A Ramsey Problem Related to Butterfly Graph vs. Small Paths and C_{3}

C.J. Jayawardene ${ }^{1 *}$ and B.L. Samarasekara ${ }^{2}$
Department of Mathematics, University of Colombo, Sri Lanka
${ }^{2}$ email: lilanthi@cmb.ac.lk
Corresponding author. ${ }^{\text { email: c_jayawardene @ maths.cmb.ac.lk }}$

Received 17 August 2023; accepted 28 September 2023

Abstract

A graph on five vertices consisting of 2 copies of the cycle graph C_{3} sharing a common vertex is called the Butterfly graph (B). The smallest natural number s such that any two-colouring (say red and blue) of the edges of $K_{j \times s}$ has a copy of a red B or a blue G is called the multipartite Ramsey number of Butterfly graph versus G . This number is denoted by $m_{j}(B, G)$. In this paper, we find the exact values for $m_{j}(B, G)$ when $j>2$ and G represents any small path or else three cycles.

Keywords: Graph theory, Ramsey theory, Ramsey critical graphs
AMS Mathematics Subject Classification (2010): 05C55, 05C38, 05D10

1. Introduction

In this paper, we concentrate on simple graphs. Let the complete multipartite graph having j uniform sets of size s be denoted by $K_{j \times s}$. Given two graphs G and H, we say that $K_{N} \rightarrow(G, H)$ if K_{N} is coloured by two colours, red and blue, and it contains a copy of G (in the first color red) or a copy of H (in the second color blue). Regarding this notation, we define the Ramsey number $\mathrm{r}(\mathrm{n}, \mathrm{m})$ as the smallest integer N , such as $K_{N} \rightarrow\left(K_{n}, K_{m}\right)$. As of today, beyond the case $n=5$, almost nothing significant is known with regard to diagonal classical Ramsey number $r(n, n)$ (see [8] for a survey). Burger and Vuuren (see [1]) were honoured for introducing and developing a branch of Ramsey numbers known as size multipartite Ramsey numbers. The size multipartite Ramsey number $m_{j}(B, G)$, which is a generalization of the much celebrated Ramsey number, is based on exploring the two colourings of multipartite graph $K_{j \times s}$ instead of the complete graph. Formally, we define size multipartite Ramsey number as the smallest natural number s such that $K_{j \times s} \rightarrow\left(K_{n}, K_{m}\right)$.

In the last 14 years, many research papers have been published on the Ramsey number for different pairs of graphs. [2,3,4,6]. Works of [5,7], focuses on the multipartite Ramsey numbers for graph G versus graph H where H is any isolated vertex free simple graph on four vertices and graph G refers to either a C_{3}, a C_{4}. In this paper we find exact the values for $m_{j}(B, G)$ when $j>2$ and G represents any small path or else a 3 cycle.
C.J. Jayawardene and B.L. Samarasekara

$G=$	P_{2}	P_{3}	P_{4}	C_{3}
$j=3$	2	2	3	∞
$j=4$	2	2	2	∞
$j=5$	1	1	2	∞
$j=6$	1	1	2	2
$j=7$	1	1	1	2
$j=8$	1	1	1	2
$j \geq 9$	1	1	1	1

2. Notation

Given a graph $G=G(V, E)$ the order of the graph is denoted by $|V(G)|$ and the size of the graph is denoted by $|E(G)|$. For a vertex v of a graph G, the neighborhood of v, denoted by $N(v)$ is defined as the set of vertices adjacent to v. Furthermore, the cardinality of this set, denoted $d(v)$, is defined as the degree of v. In a Butterfly graph B, the vertex of degree 4 is defined as the center of the Butterfly graph B. We say that a graph G is a k regular graph if $d(v)=k$ for all $v \in V(G)$. Let $N_{R}(v)\left(N_{B}(v)\right)$ be the set of vertices adjacent to v in red(blue). Then the cardinality of this set is denoted by $\operatorname{deg}_{R}(v)\left(\operatorname{deg}_{B}(v)\right)$. Denote the j partite sets of $K_{j \times s}$ by $V_{1}, V_{2}, \ldots, V_{j}$. Let $K_{j \times s}=H_{R} \oplus H_{B}$ denote a red and blue coloring of $K_{j \times s}$ where H_{R} consists of the red graph and where H_{B} consists of the blue graph, having vertex sets equal to $V\left(K_{j \times s}\right)$. Suppose that a vertex $u \in V\left(K_{j \times s}\right)$ of $H_{R}\left(\right.$ or $\left.H_{B}\right)$ belonging to the partite set V_{i} is such that it is incident to $i_{1}, i_{2}, \ldots, i_{j-1}$ vertices of each of the remaining $j-1$ partite sets respectively. Then, we say that vertex u has a ($i_{1}, i_{2}, \ldots, i_{j-1}$) red (or blue) split in H_{R} (or H_{B}) provided that $i_{1} \geq i_{2} \geq i_{3} \geq \ldots \geq i_{j-1}$. Moreover if there exists $k_{1}, k_{2}, \ldots, k_{j-1}$ such that $i_{1} \geq k_{1}, i_{2} \geq$ $k_{2}, i_{3} \geq k_{3}, \ldots i_{j-1} \geq k_{j-1}$ and $k_{1} \geq k_{2} \geq k_{3} \geq \ldots \geq k_{j-1}$, then we say that u contains a $\left(k_{1}, k_{2}, \ldots, k_{j-1}\right)$ red (or blue) split in $H_{R}\left(\right.$ or $\left.H_{B}\right)$.
3. Size Ramsey numbers for $m_{j}\left(B, P_{2}\right)$ and $m_{j}\left(B, P_{3}\right)$

Theorem 3.1. If $j \geq 3$, then

$$
m_{j}\left(B, P_{2}\right)= \begin{cases}2 & \text { if } j \in\{3,4\} \\ 1 & \text { otherwise }\end{cases}
$$

Proof of Theorem 3.1: The proof is trivial and is left for the reader.
Theorem 3.2. If $j \geq 3$, then

$$
m_{j}\left(B, P_{2}\right)= \begin{cases}2 & \text { if } j \in\{3,4\} \\ 1 & \text { otherwise }\end{cases}
$$

Proof of Theorem 3.2: Consider the red-blue coloring of $K_{3 \times 2}=H_{R} \oplus H_{B}$ where H_{B} consists of three independent blue edges $\left(v_{1,1}, v_{2,2}\right),\left(v_{2,1}, v_{3,2}\right)$ and $\left(v_{1,2}, v_{3,1}\right)$. Then H_{R} will

A Ramsey Problem Related to Butterfly Graph vs. Small Paths and C_{3}

consist of the following diagram. Thus, $K_{3 \times 2}$ has neither a blue P_{3} nor a red B. Therefore, $m_{3}\left(B, P_{3}\right) \geq 3$.

Figure 3.1: The H_{R} graph
Next to show $m_{3}\left(B, P_{3}\right) \leq 3$, consider any red/blue coloring given by $K_{3 \times 3}=H_{R} \oplus H_{B}$ such that H_{R} contains no red B and H_{B} contains no blue P_{3}. In order to avoid a blue P_{3} all vertices must have blue degree at most equal to 1 . That is all vertices must have red degree at least equal to 5 . Since $K_{3 \times 3}$ has odd number of vertices without loss of generality, we may assume that $v_{1,1}$ has red degree 6 . However, as $\operatorname{deg}_{\mathrm{R}}\left(v_{2,1}\right) \geq 5$ and $d e g_{\mathrm{R}}\left(v_{2,2}\right) \geq 5$, there will be a red $2 K_{2}$ induced by $V_{2} \mathrm{U} V_{3}$. Thus, we will get a red B, a contradiction. Therefore, $m_{3}\left(B, P_{3}\right)=3$.

As, $r\left(B, P_{3}\right)=5$, (see [4]) we get $m_{4}\left(B, P_{3}\right) \geq 2$. Next to show, $m_{4}\left(B, P_{3}\right) \leq 2$, consider any red/blue coloring given by $K_{4 \times 2}=H_{R} \oplus H_{B}$, such that H_{R} contains no red B and H_{B} contains no blue P_{3}. In order to avoid a blue P_{3} all vertices must have blue degree at most equal to 1 . That is all vertices must have red degree at least equal to 5 . Suppose that $v_{1,1}$ is adjacent in red to all vertices of $U=\left\{v_{2,1}, v_{2,2}, v_{3,1}, v_{3,2}, v_{4,1}\right\}$. But then in order to avoid a red B induced by $\left\{v_{1,1}, v_{2,1}, v_{2,2}, v_{3,1}, v_{3,2}, v_{4,1}\right\}, U$ must not contain a red $2 K_{2}$. That is, U must contain a blue $K_{1,2}$, a contradiction. Therefore, $m_{4}\left(B, P_{3}\right)=2$.

As, $r\left(B, P_{3}\right)=5$, we get $m_{j}\left(B, P_{3}\right)=1$ for $j \geq 5$.
Theorem 3.3. If $j \geq 3$, then

$$
m_{j}\left(B, C_{3}\right)= \begin{cases}\infty & j \in\{3,4,5\} \\ 2 & j \in\{6,7,8\} \\ 1 & \text { otherwise }\end{cases}
$$

Proof of Theorem 3.3: $\left(B, C_{3}\right)=\infty$ since $m_{j}\left(C_{3}, C_{3}\right)=\infty$ for $j \in\{3,4,5\}$ and C_{3} is a subgraph of B (See [5]).

Next consider the case $j \in\{6,7,8\}$. First consider a red/blue coloring of $K_{6 \times 2}$, given by $K_{6 \times 2}$ $=H_{R} \oplus H_{B}$, such that H_{R} contains no red B and H_{B} contains no blue C_{3}. As $m_{6}\left(C_{3}, C_{3}\right)=1$, the induced subgraph H_{1} where $V\left(H_{1}\right)=\left\{v_{i, 1}: i \in\{1,2, \ldots, 6\}\right\}$ has a red C_{3} say $v_{1,1}, v_{2,1}, v_{3,1}, v_{1,1}$. Denote this red C_{3} by A_{1}. Similarly the induced subgraph H_{2} where $V\left(H_{2}\right)$

C.J. Jayawardene and B.L. Samarasekara

$=\left\{v_{3,1}\right\} \cup\left\{v_{i, 2}: i \in\{1,2,4,5,6\}\right\}$ has a red C_{3} (say A_{2}). If v_{31} is a vertex of A_{2} then $K_{6 \times 2}$ has a red B, a contradiction. Otherwise, we get the following three cases.

Case 1: None of the vertices of A_{2} belong to the partite sets V_{1}, V_{2}, V_{3}.

Case 2: Two of the vertices of A_{2} belong to two of the partite sets V_{1}, V_{2}, V_{3}.

Case 3: Only one of the vertices of A_{2} belong to one of the partite sets V_{1}, V_{2}, V_{3}.

Figure 3.2: The three cases
In each of these cases first consider the induced subgraph H such that H consists of six vertices $v_{1}, v_{2}, \ldots, v_{6}$ where no two vertices of $\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$ belong to the same partite set and $\left|V\left(A_{i}\right) \cap V(H)\right|=1$ for each $i \in\{1,2\}$. Due to the absence of a blue C_{3} and $m_{6}\left(C_{3}, C_{3}\right)$ $=1, H$ has a red $C_{3}\left(\right.$ say $\left.A_{3}\right)$. If $V\left(A_{3}\right) \cap V\left(A_{1}\right) \neq \varnothing$ or $V\left(A_{3}\right) \cap V\left(A_{2}\right) \neq \varnothing$ then $K_{6 \times 2}$ has a red B, a contradiction.

Otherwise, consider the induced subgraph H_{1} consisting of the six vertices u_{1}, u_{2}, \ldots, u_{6} where no two vertices of $\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$ belong to the same partite set and $\mid V\left(A_{i}\right) \cap V$ $\left(H_{1}\right) \mid=2$ for each $i \in\{1,2,3\} . H_{1}$ has a red C_{3} due to the absence of a blue C_{3} and $m_{6}\left(C_{3}, C_{3}\right)$ $=1$. This red C_{3} along with one of the A_{i} where $i \in\{1,2,3\}$ forms a red B, a contradiction. Therefore, $m_{6}\left(B, C_{3}\right) \leq 2$.

As, $r\left(B, C_{3}\right)=9$, (see [4]) we get, $m_{8}\left(B, C_{3}\right) \geq 2$.

Therefore, $2 \leq m_{8}\left(B, C_{3}\right) \leq m_{7}\left(B, C_{3}\right) \leq m_{6}\left(B, C_{3}\right) \leq 2$, gives us $m_{j}\left(B, C_{3}\right)=2$ for $j \in\{6,7,8\}$. Finally, as $r\left(B, C_{3}\right)=9$, (see [4]) we get, $m_{j}\left(B, C_{3}\right)=1$ if $j \geq 9$.

Theorem 3.4. If $j \geq 3$, then

$$
m_{j}\left(B, P_{4}\right)= \begin{cases}3 & j=3 \\ 2 & j \in\{4,5,6\} \\ 1 & \text { otherwise }\end{cases}
$$

Proof of Theorem 3.4: $m_{3}\left(B, P_{4}\right) \geq 3$. since $m_{3}\left(B, P_{3}\right)=3$ by theorem 2 .

A Ramsey Problem Related to Butterfly Graph vs. Small Paths and C_{3}

Next to show, $m_{3}\left(B, P_{4}\right) \leq 3$, consider any red/blue coloring of $K_{3 \times 3}$ given by $K_{3 \times 3}=H_{R} \oplus$ H_{B}, such that H_{R} contains no red B and H_{B} contains no blue P_{4}. By the theorem 2 as $m_{3}\left(B, P_{3}\right)=3$, we get that there exists a blue P_{3}.

Case 1: There exists a blue P_{3} that lies in three partite sets.

Without loss of generality, assume that this blue P_{3} comprises of ($v_{1,1}, v_{2,1}$) and $\left(v_{2,1}, v_{3,1}\right)$ blue edges. But then in order for $K_{3 \times 3}$ not to have a blue $P_{4},\left(v_{3,1}, v_{1,2}\right),\left(v_{3,1}, v_{1,3}\right)$, $\left(v_{3,1}, v_{2,2}\right)$ and $\left(v_{3,1}, v_{2,3}\right)$ have to be red edges. Next for $W=\left\{v_{1,2}, v_{1,3}, v_{2,2}, v_{2,3}, v_{3,1}\right\}$ not to induce a red B, W will be forced to contain a blue P_{3}, belonging to V_{1} and V_{2}. Thus, this case leads to the following case 2 .

Case 2: There exists a blue P_{3} that lies in two partite sets.

Without loss of generality, assume that this blue P_{3} comprises of $\left(v_{1,1}, v_{2,1}\right)$ and ($v_{1,1}, v_{2,2}$) blue edges. But then in order for $K_{3 \times 3}$ not to have a blue $P_{4},\left\{v_{2,1}, v_{2,2}\right\}$ will have to be adjacent to all vertices of $W_{1}=\left\{v_{1,2}, v_{1,3}, v_{3,1}, v_{3,2}, v_{3,3}\right\}$ in red. In order for W_{1} not to induce a blue P_{4}, without loss of generality we may assume that, $\left(v_{1,2}, v_{3,1}\right)$ is a red edge. But then in order to avoid a red B induced by $W_{1} U\left\{v_{2,1}\right\},\left(v_{1,3}, v_{3,2}\right)$ and $\left(v_{1,3}, v_{3,3}\right)$ are blue edges. In addition, in order to avoid blue P_{4}, given by $v_{3,2} v_{1,3} v_{3,3}, v_{1,2}$ the edge ($v_{3,3}, v_{1,2}$) are a red edge. But then $\left\{v_{1,2}, v_{2,1}, v_{2,2}, v_{3,1}, v_{3,3}\right\}$ will induce a red B consisting of the two red triangle $v_{1,2}, v_{2,2}, v_{3,1}, v_{1,2}$ and $v_{1,2}, v_{2,1}, v_{3,3}, v_{1,2}$ with $v_{1,2}$ as the center vertex, a contradiction.

Thus, $m_{3}\left(B, P_{4}\right) \leq 3$. Therefore, $m_{3}\left(B, P_{4}\right)=3$.

As $r\left(B, P_{4}\right)=7$, (see [4]) we get $m_{6}\left(B, P_{4}\right) \geq 2$. To show $m_{4}\left(B, P_{4}\right) \leq 2$, consider $K_{4 \times 2}$ with any red/blue coloring. Assume $K_{4 \times 2}$ has neither a red B nor a blue P_{4}. Since $m_{4}\left(B, P_{3}\right)=2$ and $K_{4 \times 2}$ has no red B, it has a blue P_{3}.

Case 1: There exists a blue P_{3} that lies in two partite sets
Let the blue P_{3} be $v_{1,1}, v_{2,1}, v_{1,2}$. As there is no blue P_{4} all vertices in $V_{3} \cup V_{4} \cup\left\{v_{2,2}\right\}$ are adjacent in red to both $v_{1,1}$ and $v_{1,2}$. As there is no red B the red graph induced by $H=\left\{v_{2,2}\right.$, $\left.v_{3,1}, v_{3,2}, v_{4,1}, v_{4,2}\right\}$ has no red $2 K_{2}$. Then any connected components in the graph induced by H is equal to a $K_{1}, K_{2}, P_{3}, K_{3}, K_{1,3}$ or $K_{1,4}$. Also the induced red graph of H can contain at most one connected component having one or more red edges. In both these situations the blue graph induced by H has a blue P_{4}, a contradiction.

Case 2: There exists a blue P_{3} that lies in three partite sets.
Let the blue P_{3} be $v_{1,1}, v_{2,1}, v_{3,1}$. As there is no blue P_{4} all vertices in $\left\{v_{i, 2}: i \in\{2,3,4\}\right\} \cup\left\{v_{4,1}\right\}$ are adjacent in red to $v_{1,1}$ and all vertices in $\left\{v_{i, 2}: i \in\{1,2,4\}\right\} \cup\left\{v_{4,1}\right\}$ are adjacent in red to $v_{3,1}$. However, by the elimination of case 1 , either ($v_{3,2}, v_{4,1}$) or ($v_{3,2}, v_{4,2}$) must be red. Without loss of generality assume that ($v_{3,2}, v_{4,1}$) is red. In order to avoid a red B with $v_{1,1}$ as the center, ($v_{2,2}, v_{4,2}$) must be blue. But then, in order to avoid case 1 , $\left(v_{2,2}, v_{4,1}\right)$ is red. Next in order to avoid a red B with $v_{1,1}$ as the center, ($v_{3,2}, v_{4,2}$) must be blue and in order

C.J. Jayawardene and B.L. Samarasekara

to avoid a red B with $v_{3,1}$ as the center, ($v_{1,2}, v_{4,2}$) must be blue. However, as there is no blue $P_{4},\left(v_{1,2}, v_{2,2}\right),\left(v_{2,2}, v_{3,2}\right)$ and $\left(v_{1,2}, v_{3,2}\right)$ must all be red. This gives us a red B with $v_{2,2}$ as the center, a contradiction. Therefore, $m_{4}\left(B, P_{4}\right) \leq 2$.

As $2 \leq m_{6}\left(B, P_{4}\right) \leq m_{5}\left(B, P_{4}\right) \leq m_{4}\left(B, P_{4}\right) \leq 2$ we get $m_{j}\left(B, P_{4}\right)=2$ for $j \in\{4,5.6\}$. Finally, as $r\left(B, P_{4}\right)=7$ we get, $m_{j}\left(B, P_{4}\right)=1$ if $j \geq 7$.

Acknowledgement. The authors would like to thank the reviewers and editors for their contribution.

Conflicts of Interest: The authors declare that there is no conflict of interest.
Author's Contributions: All authors contributed equally.

REFERENCES

1. P. Burger and J. H. van Vuuren, Ramsey numbers in Complete Balanced Multipartite Graphs. Part II: Size Numbers, Discrete Mathematics, 283 (2004) 45-49.
2. P. Erdös, R. J. Faudree, C. C. Rousseau and R. H. Schelp, The size Ramsey number, Period Mathematics Hungary, 9 (1978) 145-161.
3. R. J. Faudree and R. H. Schelp, Path-path Ramsey-type numbers for the complete bipartite graph, Journal of Combinatorial Theory (B), 19 (1975) 161-173.
4. G. R. T. Hendry, Ramsey Numbers for Graphs with Five Vertices, Journal of Graph Theory, 13 (1989) 245-248.
5. C.J. Jayawardene and B. L. Samarasekara, Size multipartite Ramsey numbers for C_{3} versus all graphs on 4 vertices, Journal of National Science Foundation, Sri Lanka, 45 (2017) 67-72.
6. C.J. Jayawardene and C. C. Rousseau, Ramsey numbers $r\left(C_{6}, G\right)$ for all graphs of order less than six, Congressus Numerantium (1999) 147-160.
7. C.J.Jayawardene and T.U.Hewage, Multipartite Ramsey numbers for C_{4} versus all graphs on 4 vertices, Annals of Pure and Applied Mathematics, 13(2) (2017) 297-304.
8. V.Kavitha and R.Govindarajan, A study on Ramsey numbers and its bounds, Annals of Pure and Applied Mathematics, 8(2) (2014) 227-236.
