices of {v1,v2,...,v6} belong to the same partite 
set and |V (Ai) ∩ V (H)| = 1 for each i ∈ {1,2}. Due to the absence of a blue C3 and m6(C3,C3) 
= 1, H has a red C3 (say A3). If V (A3) ∩ V (A1) ≠ ∅ or V (A3) ∩ V (A2) ≠ ∅ then K6×2 has a 
red B, a contradiction. 

Otherwise, consider the induced subgraph H1 consisting of the six vertices u1,u2, 
... ,u6 where no two vertices of {u1,u2, ...,u6} belong to the same partite set and |V (Ai)∩V 
(H1)| = 2 for each i ∈ {1,2,3}. H1 has a red C3 due to the absence of a blue C3 and m6(C3,C3) 
= 1. This red C3 along with one of the Ai where i ∈ {1,2,3} forms a red B, a contradiction. 
Therefore, m6(B,C3) ≤ 2. 
 
As, r(B,C3) =9, (see [4]) we get, m8(B,C3) ≥2. 
 
Therefore, 2 ≤ m8(B,C3) ≤ m7(B,C3) ≤ m6(B,C3) ≤ 2, gives us mj(B,C3) = 2 for j ∈ {6,7,8}.                   
Finally, as r(B,C3) =9, (see [4]) we get, mj(B,C3) =1 if j ≥9.                 
 
Theorem 3.4. If j ≥ 3, then 
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Proof of Theorem 3.4: m3(B,P4) ≥ 3. since m3(B,P3) = 3 by theorem 2. 



A Ramsey Problem Related to Butterfly Graph vs. Small Paths and C3  

33 
 

Next to show, m3(B,P4) ≤ 3, consider any red/blue coloring of K3×3 given by K3×3 = HR ⊕ 
HB, such that HR contains no red B and HB contains no blue P4. By the theorem 2 as 
m3(B,P3)=3, we get that there exists a blue P3.  
 
Case 1: There exists a blue P3 that lies in three partite sets. 
 

Without loss of generality, assume that this blue P3 comprises of (v1,1,v2,1) and 
(v2,1,v3,1) blue edges. But then in order for K3×3 not to have a blue P4, (v3,1,v1,2), (v3,1,v1,3), 
(v3,1,v2,2) and (v3,1,v2,3) have to be red edges. Next for W={v1,2,v1,3,v2,2,v2,3,v3,1} not to induce 
a red B, W will be forced to contain a blue P3, belonging to V1 and V2. Thus, this case leads 
to the following case 2. 
   
Case 2: There exists a blue P3 that lies in two partite sets. 
 

Without loss of generality, assume that this blue P3 comprises of (v1,1,v2,1) and ( 
v1,1, v2,2) blue edges. But then in order for K3×3 not to have a blue P4, {v2,1,v2,2} will have 
to be adjacent to all vertices of W1={v1,2,v1,3,v3,1,v3,2,v3,3} in red. In order for W1 not to 
induce a blue P4, without loss of generality we may assume that, (v1,2,v3,1) is a red edge. 
But then in order to avoid a red B induced by W1U{v2,1}, (v1,3, v3,2) and (v1,3, v3,3) are blue 
edges. In addition, in order to avoid blue P4, given by v3,2 v1,3 v3,3, v1,2 the edge (v3,3, v1,2) 
are a red edge. But then {v1,2,v2,1,v2,2,v3,1,v3,3} will induce a red B consisting of the two red 
triangle v1,2,v2,2,v3,1,v1,2 and v1,2,v2,1,v3,3,v1,2 with v1,2 as the center vertex, a contradiction. 
  
Thus, m3(B,P4) ≤ 3. Therefore, m3(B,P4) = 3.   
 

As r(B,P4) = 7, (see [4]) we get m6(B, P4) ≥ 2. To show m4(B, P4) ≤ 2, consider 
K4×2 with any red/blue coloring. Assume K4×2 has neither a red B nor a blue P4. Since   
m4(B,P3) = 2 and K4×2 has no red B, it has a blue P3.  

 

Case 1: There exists a blue P3 that lies in two partite sets 
Let the blue P3 be v1,1, v2,1, v1,2. As there is no blue P4 all vertices in V3∪V4∪{  v2,2} are 
adjacent in red to both v1,1 and v1,2. As there is no red B the red graph induced by  H={  v2,2, 
v3,1, v3,2, v4,1, v4,2 } has no red 2K2. Then any connected components in the graph induced 
by H is equal to a K1,, K2, P3, K3, K1,3 or K1,4. Also the induced red graph of H can contain 
at most one connected component having one or more red edges. In both these situations 
the blue graph induced by H has a blue P4, a contradiction. 
 
Case 2: There exists a blue P3 that lies in three partite sets. 
Let the blue P3 be v1,1, v2,1, v3,1. As there is no blue P4 all vertices in {vi,2: i∈{2,3,4}}∪{ v4,1} 
are adjacent in red to v1,1 and all vertices in {vi,2 : i ∈{1,2,4}}∪{ v4,1} are adjacent in red to 
v3,1. However, by the elimination of case 1, either (v3,2,v4,1) or (v3,2,v4,2) must be red. 
Without loss of generality assume that (v3,2 ,v4,1) is red. In order to avoid a red B with v1,1 
as the center, (v2,2,v4,2) must be blue. But then, in order to avoid case 1, (v2,2,v4,1) is red. 
Next in order to avoid a red B with v1,1 as the center, (v3,2,v4,2) must be blue and in order 
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to avoid a red B with v3,1 as the center, (v1,2,v4,2) must be blue. However, as there is no blue 
P4, (v1,2,v2,2), (v2,2,v3,2) and (v1,2,v3,2) must all be red. This gives us a red B with v2,2 as the 
center, a contradiction. Therefore, m4(B,P4) ≤ 2.              
 
As 2 ≤ m6(B, P4) ≤ m5(B, P4) ≤ m4(B, P4) ≤ 2 we get mj(B, P4) = 2 for j ⋴ {4,5.6}.  
Finally, as r(B,P4) =7 we get, mj(B, P4) =1 if j ≥7.      
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